抗干扰滤波器在电池兼容设计中的解决办法
- 格式:pdf
- 大小:73.59 KB
- 文档页数:2
电子电路中的电源抗干扰问题如何解决电子电路中的电源抗干扰问题是设计和应用过程中经常面临的挑战。
干扰源的存在可能导致电子设备不正常工作甚至瘫痪,因此解决电源抗干扰问题对于保证电路的可靠性和稳定性至关重要。
本文将从几个方面介绍如何解决电子电路中的电源抗干扰问题。
一、选择合适的电源设计方案在电源设计过程中选择合适的电源方案是解决电源抗干扰问题的基础。
以下是几种常见的电源设计方案:1. 线性稳压电源线性稳压电源采用稳压管等元件实现电压的稳定输出。
它具有简单、可靠、成本低等特点,但在解决抗干扰问题方面能力较弱。
2. 开关稳压电源开关稳压电源是一种高效、稳定的电源设计方案,能够提供更好的抗干扰性能。
它通过开关元件控制电流的开关状态,通过电感和电容等元件实现电压的稳定输出。
3. 电池供电电池供电是一种常见的解决电源抗干扰问题的方案。
由于电池具有独立的电源系统,不受外部电源的影响,因此可以有效地提高电路的抗干扰能力。
根据实际需求和应用场景选择合适的电源设计方案,有助于提高电路的抗干扰能力。
二、增加滤波电路滤波电路的作用是过滤掉电源信号中的高频干扰成分,以达到净化电源的目的。
常用的滤波电路包括:1. LC滤波器LC滤波器是一种常见的电源滤波电路,它由电感和电容组成。
电感具有阻抗对高频信号有较大的阻抗,而电容对低频信号具有较大的阻抗。
通过合理选择电感和电容的数值,可以实现对电源信号的滤波。
2. RC滤波器RC滤波器是一种基于电阻和电容的滤波电路。
电阻和电容组成的高通或低通滤波器可以分别过滤掉高频或低频信号。
增加滤波电路可以有效地减少电源信号中的干扰成分,提高电路的抗干扰能力。
三、优化布线和接地良好的布线和接地设计可以有效降低电路的干扰水平。
以下是一些布线和接地的注意事项:1. 尽量缩短信号线和电源线的长度,减少干扰的引入。
2. 多层板设计时,将电源和信号层分开,减少干扰的传播。
3. 使用屏蔽线或屏蔽罩来保护敏感信号,减少干扰的影响。
芯片设计中的电磁兼容性问题研究与解决方案简介随着现代科技的迅猛发展,芯片在电子产品中的应用越来越广泛。
然而,在芯片设计过程中,电磁兼容性问题是一个不可忽视的挑战。
本文将介绍芯片设计中的电磁兼容性问题,并提出相应的解决方案。
1. 电磁兼容性问题的背景在芯片设计中,电磁兼容性问题是指芯片在工作时所产生的电磁干扰与其它电子设备之间的相互影响。
这些电磁干扰不仅可能导致设备工作不稳定,还可能对周围环境产生不良影响。
因此,解决电磁兼容性问题至关重要。
2. 电磁兼容性问题的研究2.1 电磁兼容性测试在芯片设计的早期阶段,进行电磁兼容性测试是必不可少的。
这些测试可以通过模拟真实工作环境中的电磁干扰来评估芯片的抗干扰能力。
常见的电磁兼容性测试方法包括辐射测试和传导测试。
2.2 电磁兼容性仿真除了测试,电磁兼容性仿真也是研究电磁兼容性问题的重要手段。
通过建立合适的模型和引入电磁场求解器,可以模拟和分析芯片在不同工作条件下的电磁行为,预测其电磁干扰和抗干扰性能。
3. 电磁兼容性问题的解决方案3.1 电磁屏蔽为了减轻芯片产生的电磁干扰,可以采用电磁屏蔽技术。
这种技术通过在芯片周围添加屏蔽层,阻断电磁波的传播,减少电磁辐射的影响。
3.2 地线设计地线设计也是解决电磁兼容性问题的重要方面。
良好的地线布局和连接可以有效降低芯片的电磁辐射。
在设计过程中,应注意地线的长度、宽度和间距等因素,以保证地线的导电性和电磁屏蔽性能。
3.3 信号线布局合理的信号线布局对于减少电磁干扰也十分关键。
一般而言,信号线应避免与电源线和地线交叉,以减少信号线之间的相互干扰。
此外,使用屏蔽线、差分信号传输等技术也可以提高芯片的电磁兼容性。
