华师版初一数学期末试题
- 格式:doc
- 大小:279.00 KB
- 文档页数:9
华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。
\七年级数学第一学期期末测试试卷一、静心填一填 1、32-的相反数是_______;倒数是_______;绝对值是______. 2、七年级学生小明双休日在家看一本课外读物,他从第a 页看起,一直看到第n 页,他共看了__________页书。
3、据新华社报道:国家林业局最新统计显示,我国自然保护区总数已达1867个,覆盖国土总面积的15.6%,其中国家级自然保护区206个,总面积达到17.36亿亩。
请你用科学计数法表示17.36亿亩=______________亩。
4、有一列数:0,3,8,15,24,……,它的第16个数是_______.5、42y x n 和my x 33-的和是单项式,则.______2=-n m 7、若.______,03)2(2==-++ba b a 则8、已知∠α的余角等于38°12′,则∠α=__________;∠α的补角=____________. 9、有理数31047.3⨯精确到百位是____________;此时含有_____个有效数字。
10、如图,AB=12厘米,点C 是线段AB 的中点,点D 是线段BC 的中点,则图中有______条线段,AD=_______厘米,CD=________厘米。
11、已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=60°,∠BOC=20°,则∠AOC=_______12、用“<”或“>”连接:(1)344____3--; (2) 65____43--- 13、实数a,b,c 在数轴上对应点的位置如图所示, 化简:._______=--+++c b c b a a14、池塘里有一种水浮萍,每天可生长原来的一倍,如果26天可长满整个池塘,则长满池塘的四分之一时是在第_______天。
15、为了节约用水,某市规定,每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费。
华师大版七年级上册数学期末考试试题一、单选题1.2022-的绝对值的倒数是( )A .2022-B .2022C .12022D .12022- 2.数据4430万,用科学记数法表示这一数据是( )A .4.43×107B .0.443×108C .44.3×106D .4.43×108 3.若代数式743x a b +与代数式42y a b -是同类项,则y x 的值是( )A .9B .-9C .4D .-44.如图是由8个相同的小正方体搭成的一个几何体,则从左面看到的图形是( )A .B .C .D .5.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A .ab >0B .a+b >0C .|a|﹣|b|<0D .|a|﹣|b|>06.小明同学制作了一个正方体模型,其表面标有“全国文明城市”六个字,它的表面展开图如图所示,原正方体“文”字所在面的对面的字是( )A .全B .国C .城D .市7.已知线段AB ,C 是直线AB 上的一点,8AB =,4BC =,点M 是线段AC 的中点,则线段AM 的长为( )A .2B .4C .2或6D .4或68.按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果是( )A .156B .231C .6D .219.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°10.如图,将一副三角尺的直角顶点重合放置于点A 处,下列结论:①①BAE >①DAC ;①①BAD =①EAC ;①AD①BC ;①①BAE+①DAC=180°;①①E+①D =①B+①C .其中结论正确的个数是( )A .2个B .3个C .4个D .5个11.如图是小强用火柴棒搭的1条,2条,3条“金鱼”,…则搭n 条“金鱼”需要火柴棒的根数是( )A .71n +B .62n +C .53n +D .44n +12.如图,直线AB//CD ,直线AB ,EG 交于点F ,直线CD ,PM 交于点N ,①FGH =90°,①CNP =30°,①EFA =α,①GHM =β,①HMN =γ,则下列结论正确的是( )A .β=α+γB .α+β+γ=120°C .α+β﹣γ=60°D .β+γ﹣α=60°二、填空题13.单项式234a b π-的系数是_____ ,次数是__________ . 14.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.15.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.16.已知a 为不等于1的有理数,我们把11a -称为的差倒数;例如:2的差倒数是111121==---,-1的差倒数是()11111112==--+.已知13a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推…… 则2a =________,2021a =________17.已知|a|=3,|b|=6,a>b ,则a−b=___________.18.如图,在数轴上点B 表示的数是5,那么点A 表示的数是__________.19.计算:()()42-⨯-=______.20.若单项式1313m a b +与32n a b -的和仍是单项式,则3m n +的值为___________. 三、解答题21.计算:(1)()()221522212346⎛⎫----⨯- ⎪⎝⎭(2)()()220221110.5333⎡⎤---⨯⨯--⎣⎦22.已知A =2x 3-3x 2+9,B =5x 3-9x 2-7x -1.(1)求B -3A ;(2)当x =-5时,求B -3A 的值.23.如图,已知点C 在线段AB 上,点M ,N 分别在线段AC 与线段BC 上,且12AM MC =,2BN NC =.(1)若9AC =,6BC =,求线段MN 的长;(2)若3MC CN =,6MN =,求线段AB 的长.24.如图,已知①ABC=180°-①A ,BD①CD 于D ,EF①CD 于F .(1)求证:AD①BC ;(2)若①1=36°,求①2的度数.25.已知代数式A =﹣6x 2y +4xy 2﹣5,B =﹣3x 2y +2xy 2﹣3(1)求A ﹣B 的值,其中 |x ﹣1|+(y +2)2=0(2)请问A ﹣2B 的值与x ,y 的取值是否有关系,试说明理由.26.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道220=-,它在数轴上的意义是表示数2的点与原点(即表示0的点)之间的距离,52-也可理解为5与2两数在数轴上所对应的两点之间的距离;52+可以看做5(2)--,表示5与﹣2两数在数轴上所对应的两点之间的距离.(1)数轴上表示3和-1的两点之间的距离的式子是 .(2)①若43x -=,则x = .①若使x 所表示的点到表示4和-1的点的距离之和为5,所有符合条件的整数为 .(3)进一步探究:16x x ++-的最小值为 .(4)能力提升:当149x x x ++-+-的值最小时,x 的值为 .27.已知直线AB①CD ,P 为平面内一点,连接PA 、PD .(1)如图1,已知①A =50°,①D =150°,求①APD 的度数;(2)如图2,判断①PAB 、①CDP 、①APD 之间的数量关系为 .(3)如图3,在(2)的条件下,AP①PD ,DN 平分①PDC ,若①PAN+12①PAB =①APD ,求①AND 的度数.参考答案1.C【分析】先写出2022-的绝对值,再写出其绝对值的倒数即可.【详解】2022-的绝对值等于2022,2022的倒数是1 2022,∴2022-的绝对值的倒数是1 2022,故选:C.【点睛】本题考查了绝对值的性质及倒数的定义,即乘积为1的两个数互为倒数,熟练掌握知识点是解题的关键.2.A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4430万=4.43×107,故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程x+7=4,2y =4,求出x,y的值,再代入代数式计算即可.【详解】解:①代数式3ax+7b4与代数式﹣a4b2y是同类项,①x+7=4,2y=4,①x=﹣3,y=2;①xy=(﹣3)2=9.故选:A.【点睛】本题考查了同类项的定义.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.A【分析】从左面观察几何体即可.【详解】解:从左面观察几何体,可得左视图为L形,由4个小正方形组成,故选:A.