3.4 滤波器设计在芯片设计中,滤波器的设计可以有效地抑制高频噪声和电磁干扰。
通过对电源线和信号线进行适当的滤波器配置,可以降低芯片所产生的电磁辐射,提高其抗干扰能力。
4. 电磁兼容性问题的重要性电磁兼容性问题的解决不仅关乎产品的可靠性和稳定性,也涉及到对周围环境和其他电子设备的保护。
电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。
EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。
因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。
首先,我们来了解一些常见的EMC问题。
电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。
当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。
2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。
3. 地线干扰:地线是电路中的参考电位点,负责回流电流。
但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。
接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。
通过将不同电路板的布局位置安排合理,减小信号之间的干扰。
将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。
2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。
滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。
3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。
通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。
同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。
4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。
例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。
I G I T C W技术 应用Technology Application122DIGITCW2024.011 电子电路设计中的干扰类型1.1 机械干扰和热干扰(1)机械干扰。
将电子电路应用于各种电子元器件及生产机械设备时,各种元器件与生产制造设备的接触会产生摩擦和不均匀振动,如果摩擦力度和振动力度过大会导致电子元器件位移、变形,并使设备加工参数出现异常,从而降低元器件加工质量及精度,最终给电子电路造成严重的机械干扰,例如,在机械干扰下电子电路系统的监测设备、仪表等都会出现故障。
(2)热干扰。
也是电子电路运行中最常见的干扰类型之一。
众所周知,电子电路系统在运行过程中会产生大量热量,这不仅会使内部元器件参数发生变化,还会因为热量增加导致系统运行不稳定,从而增加各种安全问题发生率。
1.2 光干扰和湿度干扰(1)光干扰。
电子电路设计中还需对电子电路系统中半导体、电子元器件等的掺杂性、热敏性、光敏性、负电阻率等进行精准测量及计算,以确定最佳参数,减少热、光等对电子电路造成的干扰。
但部分设计人员并没有结合实际去分析电子电路的掺杂性、热敏性、光敏性,也没有计算出对应的精准参数,导致电子电路系统中的半导体元器件极易受到外界光线的干扰,从而激发出空穴电子对,使半导体元器件阻值发生异常,最终影响电子电路系统正常运行[1-2]。
(2)湿度干扰。
环境湿度也是电子电路系统运行的主要影响因素,所以在设计电子电路时需要考虑湿度干扰问题,尽可能为电子电路系统搭建良好的运行环境。
但在设计电子电路时,部分设计人员并不重视环境湿度检测等工作,导致湿度过大或者过小,从而对电子电路产生干扰,导致电子电路绝缘电阻性能下降,增加漏电、电子元器件锈蚀等问题发生率。
1.3 电磁干扰电磁干扰是发生率最高的干扰类型,因为在电子电路设计及搭建过程中会应用很多产生电场及磁场的电工电子技术及产品,如果不及时采取有效的电磁抗干扰措施,不仅会增加电子测量系统的测量误差,还会产生其他干扰,包括噪声干扰及热干扰等。
电路电磁兼容性设计如何设计抗干扰和抗辐射电路电磁兼容性(Electromagnetic Compatibility, EMC)是指电子设备在相互干扰和和外界电磁环境下能够正常工作的能力。
在电子产品的设计中,抗干扰和抗辐射电路的设计是确保电子设备在各种电磁环境下能够稳定运行的重要因素。
本文将讨论电路电磁兼容性设计中如何设计抗干扰和抗辐射电路。
一、抗干扰电路设计抗干扰电路设计是为了减少电子设备对外界电磁噪声的敏感度,防止其发生故障或误操作。
以下是几种常见的抗干扰电路设计方法:1. 电源线滤波器:通过在电源输入端添加滤波电路,能够滤除掉电源线上的高频噪声,减小对电子设备的影响。
2. 地线设计:良好的接地设计可以有效地抑制干扰信号的传播,例如通过增加接地电感和接地电容,形成低阻抗的接地路径。
3. 屏蔽设计:在电路板的设计中,使用屏蔽罩或金属层来遮蔽电子设备内部的干扰源,从而降低对周围环境的干扰。
4. 布线设计:合理的布线可以减少信号间的串扰,例如将高频信号线和低频信号线分开布置,避免相互干扰。
5. 过压保护设计:在电路中添加适当的过压保护电路,可以避免由于外界电磁干扰引起的过压情况,保护电子设备的正常工作。
二、抗辐射电路设计抗辐射电路设计是为了减少电子设备对外界电磁辐射的敏感度,防止其自身辐射对其他设备和系统造成干扰。
以下是几种常见的抗辐射电路设计方法:1. 圆孔规则:根据电磁波波长和孔洞尺寸之间的关系,设计合理大小的圆孔,使其具有较好的屏蔽性能。
2. 接地设计:良好的接地设计可以有效地将电磁辐射信号导入地面,减小辐射功率。
3. 电磁辐射滤波器:通过添加辐射滤波器,限制高频电流在电路中的传播,减少辐射发射。
4. 屏蔽设计:在电路板设计中增加屏蔽层或屏蔽导线,使电磁辐射局限在设备内部,减少对外界的辐射。
5. 地面平面分割:通过将地面平面划分为小的分区,降低不同分区之间电荷的流动速度,减小辐射功率。
三、电路模拟与仿真为了更好地评估电路的电磁兼容性性能,可以使用电磁仿真软件对电路进行模拟和仿真。
滤波器设计中的常见问题和解决方法在电子电路中,滤波器是一个重要的组成部分,用于去除信号中的噪声或不必要的频率成分,以便得到所需的信号。
然而,在滤波器设计的过程中,常常会遇到一些问题。
本文将探讨滤波器设计中的常见问题,并给出相应的解决方法。
一、阶数选择问题在滤波器设计中,阶数是一个重要的参数,它决定了滤波器的性能。
阶数过高会导致滤波器复杂度增加,而阶数过低则可能无法满足滤波器的要求。
因此,在设计滤波器时需要选择适当的阶数。
解决这个问题的方法是结合实际需求和设计限制,进行折衷考虑。
可以通过模拟与优化方法来确定最佳的阶数。
二、滤波器特性失配在实际应用中,滤波器的特性可能与理论设计有所差异,导致滤波器性能不达预期。
这可能是由于元器件参数、非线性效应、温度漂移等因素引起的。
为了解决这个问题,可以采取以下方法:首先,精选元器件,尽量减小参数误差;其次,考虑非线性效应对滤波器的影响,采取补偿措施;最后,合理设计温度补偿电路,减小温度对滤波器特性的影响。