【点睛】本题考查了从不同方向看几何体,解题的关键在于明确从左面观察几何体.5.D【分析】由数轴得到a,b的符号,根据有理数的加减可依次判断各个选项.【详解】解:由数轴可知a<0<b,且|a|>|b|,①ab<0,故A不符合题意;a+b<0,故B不符合题意;|a|﹣|b|>0,故C不符合题意,D符合题意;故选:D.【点睛】本题主要考查数轴的概念和有理数的加减运算,关键是要牢记有理数加减法的法则.6.D【分析】根据正方形的展开图特点作答即可.【详解】由正方形的展开图特点可得:“文”字所在面的对面的字是“市”,故选:D.【点睛】本题考查了正方形的展开图,牢记相对的面之间隔着一个面是解题的关键.7.C【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB−BC=8−4=4(cm),由线段中点的性质,得AM=12AC=12×4=2(cm);①当点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的性质,得AM=12AC=12×12=6(cm);故选:C.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的定义,掌握分类讨论的思想方法是解题的关键.8.B【分析】根据程序可知,输入x 计算()12x x x +=,若小于100则将所得x 值代入计算,至到所得x 值大于100即可输出.【详解】解:当x=3时,()162x x x +==, ①6<100, ①当x=6时,()12x x x +==21<100, ①当x=21时,()12x x x +==231,则最后输出的结果为231, 故选:B .【点睛】此题考查了程序计算,有理数混合运算,正确理解程序图计算是解题的关键.9.B【分析】根据折叠的性质得到①AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:①AEF=130∠=︒,2D EG '∠=∠,①12180AEF D EG '∠+∠+∠+∠=︒,①2(12)180∠+∠=︒,①260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到①AEF=130∠=︒,2D EG '∠=∠是解题的关键.10.C【分析】利用直角三角板的知识和角的和差关系计算.【详解】解:因为是直角三角板,所以①BAC=①DAE=90°,①B=①C=45°,①D=30°,①E=60°, ①①E+①D=①B+①C=90°,故选项①正确;①①BAE=90°+①EAC ,①DAC=90°-①EAC ,①①BAE>①DAC ,故选项①正确;①①BAD=90°-①DAC ,①EAC =90°-①DAC ,①①BAD=①EAC ,故选项①正确;①①BAE=90°+①EAC ,①DAC=90°-①EAC ,①①BAE+①DAC=180°,故选项①正确; 没有理由说明AD①BC ,故选项①不正确;综上,正确的个数有4个,故选:C .【点睛】本题考查了三角板中角度计算,三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题.11.B【分析】观察给出的3个例图,注意火柴棒根数的变化是第二个的火柴棒比第一个的多6根,第三个的火柴棒比第二个的多6根,据此推理即可求解.【详解】解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n故选:B.【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.12.C【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出①KSM,利用邻补角求出①SMH,利用三角形的外角与内角的关系,求出①SKG,再利用四边形的内角和求出①GHM.【详解】解:延长HG交直线AB于点K,延长PM交直线AB于点S.①AB①CD,①①KSM=①CNP=30°.①①EFA=①KFG=α,①KGF=180°-①FGH=90°,①SMH=180°-①HMN=180°-γ,①①SKH=①KFG+①KGF=α+90°,①①SKH+①GHM+①SMH+①KSM=360°,①①GHM=360°-α-90°-180°+γ-30°,①α+β-γ=60°,故选:C.【点睛】本题考查了平行线的性质、三角形的外角与内角的关系及多边形的内角和定理等知识点.利用平行线、延长线把分散的角集中在四边形中是解决本题的关键.13.34π-3【分析】单项式的系数是指数字因数,次数是指各字母的指数之和,据此回答即可.【详解】解:单项式234a bπ-的系数是34π-,次数是2+1=3.故答案为:34π-;3.【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.14.16【分析】根据角平分线的定义可求①BCF的度数,再根据角平分线的定义可求①BCD和①DCF 的度数,再根据平行线的性质可求①CDF的度数.【详解】解:①①BCA=64°,CE平分①ACB,①①BCF=32°,①CD平分①ECB,①①BCD=①DCF=16°,①DF①BC,①①CDF=①BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.15. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:|x+2|+|x-4|=7,当x<-2时,化简得:-x-2-x+4=7,解得:x=-2.5;当-2≤x<4时,化简得:x+2-x+4=7,无解;当x≥4时,化简得:x+2+x -4=7,解得:x=4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.16. 14 14【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2021除以3,根据余数的情况确定出与2021a 相同的数即可得解.【详解】①13a =-, ①()211111134a a ===---, 3211411314a a ===--,431113411133a a ====----, …①数列以3-、14、43三个数以此不断循环, ①202136732÷=, ①2021214a a ==, 故答案为:14;14. 【点睛】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.17.3或9##9或3【分析】先根据|a|=3,|b|=6,且a >b 判断出a 、b 的值,然后把a 、b 的值相加即可,要注意分类讨论.【详解】解:①|a|=3,|b|=6,且a >b ,①a=±3,b=-6,当a=-3,b=-6时,a -b=-3-(-6)=3;当a=3,b=-6时,a -b=3-(-6)=9.故答案为:3或9.【点睛】本题考查了有理数的减法,绝对值的知识,解题时正确判断出a 、b 的值是关键,此题难度不大,只要记住分类讨论就不会漏解.18.2【分析】根据图像判断出数轴正方向,数线段即可.【详解】解:由图可知,A 与B 距离为3,且A 越往左数值越小,①点A 表示的数是5-3=2.故答案为:2.【点睛】本题考查的是数轴,数轴的三要素为原点,单位长度,正方向,根据三要素作答即可.19.8【分析】根据有理数的乘法计算法则求解即可.【详解】解:()()428-⨯-=,故答案为:8.【点睛】本题主要考查了有理数的乘法计算,熟知相关计算法则是解题的关键.20.9【分析】由题意得到两单项式为同类项,利用同类项定义确定出m 与n 的值,代入代数式求解. 【详解】解:单项式1313m a b +与32n a b -的和仍是单项式, ∴单项式1313m a b +与32n a b -为同类项,即2m =,3n =, 代入方程33239m n +=⨯+=故答案为:9.【点睛】本题考查了单项式的定义、同类项、代数式求值,解题的关键是掌握单项式的概念.21.(1)-49(2)0【分析】(1)根据乘方及乘法分配律去括号,再按从左到右计算即可;(2)先算乘方,再算括号,再算乘法,最后算加减.(1) 原式29174121212346=+⨯+⨯+⨯, 482734=+--,49=-;(2) 原式()111623=--⨯⨯-, 11=-+,0=.【点睛】本题考查了有理数的混合运算,涉及乘方,乘法分配律,熟练掌握运算法则及运算步骤是解题的关键.22.(1)-x 3-7x -28(2)132【分析】(1)将A 、B 所代表的整式代入,然后去括号,合并同类项即可;(2)将x 的值代入(1)求得的最简整式,计算即可.【详解】(1)B -3A=5x 3-9x 2-7x -1-3(2x 3-3x 2+9)=5x 3-9x 2-7x -1-6x 3+9x 2-27=-x 3-7x -28.(2)当x=-5时,原式=-(-5)3-7×(-5)-28=132.【点睛】本题考查了整式的加减及化简求值的知识,解答本题的关键是掌握去括号及合并同类项的法则,另外在代入运算时要细心,难度一般.23.