三、抗干扰性能不足在实际应用中,滤波器常常会受到来自外部环境的干扰,如电磁干扰、共模干扰等。
如果滤波器的抗干扰性能不足,可能导致滤波器无法正常工作。
为了提高滤波器的抗干扰性能,可以采取以下措施:首先,合理布局电路板,减小电磁干扰;其次,采用屏蔽技术,将敏感的部分包裹起来,减小共模干扰;最后,使用抗干扰性能较好的元器件,降低干扰对滤波器的影响。
四、相位失真问题在滤波器设计中,相位失真是一个常见的问题。
如果滤波器的相位失真过大,可能会导致信号波形发生变形,影响系统的性能。
为了解决这个问题,可以采取以下方法:首先,分析滤波器的相位特性,明确相位失真的原因;其次,通过合理调整滤波器的设计参数,减小相位失真;最后,使用补偿电路来补偿相位失真,提高滤波器的相位平坦性。
五、频率选择问题滤波器的频率选择是滤波器设计中的一个重要问题。
如果滤波器的频率选择不准确,可能会导致滤波器无法满足设计要求。
电力电子技术中如何解决电磁干扰问题电力电子技术在现代工业和生活中扮演着至关重要的角色。
然而,随着电力电子设备的广泛应用,由于其高频开关特性和电路布局等原因,电磁干扰问题日益突出。
本文将介绍电力电子技术中解决电磁干扰问题的一些方法和技术。
一、合理电路布局和设计在电力电子设备的设计过程中,合理的电路布局和设计是解决电磁干扰问题的基本要求。
一方面,要避免信号线和电源线过长或过近,尽量减小导线的回路面积,以降低传导和辐射干扰。
另一方面,要合理安排电子元件的位置和布局,减小元件之间的交互影响。
此外,在PCB设计中,采用双层或多层板、地线的屏蔽以及良好的接地设计也是有效的方法。
二、滤波器的应用滤波器是电力电子设备中常用的抑制电磁干扰的装置。
根据不同的干扰类型,可以选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器等。
滤波器可以有效地抑制由电力电子设备引起的干扰信号,保证设备正常运行并降低对周围设备的干扰。
三、屏蔽技术的应用在电力电子设备的设计中,屏蔽技术是解决电磁干扰问题的常用方法。
屏蔽可以通过合适的材料或结构将电磁干扰隔离,阻止其传播和辐射。
常见的屏蔽材料包括金属覆盖、金属层、金属板等。
此外,在电路设计中也可以采用屏蔽壳体、屏蔽罩等结构,用于阻挡电磁干扰的影响。
四、接地和屏蔽技术的应用良好的接地和屏蔽是电力电子设备中有效抑制电磁干扰的重要手段。
通过合理的接地设计,可以将电磁干扰引入地,避免对其他设备的影响。
同时,采用合适的屏蔽技术,将电磁干扰隔离在设备内部,防止其传播。
良好的接地和屏蔽设计可以有效降低电磁干扰的程度,提高设备的可靠性和稳定性。
五、信号调理和数字滤波器技术的应用在电力电子技术中,信号调理和数字滤波器技术也是解决电磁干扰的重要手段。
信号调理技术可以对干扰信号进行处理,提取有用信号并滤除干扰,从而保证设备正常工作。
数字滤波器技术通过数字信号处理算法对信号进行滤波,去除干扰成分,提高电路的抗干扰能力。
电路设计抗干扰措施在电路设计中,抗干扰措施是非常重要的,可以有效地减少或消除各种电磁干扰对电路正常运行造成的影响。
下面将介绍一些常见的抗干扰措施。
1.地线设计地线在电路中起到连接电路各个部分的作用,它功德很大程度上影响了电路的干扰抗能力。
在地线设计中,应尽量缩短地线的长度,减小地线的电阻和电感,并采用良好的接地方式。
另外,应避免地线与信号线和电源线的交叉,以减少互相干扰。
2.滤波器的使用滤波器是抗干扰的重要组成部分,可以帮助滤除电路中的高频干扰信号。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在设计中,可以根据具体干扰源的频率特性选择合适的滤波器,并将其放置在电路的输入和输出端口。
3.屏蔽措施屏蔽是通过屏蔽材料将电路部件与外界环境隔离开来,阻止干扰信号的进入或电磁辐射的泄漏。
常用的屏蔽材料包括金属泡沫、金属网、金属薄膜和金属壳体。
在设计中,可以根据需要在电路周围设置适当的屏蔽层来保护电路免受干扰。
4.接地和屏蔽电流的设计在设计电路时,接地是非常重要的一项工作。
良好的接地设计可以有效降低电路的串扰和电磁干扰。
在接地设计中,应尽量缩短接地线路的长度、宽度和电阻,并采用低电阻的接地方式。
此外,还需要注意屏蔽电流的设计,避免屏蔽电流造成的地回流问题。
5.信号线和电源线的布局信号线和电源线是电路中最容易受到干扰的部分。
在布局设计中,应尽量避免信号线和电源线的交叉和平行排列,以减少互相干扰。
可以通过增加信号层的层数和合理分配信号线和电源线的位置来降低干扰。
6.过滤器的选择在电路设计中,可以使用各种过滤器来减少电源线和信号线上的干扰。
常见的过滤器包括RC滤波器、LC滤波器和PI滤波器。
过滤器的选择应根据具体的干扰频率和功率要求来确定。
7.抑制共模信号的方法共模信号是一种常见的干扰信号,可以通过使用差模电路来抑制。
差模电路可以将共模信号转换为差模信号,并将其降噪。
常见的差模电路包括差动放大器和差分输入电路。
电动机的电磁兼容性与防护措施电动机在现代工业生产中扮演着重要的角色,但它们也会产生电磁干扰,对其他设备和系统造成负面影响。
因此,电动机的电磁兼容性和防护措施变得至关重要。
本文将探讨电动机的电磁兼容性问题,并提出相应的防护措施。
一、电磁兼容性简介电磁兼容性(EMC)是指电气设备在电磁环境中正常工作的能力,同时不对周围设备和系统产生电磁干扰。
对于电动机来说,EMC主要涉及两个方面:抑制电动机本身产生的电磁干扰以及提高电动机的抗干扰能力。
1.1 电动机产生的电磁干扰电动机在运行过程中会产生电磁辐射和传导干扰。
电磁辐射是指电动机通过空气传播的电磁波。
而传导干扰是指电动机通过导线或电源线等传导介质传播的电磁干扰。
电动机产生的电磁干扰主要包括以下几个方面:1)辐射电磁干扰:由电机内部的绕组和磁路产生的瞬态电流引起,主要通过空气传播。
2)导线辐射干扰:由电机内部的绕组电流流经导线引起,主要通过导线传播。
3)传导电磁干扰:由电机内部的绕组瞬态电流通过机壳、电源线等传导到其他设备或系统。
1.2 提高电动机的抗干扰能力为提高电动机的抗干扰能力,可以从以下几个方面入手:1)优化电机设计:合理设计电机结构、磁路和绕组,以降低电机产生的电磁辐射和传导干扰。
2)采用吸收材料:在电机内部或外部添加吸收材料,用以吸收电磁辐射和传导干扰的能量,减小对周围设备的影响。
3)使用滤波器:在电机电源线上安装滤波器,用以抑制电磁干扰。
4)地线设计:合理设计电机的地线系统,以提高电机的接地可靠性和抑制传导干扰的能力。
5)增加屏蔽措施:在电机构造中增加屏蔽结构,减小电磁辐射和传导干扰的水平。
6)使用光纤通信:将电机控制信号通过光纤传输,避免电磁干扰问题。
二、电动机的防护措施为保护电动机免受电磁干扰的影响,以下是一些常见的防护措施:1. 地线系统优化:合理设计电动机的地线系统,确保良好的接地,减少电磁辐射和传导干扰。
2. 屏蔽材料应用:在电动机的外壳和连接线等位置使用金属屏蔽材料,减小电磁辐射和传导干扰。
抗干扰滤波器在电池兼容设计中的解决办法
抗干扰滤波器在电池兼容设计中的解决办法
大多数电子产品设计师对干扰滤波器的认识一般局限在:“电子产品要通过电源线传导发射试验和电源线抗扰度试验,必须在电源线上使用干扰滤波器”。
而对于干扰滤波器的其它作用了解很少,这就导致了产品设计完毕后,往往不能通过其它试验项目,例如辐射发射、辐射抗扰度、信号线上的传导敏感度等试验。
实际上,电磁干扰滤波器对于顺利大部分电磁兼容试验以及保证产品的功能都是十分重要一类器件。