(1)8;(2)454【分析】(1)将AM=12MC ,BN=2NC .转化为MC=23AC ,NC=13BC ,然后根据MN=MC+NC 进行计算即可;(2)先根据3MC CN =,6MN =求出MC 和CN 的值,再根据12AM MC =,2BN NC =求出AM 和BN 的值,进而可求出线段AB 的长.【详解】解:(1)①AM=12MC ,BN=2NC ,AC=9,BC=6, ①MC=23AC=6,NC=13BC=2,①MN=MC+NC=6+2=8,答:MN 的长为8;(2)①3MC CN =,6MN =, ①MC=34MN=92,CN=14MN=32, ①AM=12MC=94,BN=2NC=3, ①AB=AM+MC+CN+NB=94+92+32+3=454, 答:AB 的长为454. 【点睛】本题考查两点之间距离的计算方法,理解各条线段之间的和、差、倍、分的关系是正确计算的前提.24.(1)见解析;(2)236∠=︒【分析】(1)求出180ABC A ∠+∠=︒,根据平行线的判定推出即可;(2)根据平行线的性质求出3∠,根据垂直推出//BD EF ,根据平行线的性质即可求出2∠.【详解】(1)证明:180ABC A ∠=︒-∠,180ABC A ∴∠+∠=︒,//AD BC ∴;(2)解://AD BC ,136∠=︒,3136∴∠=∠=︒,BD CD ⊥,EF CD ⊥,①①BDC=①EFC=90°,//BD EF ∴,2336∴∠=∠=︒【点睛】本题考查了平行线的性质和判定的应用,解题的关键是掌握①两直线平行,同位角相等,①两直线平行,内错角相等,①两直线平行,同旁内角互补,反之亦然.25.(1)12;(2)无关,见解析.【分析】(1)先计算A ﹣B 的值,再将x 和y 的值代入可得结果;(2)先计算A ﹣2B 的值,再将x 和y 的值代入可得结果;(1)解:A﹣B=(﹣6x2y+4xy2﹣5)﹣(﹣3x2y+2xy2﹣3)=﹣6x2y+4xy2﹣5+3x2y﹣2xy2+3=﹣3x2y+2xy2﹣2.①|x﹣1|+(y+2)2=0,|x﹣1|≥0,(y+2)2≥0,①x﹣1=0,y+2=0,解得:x=1,y=﹣2.①A﹣B=﹣3×12×(﹣2)+2×1×(﹣2)2﹣2=﹣3×1×(﹣2)+2×1×4﹣2=6+8﹣2=12;(2)解:A﹣2B的值与x,y的取值无关.理由:①A﹣2B=(﹣6x2y+4xy2﹣5)﹣2(﹣3x2y+2xy2﹣3)=﹣6x2y+4xy2﹣5+6x2y﹣4xy2+6=1,①A﹣2B的值与x,y的取值无关.26.(1)|1﹣(﹣3)|(2)①7或1;①-1,0,1,2,3,4;(3)7;(4)4【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|列式即可;(2)①根据数轴上两点的距离可知x到4的距离为3,据此可求解;①表示4和-1的点的距离为5,可知x所表示的点在表示4和-1的点之间,求出所有整数即可;(3)当x所表示的点在表示-1和6的点之间时,值最小求解即可;(4)类似(3)求解即可.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离的式子是|1﹣(﹣3)|;故答案为:|1﹣(﹣3)|.x-=,(2)①①43①x到4的距离为3,当x在4左侧时,表示的数为4-3=1;当x在4右侧时,表示的数为4+3=7;故答案为:7或1;①①表示4和-1的点的距离为5,①使x 所表示的点到表示4和-1的点的距离之和为5的点在表示4和-1的点之间, x 所表示的数为:-1,0,1,2,3,4;故答案为:-1,0,1,2,3,4;(3)16x x ++-表示的是:数轴上点x 到﹣1和6两点的距离和,如图所示,当x 所表示的点在表示-1的点左侧时,它们的和大于7;当x 所表示的点在表示6的点右侧时,它们的和大于7;当x 所表示的点在表示6和-1的点之间时,它们的和最小,最小值为7;故答案为:7(4)149x x x ++-+-表示的是:数轴上点x 到﹣1和4和9三点的距离和,由(3)可知当x 所表示的点在表示9和-1的点之间时,它们的和最小,最小值为10;要使4x -最小,x 所表示的点与表示4的点重合时最小,故x 的值为4;故答案为:4;【点睛】本题考查数轴、绝对值、两点的距离,解答本题的关键是明确绝对值的定义,利用绝对值的知识和分类讨论的数学思想解答.27.(1)①APD=80°;(2)①PAB+①CDP -①APD=180°;(3)①AND=45°.【分析】(1)首先过点P 作PQ①AB ,则易得AB①PQ①CD ,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;(2)作PQ①AB ,易得AB①PQ①CD ,根据平行线的性质,即可证得①PAB+①CDP -①APD=180°;(3)先证明①NOD=12①PAB ,①ODN=12①PDC ,利用(2)的结论即可求解.【详解】解:(1)①①A=50°,①D=150°,过点P作PQ①AB,①①A=①APQ=50°,①AB①CD,①PQ①CD,①①D+①DPQ=180°,则①DPQ=180°-150°=30°,①①APD=①APQ+①DPQ=50°+30°=80°;(2)①PAB+①CDP-①APD=180°,如图,作PQ①AB,①①PAB=①APQ,①AB①CD,①PQ①CD,①①CDP+①DPQ=180°,即①DPQ=180°-①CDP,①①APD=①APQ-①DPQ,①①APD=①PAB-(180°-①CDP)=①PAB+①CDP-180°;①①PAB+①CDP-①APD=180°;(3)设PD交AN于O,如图,①AP①PD,①①APO=90°,由题知①PAN+12①PAB=①APD,即①PAN+12①PAB=90°,又①①POA+①PAN=180°-①APO=90°,①①POA=12①PAB,①①POA=①NOD,①①NOD=12①PAB,①DN平分①PDC,①①ODN=12①PDC,①①AND=180°-①NOD-①ODN=180°-12(①PAB+①PDC),由(2)得①PAB+①CDP-①APD=180°,①①PAB+①PDC=180°+①APD,①①AND=180°-12(①PAB+①PDC)=180°-12(180°+①APD)=180°-12(180°+90°)=45°,即①AND=45°.。
华师版七年级数学期末复习测试(测试时间:90分钟 满分:100分)班级 姓名 得分_______一、填空:(每题1分,共10分) 1.若2x+5=7,则4x= 。
2.已知x=-3是方程(2m+1)x-3=0的解,则m= 。
3.一个三角形内角中,至少有 个锐角。
4.一个多边形的每一个外角为120, 这个多边形的边数 。
5.只用一种正多边形可以铺满地板,这样的正多边形的边数为 。
6.已知等腰三角形的一个内角为300,则它的顶角为度。
7.如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,则△ABD 的周长为 。
8.如图,在△ABC 中,AB=AC ,BD 是∠ABC 的平分线,若∠ADB=930, 则A= 。
9.举一个随机事件的例子: 。
10.某商场5月份随机抽查了6天的营业额,结果如下:2.8,3.2,3.4,3.7,3.0,3.1(单位:万元)。
试估计该商场5月份的营业额,大约是 万元。
二.选择(每题2分,共16分) 1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是( )A .1B .2C .3D .42.已知2243x -=,则x 的值是( )A .-3B .9C .-3或9D .以上结论都不对 3.若△ABC 的三边分别为m 、n 、p ,且()20m n n p -+-=,则这个三角形为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.我国民间流传着很多诗歌形式的数学题,令人耳目一新,其中有一“鸡兔同笼”的问题;鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( )A EC D B A CDBA.3622100x yx y+=⎧⎨+=⎩;B.1822100x yx y+=⎧⎨+=⎩;C.3642100x yx y+=⎧⎨+=⎩;D.3624100x yx y+=⎧⎨+=⎩5.正六边型的对称轴共有()A.2条 B.4条 C.6条 D.无数条6.以下的调查适合作抽样调查的有()(1)了解一批灯泡的使用寿命;(2)研究某种新式武器的火力;(3)了解七年级(2)班同学期末考试的数学成绩;(4)审查一篇科学论文的正确性。
华师版年七年级第一学期期末考试数学试题(8)(120分钟)一、填空题(第1小题4分,2-12每小题2分,共24分)1.用计算器求值(每题1分,5分钟内完成,5分钟后监考教师将计算器统一收起)(1)82189324200+-+=(2)0.8420.794÷+⨯=(3)2.576(0.19)⨯÷-=(4)32.7=2.如果把上升5米记作+5米,那么-3米表示3.45-的相反数是,倒数是4.用“>”,“<”号填空:(1)0 -2 (2)13-15-5.甲数为x,乙数比甲数的2倍大3,则乙数是6.全国第五次人口普查资料表明,我国人口总数为12.9533亿人,用科学记数法表示为人(保留两个有效数字)7.把多项式2233232x y xy x y--+按字母x降幂排列8.写出一个系数为13-,并且含有、x y的三次单项式:9.若∠A=65 °21′,则∠A的余角是,补角是10.如图1,已知直线a、b被直线λ所截,a∥b,如果∠1=35°,那么∠2=11.如图2,是第27届奥运会上获金牌数的扇形统计图,中国所得金牌数占这届奥运会金牌总数的二、选择题(每题3分,共30分)12. 如果一个有理数的绝对值等于它本身,那么这个数是( )A .0B .1C .正数D .正数或013. 已知点A 和点B 在同一数轴上,点A 表示数-2,又知点B 和点A 相距5个单位长度,则点B 表示的数是( )A .3B .-7C .3或-7D .7或-3 14. 大于1210-而小于3的整数有( )A .4个B .5个C .6个D .7个 15. 下列各组中,属于同类项的是( )A .22与x y x zB .0.2与pq pq -C .2与2mnp mnD .2232与23a b ab16. 如图3所示的三棱柱的俯视图是( )A .长方形B .正方形C .三角形D .不确定17. 下面图形中,是正方体的展开图的是( )A .B .C .D .18. 如图4,下列说法正确的是( )A .OA 的方向是北偏东40°B .OB 的方向是南偏东50°C .OC 的方向是北偏西60°D .OD 的方向是西偏南60°19. 如图5,下列说法中错误的是()A.∠1与∠3是内错角B.∠2与∠B是同位角C.∠1与∠2是同旁内角D.∠1与∠B是同位角20. 如图6,直线AB、CD相交于点O,EO⊥AB于O,则∠1与∠2的关系是()A.互为余角B.对顶角C.相等D.互为补角21. 下列事情中,必然发生的是事情是()A.打开电视机,正在播放电视剧B.明天有小雨C.买一张电影票,座位号是偶数D.在装有4个白球,3个红球的口袋中,摸不到黑球三、计算题(每题4分,共12分)22.131842-+-23. 23214()(2)34÷-+⨯-24. 22225(2)4(23)x y xy x x x y xy-+---四、作图题(4分)25. 如图,平面上有A 、B 、C 、D 四个点,按照下列要求画图 (1)画线段AB (2)画直线BC(3)过D 点作直线BC 的垂线(4)作一个角,使它等于∠ABC (要求用尺规作图)五、解答题(共30分) 26. (5分)先化简,再求值 2222112[32()6],其中2,22x y x y x y ----+=-=-27. (5分)如图7,已知∠B =62°,∠3=30°,∠4=88°,AB 与CD 平行吗?AD 与BC 平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?28. (4分)比较下面两算式结果的大小(在横线上填“>”、“<”、“=”)22⨯⨯43+24322-+2(3)1(3)1⨯-⨯22-+-2(2)(2)(2)(2)⨯-⨯-通过观察归纳,探究出反映这一规律的一般结论,并用字母表示出来。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(循环小数)D. -32. 下列各数中,正数是()A. -1/2B. 0C. √4D. -√93. 如果 |a| = 5,那么 a 的值是()A. 5B. -5C. 5 或 -5D. 无法确定4. 下列各数中,质数是()A. 1B. 4C. 7D. 165. 下列各数中,完全平方数是()A. 25B. 50C. 36D. 496. 下列各数中,正比例函数的图像是一条直线的是()A. y = x^2B. y = 2xC. y = x^3D. y = √x7. 如果一个三角形的两边长分别是3和4,那么第三边的长度可能是()A. 5B. 6C. 7D. 88. 下列各数中,立方根是整数的是()A. 64B. 125C. 27D. 89. 下列各数中,等差数列的公差是2的是()A. 1, 3, 5, 7B. 2, 4, 6, 8C. 3, 6, 9, 12D. 4, 7, 10, 1310. 下列各数中,等比数列的公比是1/2的是()A. 1, 1/2, 1/4, 1/8B. 2, 4, 8, 16C. 3, 6, 12, 24D. 5, 10, 20, 40二、填空题(每题3分,共30分)1. 2的平方根是______,3的立方根是______。
2. 如果 |a| = 6,那么 a + a 的值是______。
3. 下列数列中,下一项是______:2, 4, 8, 16, 32…4. 下列函数中,y = -x^2 的图像是一个______。
5. 一个三角形的周长是12厘米,其中两边长分别是3厘米和4厘米,那么第三边的长度是______厘米。
6. 下列数中,最接近0的数是______:1.1, 1.01, 1.001, 1.0001。
7. 下列数中,最小的负数是______:-3, -2, -1, 0。
华师版数学 七年级上学期 期末测试题一、单选题(每题3分,共24分)1. 在0,﹣1,1,﹣2这四个数中,最小的数是( )A. 0B. 1C. ﹣1D. ﹣2【答案】D2. 2021年8月19日,由《环球时报》发起的“要求加拿大释放被美国迫害的中国公民”联署活动,最终签名人数高达1400多万。
经过中国政府不懈努力,9月25日,孟晚舟女士乘坐中国政府包机,回到祖国。
将14000000这个数用科学记数法表示为( )A. 51.410⨯B. 61.410⨯C. 71.410⨯D. 81.410⨯ 【答案】C3. 把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是( )A. ﹣3﹣7+4﹣5B. ﹣3+7+4﹣5C. 3+7﹣4+5D. ﹣3﹣7﹣4﹣5 【答案】B4. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,则在原正方体中,与“展”字所在面相对面上的汉字是( )A. 长B. 春C. 新D. 区【答案】C 5. 下列运算正确的是( ).A. 325a b ab +=B. 22523y y -=C. 77mn mn -=D. 2222p p p --=-【答案】D6. 如图所示,正方形网格中有α∠和β∠,如果每个小正方形的边长都为1,估测α∠与β∠的大小关系为( )A. αβ∠<∠B. αβ∠=∠C. αβ∠>∠D. 无法估测【答案】A7. 如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是()A 两直线相交只有一个交点 B. 两点确定一条直线C. 两点之间,线段最短D. 经过一点有无数条直线【答案】C8. 如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为()A 2α B. 90°+α C. 180°﹣α D. 180°﹣2α【答案】D二、填空题(每题3分,共18分)9. 比较大小:34-______23-(“>”,“<”或“=”).【答案】<10. 圆周率π=3.1415926…精确到千分位的近似数是_____.【答案】3.14211. 七年级全体同学参加某项国防教育活动,一共分成n个排,每排3个班,每班10人,则七年级一共有_____名同学.【答案】30n12. 如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为_____米.(填具体数值)【答案】3.1513 如图,已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于_____.【答案】85°14. 下列图案均是用相同的小木棒按一定的规律拼搭而成;拼搭第1个图案需7根小木棒,拼搭第2个图案需12根小木棒……依此规律,拼搭第n个图案需小木棒_____根.【答案】(5n+2)##(2+5n)三、解答题(本题共10小题,共78分)15. 计算:(1)6+(﹣8)﹣3+(﹣5);(2)(﹣316)﹣(﹣512)+(﹣412)﹣456;(3)(153364-+)×(﹣36);(4)3+50÷22×(15-)﹣1.【答案】(1)-10;(2)-7;(3)-9;(4)12-. 16. 先化简,再求值:)()(2332231231xy x x xy ----+,其中2x =-,1y =-.【答案】23853xy x --;2117. 如图,已知点C 为线段AB 的中点,点D 为线段BC 的中点,AB =16cm ,求线段AD 的长度.【答案】12cm18. 