本文介绍由于滤波措施不完善导致的电磁干扰问题及相应的解决办法。
滤波措施不完善导致的干扰问题当出现下面这些干扰问题时,往往是由于滤波措施不完善。
1.设备的机箱或机柜屏蔽十分完善,但是仍然产生超标的辐射发射;2.独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题;
3.在信号电缆线上注入电快速脉冲时,出现故障;
4.不能通过辐射抗扰度试验;
5.不能通过电缆束上的传导敏感度试验;
6.不能通过静电放电试验;
7.电缆中的导线之间或电缆之间相互干扰,导致设备不能实现预定功能。
用滤波器解决干扰问题下面就如何用滤波器解决上述问题的方案作简单介绍。
1)虽然机箱或机柜屏蔽很好,但是辐射发射超标,或者不能通过辐射抗扰度试验这是由于机箱或机柜上的外拖电缆起着天线的作用。
天线的一个特性是互易性,也就是说:一个天线如果具有很高的辐射效率,那么它的接收效率也很高。
因此,设备的外拖电缆既能产生很强的辐射,也能有效的将空间电磁波接收下来,传进设备,对电路形成干扰。
由于某种原因,在外拖电缆上形成了干扰电流,这些电流从机箱内传导出来,并以电缆作为辐射天线辐射电磁波。
解决这种问题的方法就是在电缆的端口处安装一只滤波器,将干扰电流滤除掉。
2)独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题;这个问题与第一类问题的本质相同,就是外拖电缆相当于天线。
当没有电缆时,相当于没有辐射天线和接收天线,因此容易通过辐射发射和抗扰度试验,但是当拖上电缆后,这些电缆作为辐射天线和接收天线,导致设备的辐射增强、对外界空间干扰的敏感度提高。
解决方法就是在电缆的端口处安装滤波器,将这些导体从空间接收到的电磁能量在它们到达电子线路之前滤除掉,另一方面,阻止电子线路中的干扰能量进入这些导体后借助导体辐射。
3)在信号电缆线上注入电快速脉冲时,出现故障;
我们知道电快速脉冲的频率是很高的,这些干扰通过电容耦合钳耦合进电缆,在电缆上形成干扰电流,这些电流一方面直接流进电路,对电路形成干扰,另一方面产生辐射,对电路形成干扰。
解决方法就是采用屏蔽电缆和加装滤波器。
4)不能通过电缆束上的传导敏感度试验电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动
的抗干扰能力。
这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验,自然也可以通过在电缆端口处滤波的方式来解决。
5)不能通过静电放电试验;静电放电对设备电路的影响很大程度上是由于静电放电电流周围的高频电磁场,这些电磁场由于频率很高,因此很容易被导线所接收,对电路形成干扰净,某设备在做静电放电试验时,发现当在活动面板上进行放电时,电路出现故障。
经检查,发现面板后面是一束电缆,面板上的静电放电电流产生的电磁场在电缆束上感应出了噪声电流,形成干扰。
在电缆的端口处安装滤波器后,问题解决。
随着开关电源的普遍应用,在电源线入口处安装滤波器已经是项必要的措施。
因为开关电源工作在大功率脉冲状态,它会产生很强的电磁辐射,这些辐射感应到线路上形成传导发射。
如果不使用滤波器,就没有可能通过满足电磁兼容试验。
在设计中,往往将干扰滤波器分为电源线干扰滤波器和信号线干扰滤波器两类。
从电路上讲,这两类滤波器是相同的,都是低通滤波器,之所以这样来划分,主要是因为两者除了都有对电磁干扰有尽量大的抑制作用外,分别还有一些特殊的考虑。
信号滤波器还要考虑滤波器不能对工作信号有严重的影响,不能造成信号的失真。
电源滤波器除了要保证满足安全方面的要求外,还要注意当负载电流较大时,电路中的电感不能发生饱和(导致滤波器性能下降)。