如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D 是∠ABC 的边BC 上的一点,点M 是∠ABC 内部的一点,点A 、B 、C 、D 、M 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:(1)过点M 画BC 的平行线MN 交AB 于点N ;(2)过点D 画BC 的垂线DE ,交AB 于点E ;(3)点E 到直线BC 的距离是线段 的长度.【答案】(1)见解析;(2)见解析;(3)DE19. 如图,如果∠1=60°,∠2=120°,∠D =60°,那么AB 与CD 平行吗?BC 与DE 呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)∠ABC =∠1 (① )∴∠ABC =60°(等量代换)又∵∠2=120°(已知)∴(② )+∠2=180°(等式的性质)∴AB ∥CD (③ )又∵∠2+∠BCD =(④ °)∴∠BCD =60°(等式的性质) ∵∠D =60°(已知)∴∠BCD =∠D (⑤ )∴BC ∥DE (⑥ )【答案】对顶角相等;∠ABC ;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行. 20. 我国首个空间实验室“天宫一号”顺利升空.全国人民信受鼓舞,某校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a 、b 的代数式表示该截面的面积S ;(2)当a =2cm ,b =2.5cm 时,求这个截面的面积.【答案】(1)222S ab a =+,(2)18 cm 2.21. 如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.【答案】22︒22. 如图,在表一中,将第1行第3列的数记为[1,3],则[1,3]=3,将第3行第2列的数记为[3,2],则[3,2]=6;按照要求回答下列各题:(1)在表一中,[3,5]= ,[8,10]= ;(2)在表一中,第3行第n +1列的数可以记为[3,n +1]= ;(3)如图,表二、表三、表四分别是从表一中截取的一部分,求3a +b ﹣2c 的值.【答案】(1)15,80;(2)3n +3;(3)28.23 网约车已成为我们日常出行的一种便捷工具,某市网约车计价方式如表: 计费项目起程价 里程价 停车等待时长价 价格(单价) 6元(2千米) 1.4元/千米 0.3元/分注:车费由起程价、里程价、停车等待时长价三部分构成.其中,起程价为6元,2千米以内(包括2千米)的车费为6元;里程价为:超过2千米后,每行驶1千米收费1.4元(不足1千米按1千米计算);停车等待时长价为:在等待红灯或堵车时,按车辆停止时间收费,每分钟0.3元(不足1分钟按1分钟计算).如,行驶里程为3千米,停车等待2分钟的计价方式为:6+1.4×(3﹣2)+0.3×2=8元.(1)请你根据表信息计算:若小明乘坐网约车行驶15千米,没有停车等待,则需付费 元;若行驶4千米,停车等待3分钟,则需付车费 元;(2)设行驶里程为x 千米(x >2,且为整数),停车等待时长为y 分钟,则需付车费多少元?(用含x 、y 的式子表示,并化简).(3)李叔叔家离工作单位8千米,且从李叔叔家到工作单位的路上有3个红绿灯,其中每个红灯最长等待时间为1分钟.在不考虑堵车的前提下,请你计算李叔叔从家到工作单位乘坐网约车至少需付费多少元?最多付费多少元?【答案】(1)6;9.7;(2)1.40.3 3.2x y ++;(3)至少需付费14.4元;最多付费15.3元.24. 小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB则有∠BEF=∠B∵AB∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠P AC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接P A、PB(BD<AC),直接写出∠P AC、∠APB、∠PBD 之间的数量关系.【答案】(1)55°;(2)当P在线段CD上时,∠APB=∠P AC+∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠P AC;当P在CD延长线上时,∠APB=∠P AC-∠PBD;。
华师大版七年级数学下册《期末试卷》(附答案)学校姓名班级座位号一、选择题(每小题3分,共30分)1.方程3x-1=-x+1的解是(。
)。
A。
x=-2 B。
x=0 C。
x=1 D。
x=22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()。
A。
B。
C。
D。
3.三角形的三边长分别是3,1-2a,8,则数a的取值范围是()。
A。
-5<a<-2 B。
-5<a<2 C。
5<a<11 D。
a<24.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()。
A。
a>5 B。
a-2 D。
a<-55.不等式组的解集在数轴上表示为()。
A。
B。
C。
D。
6.将△XXX沿BC方向平移3个单位得△DEF。
若△ABC的周长等于8,则四边形ABFD的周长为()。
A。
14 B。
12 C。
10 D。
87.XXX所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,XXX家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。
A。
5x+4(x+2)=44 B。
5x+4(x-2)=44 C。
9(x+2)=44 D。
9(x+2)-4×2=448.CD相交于点F,如图,在△ABC中,∠ABC、∠XXX的平分线BE,且∠ABC=42°,∠A=60°,则∠XXX等于()。
A。
121° B。
120° C。
119° D。
118°9.把边长相等的正五边形ABCDE和正方形ABFG按照XXX所示的方式叠合在一起,则∠EAG的度数是()。
A。
18° B。
20° C。
28° D。
30°10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()。
华师大版七年级上册数学期末考试试题一、单选题1.-|-2021|等于( )A .2021B .-2021C .1D .02.数字86000000用科学记数法表示为( ).A .0.86×108B .86×106C .8.6×108D .8.6×1073.某班数学老师在班级内组织了一堂“正方体展开图猜猜看”活动课,下图是该正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是( )A .礼B .年C .百D .赞4.若|2||1|0a b -++=,则2()a b +等于( )A .1-B .0C .1D .2-5.一个几何体由若干个大小相同的小正方体搭成从上面看到的几何体形状如图所示,其中小正方形中的数字表示该位置小正方体的个数能表示该几何体从左面看到的形状图是( )A .B .C .D . 6.如图所示,点M ,N 是线段AB 上的两个点,且M 是AB 的中点,N 是MB 的中点,若AB =a ,NB =b ,下列结论:①AM =12a①AN =a ﹣b①MN =12a ﹣b①MN =14a .其中正确的有( )A .1个B .2个C .3个D .4个7.下列说法中正确的是( )A .单项式25xy -的系数是5-,次数是2 B .单项式m 的系数是1,次数是0C .12ab -是二次单项式 D .单项式45xy -的系数是45-,次数是2 8.如图,直线AB ,CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒.则AOC BOD ∠+∠的度数为( )A .100°B .80°C .90°D .70°9.当1x =时,代数式3234ax bx ++的值为2,则当1x =-时,代数式3234ax bx ++的值为( ) A .5- B .4- C .2 D .610.(阅读理解)计算:25×11=275,13×11=143,48×11=528,74×11=814,观察算式,我们发现两位乘11的速算方法:头尾一拉,中间相加,满十进一.[拓展应用]已知一个两位数,十位上的数字是a ,个位上的数字是b ,这个两位数乘11,计算结果的十位上的数字可表示为( )A .a 或a +1B .a +b 或abC .a +b−10D .a +b 或a +b−10 11.如图,把ABC 剪成三部分,边AB ,BC ,AC 放在同一直线l 上,点O 都落在直线MN 上,直线//MN l .在ABC 中,若125BOC ∠=︒,则BAC ∠的度数为( )A .60︒B .65︒C .70︒D .75︒12.已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是()A .aB .bC .mD .n二、填空题13.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.14.阅读下列材料: 2111236=⨯⨯⨯ 221122356+=⨯⨯⨯; 22211233476++=⨯⨯⨯; 2222112344596+++=⨯⨯⨯; …根据材料计算:(1)2222123n ++++=_____(用含n 的代数式表示); (2)22222246850+++++ 的值为_____.15.如图,已知AB①CD ,BE 、DE 分别平分①ABF 、①CDF ,①F =40°,则①E =___.16.有理数a 、b 、c 在数轴上的位置如图所示,化简:222a c c b a b +--++=___________.17.已知a 是有理数,[]a 表示不超过a 的最大整数,如[]3.23=,[]1.52-=-,[]0.80=,[]22=等,那么[][]13.14352⎡⎤÷⨯-=⎢⎥⎣⎦_______. 18.一个正方体的表面展开图如图所示,则原正方体中的“①”所在面的对面所标的字是_____19.如图是一个数值运算程序,当输入的值为﹣2时,则输出的的值为 _____.20.如图,直线AB 、CD 、EF 相交于点O ,若12150∠+∠=︒,则3∠=______.︒三、解答题21.计算 (1)()3221322334⎛⎫⎡⎤-+⨯+--÷- ⎪⎣⎦⎝⎭(2)()()2022251132436⨯-+-÷-⨯ 22.先化简后求值 (1)()()223233a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =(2)若2225a b +=,求多项式()()22223223a ab b a ab b -+---的值.23.某服装厂一周计划生产2100件上衣,计划平均每天生产300件,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:件):(1)根据记录可知该服装厂一周共生产上衣多少件?(2)产量最多的一天比产量最少的一天多生产多少件?(3)该服装厂实行计件工资制,每生产一件上衣50元,每天超额完成任务每个奖20元,每天少生产一个扣10元,那么该服装厂工人这一周的工资总额是多少?24.如图:已知,120A ∠=︒,60ABC ∠=︒,BD DC ⊥于点D ,EF DC ⊥于点F , 求证:(1)//AD BC ;(2)12∠=∠.25.任意一个正整数n 都可以分解为两个正整数的乘积:n =p×q (p 、q 是正整数,且p≤q ),在n 的所有这种分解中,当q -p 的绝对值最小时,称p×q 是n 的最佳分解,并规定F (n )=p q .例如:3的最佳分解是3=1×3,F (3)=13;20的最佳分解是20=4×5,F (20)=45. (1)求:F (2)=_________;F (12)=_________.(2)如果一个两位正整数t ,交换其个位与十位上的数字得到的新的两位数记为t′,且t′-t =18①求出正整数t 的值;①我们称数t 与t′互为一对“吉祥数”,写出所有“吉祥数t”中F (t )的最大值.26.如图,直线PQ①MN ,点A 、B 分别是PQ 、MN 上的两点,点C 是PQ 、MN 之间(不在直线PQ 、MN 上)的一个动点,且90ACB ∠=︒,BD 平分CBM ∠交PQ 于点D .(1)如图1,若120PDB ∠=︒,求NBC ∠的度数;(2)如图1,在(1)问的条件下,求QAC ∠的度数;(3)延长AC 交直线MN 于点G ,如图2,GH 平分AGB ∠交DB 于H ,设2CBM x ∠=︒,2AGB y ∠=︒,请探究GHB ∠的度数是否与x 、y 的取值有关?并说明理由.参考答案1.B【分析】根据负数的绝对值是它的相反数,去绝对值符号作答.【详解】①|-2021|=2021,①-|-2021|=-2021,故选:B.【点睛】本题考查去绝对值符号,正数和零的绝对值是它本身;负数的绝对值是它的相反数.2.D【分析】结合题意,根据科学记数法的性质计算,即可得到答案.【详解】数字86000000用科学记数法表示为:8.6×107故选:D .【点睛】本题考查了科学记数法的知识;解题的关键是熟练掌握科学记数法的性质,从而完成求解.3.C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.4.C【分析】根据被开方数及绝对值的非负性,可计算得出a、b的值,代入求解出结果.【详解】①20a-,①a-2=0,即a=2,b+1=0,即b=-1,①(a+b)2=(2-1)2=1.故选:C.【点睛】本题主要考查绝对值的非负性和算术平方根的非负性,解此题的关键在于熟练掌握其知识点.5.B【分析】左视图有3列,每列小正方形最大数目数目分别为2,4,3.据此可画出图形.【详解】解:左视图有3列,每列小正方形最大数目分别为2,4,3如图所示:故答案选:B【点睛】本题主要考查几何体的三视图画法的知识点,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.D【分析】根据线段的中点定义可得AM=MB=12AB,BN=NM=12BM,再根据线段之间的和差关系列出等式即可.【详解】解:①M是线段AB的中点,①AM=MB=12AB=12a,故①正确;AN=AB﹣BN=a﹣b,故①正确;MN=MB﹣NB=12AB﹣BN=12a﹣b,故①正确;①M 是线段AB 的中点,N 是AM 的中点,①AM =BM =12AB =12a ,MN =12MB =12×12a =14a ,故①正确; 故选:D .【点睛】本题考查线段中点的有关计算.能结合图形正确分析得出线段之间的和差关系是解题关键.7.D【分析】根据单项式的定义、单项式的系数与次数的定义逐项判断即可得.【详解】解:A 、单项式25xy -的系数是15-,次数是123+=,则此项说法错误;B 、单项式m 的系数是1,次数是1,则此项说法错误;C 、11222ab ab -=-是二次二项式,则此项说法错误;D 、单项式45xy -的系数是45-,次数是112+=,则此项说法正确;故选:D .【点睛】本题考查了单项式、单项式的系数与次数,熟记定义是解题关键.8.B【分析】根据垂直的定义及对顶角相等即可求解.【详解】①EO AB ⊥,50EOD ∠=︒①BOD ∠=90°-40EOD ∠=︒①直线AB ,CD 相交于点O ,①40AOC BOD ∠=∠=︒①AOC BOD ∠+∠=80°故选B .【点睛】此题主要考查角度的求解,解题的关键是熟知对顶角相等.9.D【分析】由当1x =时,3234ax bx ++的值是2,得到232a b +=-,则当1x =-时,3234234246ax bx a b ++=--+=+=.【详解】解:由题意得,当1x =时,3234ax bx ++的值是2,2342a b ∴++=,232a b ∴+=-,232a b ∴--=,当1x =-时,3234234246ax bx a b ++=--+=+=.故选D .【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握整体代入的思想求解.10.D【分析】根据题目中的速算法可以解答本题.【详解】由题意可得,某一个两位数十位数字是a ,个位数字是b ,将这个两位数乘11,得到一个三位数,则根据上述的方法可得:当a+b< 10时,该三位数百位数字是a ,十位数字是a + b ,个位数字是b ,当a+b≥10时,结果的百位数字是a + 1,十位数字是a+b - 10,个位数字是b .所以计算结果中十位上的数字可表示为:a+b 或a+b−10.故选:D .【点睛】此题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.11.C【分析】首先利用平行线间的距离处处相等,得到点O 是①ABC 的内心,点O 为三个内角平分线的交点,从而容易得到①ABC+①ACB=2(180°-125°),再根据三角形内角和定理即可求解.【详解】解:如图,过点O 分别作OD①AC 于D ,OE①AB 于E ,OF①BC 于F , ①直线MN①AB ,①OD=OE=OF ,①点O 是①ABC 的内心,点O 为三个内角平分线的交点,①①ABC+①ACB=2(①OBC+①OCB )=2(180°-125°)=110°,①①BAC=70°.故选:C .【点睛】本题考查了平行线的性质及三角形内心的判定及性质,利用平行线间的距离处处相等判定点O 是①ABC 的内心是解题的关键.12.D【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【详解】解:如图,由图和已知条件可知:AB =a ,EF =b ,AC =n ﹣b ,GE =n ﹣a .阴影部分的周长为:2(AB+AC )+2(GE+EF )=2(a+n ﹣b )+2(n ﹣a+b )=2a+2n ﹣2b+2n ﹣2a+2b=4n .①求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .【点睛】本题主要考查了整式的加减,能用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽是解决本题的关键.13.-1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得m 、n 的值,再代入所求式子计算即可.【详解】解:①单项式2xmy 5和﹣x 2yn 是同类项,①m =2,n =5,①n ﹣3m =5﹣6=-1.故答案为:-1.【点睛】本题主要考查了同类项的定义和代数式求值,熟知同类项的定义是解题的关键. 14. ()()11216n n n ++ 22100 【分析】(1)根据题意可得()()22111123111111266=⨯⨯⨯==⨯⨯+⨯++,()()22111223522122166+=⨯⨯⨯=⨯⨯+⨯++;()()2221112334733133166++=⨯⨯⨯=⨯⨯+⨯++;()()22221112344594414566+++=⨯⨯⨯=⨯⨯+⨯+;…由此发现规律,即可求解;(2)把原式变形为()222224123425⨯+++++,即可求解.【详解】解:(1)根据题意得:()()22111123111111266=⨯⨯⨯==⨯⨯+⨯++()()22111223522122166+=⨯⨯⨯=⨯⨯+⨯++;()()2221112334733133166++=⨯⨯⨯=⨯⨯+⨯++;()()22221112344594414566+++=⨯⨯⨯=⨯⨯+⨯+;… 由此发现,()()()()2222111231112166n n n n n n n n ++++=+++=++;故答案为:()()11216n n n ++(2)22222246850+++++()()()()()2222221222324225=⨯+⨯+⨯+⨯++⨯()222224123425=⨯+++++()14252625266=⨯⨯⨯⨯+22100=故答案为:22100【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键. 15.20°【分析】根据平分线的性质得到①1=①2,①3=①4,再根据三角形内角和与外角定理得到2①E=①F ,故可求解.【详解】解:如图,①BE 、DE 分别平分①ABF 、①CDF ,①①1=①2,①3=①4,①AB①CD ,①①1=①5在①EGD 中,①5=①E+①4,①①1=①E+①4在①EBH 与①DFH 中,①E+①2=①3+①F①①E+①E+①4=①3+①F故2①E=①F①①E=20°故答案为:20°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知三角形的内角和、外角定理. 16.2b c -【分析】根据数轴上点的位置判断出0b a c <<<,c b <,a c <,由此判断绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:由题可知0b a c <<<,c b <,a c <,①0a c +>,20c b ->,20a b +<, ①222a c c b a b +--++()()222a c c b a b =+---+=242a c c b a b +-+--=2b c -,故答案为:2b c -.17.-6【分析】根据[]a 表示不超过a 的最大整数,求出各个数,再计算即可求解.【详解】解:①[]a 表示不超过a 的最大整数,①[][]13.14352⎡⎤÷⨯-⎢⎥⎣⎦=33(6)÷⨯-=6-;故答案为:6-.18.海【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:相对的面的中间要相隔一个面,则“①”所在面的对面所标的字是“海”. 故答案为:海.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.-18【分析】把x =﹣2代入运算程序求值即可得最后结果.【详解】解:把x =﹣2代入得,(﹣2)2×(﹣5)+2=4×(﹣5)+2=﹣20+2=﹣18,故答案为:﹣18.20.30【分析】根据平角的定义可以求出AOC ∠,再根据对顶角的性质求出3∠即可.【详解】解: 12180AOC ∠+∠+∠=︒,12150∠+∠=︒30AOC ∴∠=︒3AOC ∠=∠330∴∠=︒.故答案为:30.21.(1)-1 (2)43【分析】(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:原式=()()296343-+⨯--⨯-9412=--+1=-(2)解:原式=5111323166⨯-⨯⨯ 5133=- 43= 22.(1)229a ab -;27(2)()2222a b +;10【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.(1)解:原式()2232333a ab a b ab b ⎡⎤=---++⎣⎦2236333a ab a b ab b =--+--229a ab =-当3a =-,13b =时,原式()()212393189273=⨯--⨯-⨯=+= (2)解:原式22223223a ab b a ab b =-+-++2224a b =+()2222a b =+当2225a b +=时,原式2510=⨯=23.(1)2100;(2)19件;(3)105180元.【分析】(1)由每周的计划工作量加上每天实际超出与不足的工作量,从而可得答案;(2)由表格信息可得生产最多的一天是星期四,最少的一天是星期五,求解最多与最少的差即可得到答案;(3)由实际生产的数量乘以每件的工资单价,再加上奖励工资,减去扣罚的金额,即可得到答案.【详解】解:(1)()3007+31410954210002100,⨯--+-+-=+=所以该服装厂一周共生产上衣2100件;(2)星期四生产最多为:300+10=310,星期五生产最少为:3009291,-=31029119∴-=(件),所以产量最多的一天比产量最少的一天多生产19件;(3)基本工资为:502100=105000⨯(元),奖金为:()3+10+520=360⨯(元),扣款为:()1+4+9+410=180⨯(元),总金额为:105000+360180105180-=(元),答:该厂工人这一周的工资总额是105180元.24.(1)见解析;(2)见解析【分析】(1)根据平行线的判定证明即可;(2)根据平行线的性质计算即可;【详解】证明:(1)①120A ∠=︒,60ABC ∠=︒,①180A ABC ∠+∠=︒.①//AD BC (同旁内角互补,两直线平行).(2)①//AD BC .①13∠=∠(两直线平行,内错角相等).①BD DC ⊥,EF DC ⊥,①90BDF ∠=︒,90EFC ∠=︒(垂直的定义).①90BDF EFC ∠=∠=︒.①//BD EF (同位角相等,两直线平行).①23∠∠=(两直线平行,同位角相等).①12∠=∠.【点睛】本题主要考查了平行线的判定与性质,准确计算是解题的关键.25.(1)12,34;(2)①13,24,35,46,57,68,79;①57 【分析】(1)根据题意,由最佳分解定义求解即可;(2)①根据“吉祥数”定义知(10)(10)18y x x y +-+=,即2y x =+,结合x 的范围可得2位数的“吉祥数”,①求出每个“吉祥数”()F t 的值,比较大小可得.【详解】解:(1)根据定义:2的最佳分解为:12⨯,1(2)2F ∴=, 12的最佳分解为:1234=⨯,3(12)4F ∴=, 故答案是:12,34; (2)①设交换t 的个位上的数与十位上的数得到的新数为t ', t 为“吉祥数”,(10)(10)9()18t t y x x y y x ∴'-=+-+=-=,2y x ∴=+,∴“吉祥数”有:13,24,35,46,57,68,79,①∴所有“吉祥数”中()F t 的值为:1(13)13F =,42(24)63F ==,5(35)7F =,2(46)23F =,3(57)19F =,4(68)17F =,1(79)79F =,其中最大值为:5(35)7F =. 【点睛】本题主要考查了新定义,解题的关键是理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算.26.(1)60°(2)30°(3)GHB ∠的度数与x 、y 的取值无关,理由见解析【分析】(1)根据PQ①MN ,可得60MBD ∠=︒,从而得到2120MBC DBM ∠=∠=︒,即可求解;(2)过点C 作CE①PQ ,可得90ACE BCE ∠+∠=︒,QAC ACE ∠=∠,CE①MN ,进而得到60BCE NBC ∠=∠=︒,可得9030ACE BCE ∠=︒-∠=︒,即可求解;(3)根据三角形外角的性质可得90CBM CGM BCG ∠-∠=∠=︒,从而得到45x y -=︒,再由GH 平分AGB ∠,BD 平分CBM ∠,可得12DBM CBD CBM x ∠=∠=∠=︒,12HGB AGB y ∠=∠=︒,然后根据三角形外角的性质,即可求解. (1)解:①//PQ MN ,①180PDB MBD ∠+∠=︒,①120PDB ∠=︒,①60MBD ∠=︒,①BD 平分CBM ∠,①2120MBC DBM ∠=∠=︒,①18060NBC MBC ∠=︒-∠=︒;(2)解①过点C 作CE①PQ ,如图,①90ACE BCE ∠+∠=︒,QAC ACE ∠=∠, ①CE①PQ ,PQ①MN ,①CE①MN ,①60BCE NBC ∠=∠=︒,①9030ACE BCE ∠=︒-∠=︒,①30QAC ACE ∠=∠=︒;(3)解①GHB ∠的度数与x 、y 的取值无关.理由: ①90ACB ∠=︒,①90BCG ∠=︒,①MBC ∠是BCG ∆的外角,①90CBM CGM BCG ∠-∠=∠=︒, ①2CBM x ∠=︒,2AGB y ∠=︒,①2290x y -=︒,①45x y -=︒,①GH 平分AGB ∠,BD 平分CBM ∠, ①12DBM CBD CBM x ∠=∠=∠=︒,12HGB AGB y ∠=∠=︒,①DBM ∠是ΔHBG 的外角,①①DBM=①BGH+①GHB ,①GHB DBM HGB ∠=∠-∠=45x y -=︒, ①GHB ∠的度数与x 、y 的取值无关.。
七年级第一学期期末考试数学试题(7)(120分钟)一、用计算器解答,直接填写得数(本题满分5分) 1. 3818720579-+-= 2. 1280.42(6)-⨯÷-= 3. 37.6= (精确到0.1)4. 352 2.3(2)÷⨯-= (保留3个有效数字) 二、选择题(本大题有10道小题,每小题2分,共20分)5. 下列各组的两项,是同类项的是( )A .222与3xy x yB .222与3xy y x -C .322与3a aD .332与2a b -6. 若四个均不等于0的数相乘所得的积是负数,那么这四个数中正数的个数是( ) A .1 B .2 C .3 D .1或37. 用代数式a b c -+表示一个不等于零的有理数,那么它的相反数是( ) A .a b c --+ B .a b c --- C .a b c -+- D .a b c +-8. 代数式322231x y x y xy -+-称作( )A .三次三项式B .三次四项式C .四次三项式D .四次四项式9. 我国的国土面积约为960万平方千米,若用科学记数法表示,则我国国土面积约为( ) A .69.6010⨯平方千米 B .29.6010⨯平方千米 C .69610⨯平方千米 D .59.610⨯平方千米10. 用字母a 表示任意一个有理数,下列的四个代数式中,它的值总不会是0的是( ) A .1a -+ B .1a + C .1a - D .1a +11. 一个三面带有标记的正方体:如果把它展开,应是下列展开图形中的()12. 下列事件中,必然发生的事件是()A.今天晴天,明天会下雨B.今天是星期四,明天是星期五C.这次期末考试我得100分D.明年一共有367天13. 灯塔位于一艘船的北偏东40°,那么这搜船位于这个灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°14. 如右图,按角的位置,下列的判断错误的是()A.∠8与∠5是同位角B.∠2与∠5是内错角C.∠1与∠6是同旁内角D.∠3与∠8是内错角三、填空(本大题有8道小题,每小题3分,共24分)15. 把多项式343242---+按x的升幂排列,可以写为:x y x y x y xy62516. 如右图,是一个立体图形的三视图,根据这个三视图,可判断这一立体图形是17. 请按下列要求,写出相应的整式:(1)含两个不同字母的三次单项式:(2)二次三项式:18. 某商品出售的原价是a元,提价10%后该商品的价格是元19. 如图,将方格纸中的图形向左平行移动4格,再向下平行移动4格,在方格纸内画出平行移动后的图形。
华师大版数学七年级上册期末试卷1一、选择题(每题3分,共30分) 1.-13的绝对值为( )A .13B .3C .-13 D .-32.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的包装纸用量,那么可减排二氧化碳3 120 000吨.数据3 120 000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×107 3.下列等式成立的是( )A .3a +2b =5abB .a 2+2a 2=3a 4C .5y 3-3y 3=2y 3D .3x 3-x 2=2x 4.下列说法错误的是( )A .0是绝对值最小的有理数B .若x 的相反数是-12,则x =12C .若|x |=|-6|,则x =-6D .任何非零有理数的平方都大于0 5.如图,OA 是北偏东30°方向的一条射线,若射线OB 与射线OA 互相垂直,则射线OB 表示的方向是( )A .北偏西30°B .北偏西60°C .东偏北30°D .东偏北60° 6.如图所示,若∠1=∠2,则下列结论中,正确的是( )①AB ∥CD ;②AD ∥BC ;③∠3=∠4; ④∠B =∠BCD ;⑤∠B+∠BCD=180°.A.①⑤B.②③⑤C.①②D.①④7.当x=1时,代数式12ax3-3bx+4的值是7,则当x=-1时,这个代数式的值是()A.7 B.3 C.1 D.-78.已知a,b两数在数轴上对应点的位置如图所示,则下列结论:①b>a;②a+b>0;③a-b>0;④ab<0;⑤ba>0,其中正确的是()A.①②⑤B.③④C.③⑤D.②④9.在线段MN的延长线上取一点P,使NP=12MN,再在线段MN的延长线上取一点Q,使QM=3MN,那么线段MP的长是线段NQ的长的()A.12B.43C.34D.3510.如图是一汽车探照灯纵剖面,从位于点O的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是()A.α+βB.180°-αC.12(α+β) D.90°+(α+β)二、填空题(每题3分,共15分)11.77°42′+34°45′=________.12.如图,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT=________°.13.若a,b互为相反数,c,d互为倒数,x的绝对值是3,则2(a+b)-3cd+x=________.14.如图是正方体的展开图,相对两个面上的数互为倒数,则x =________,y =________.15.如图,两个正方形的边长都为 1 cm ,一个微型机器人由点A 开始按ABCDEFCGA …的顺序沿正方形的边循环移动.(1)第一次到达G 点时移动了________cm ;(2)当微型机器人移动了2 021 cm 时,它停在________点.三、解答题(20题9分,21题10分,16,17,18,19题每题8分,其余每题12分,共75分) 16.计算:(1)⎝ ⎛⎭⎪⎫18+113-2.75×(-24)+(-1)2 020;(2)-⎝ ⎛⎭⎪⎫232×3-2×⎝ ⎛⎭⎪⎫-23÷23+4×(-1.5)2.17.先化简,再求值.(1)(-x 2+5x )-(x -3)-4x ,其中x =-1;(2)5(3m2n-mn2)-(mn2+3m2n),其中m=-12,n=13.18.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400 m,宽为100 m,圆形花坛的半径为10 m,求广场空地的面积.(计算结果保留π)19.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体的主视图和左视图.20.已知线段AB=14 cm,在线段AB上有C,D,M,N四个点,且满足AC∶CD∶DB=1∶2∶4,AM=12AC,DN=14DB,求MN的长.21.如图,点O是直线AB上一点,OC平分∠AOB,在直线AB的另一侧,以点O为顶点作∠DOE=90°.(1)若∠AOE=48°,则∠BOD=________,∠AOE与∠BOD的关系是________.(2)∠AOE与∠COD有什么关系?请写出你的结论,并说明理由.22.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明∠E+∠F=90°.23.某单位准备在5月份组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2 000元/人,两家旅行社同时都对10人以上的团体推出了优惠活动:甲旅行社是每人七五折优惠;而乙旅行社是免去一位带队管理人员的费用,其余人八折优惠.(1)如果参加旅游的员工共有a(a>10)名,那么甲旅行社的费用为________元,乙旅行社的费用为________元.(用含a的代数式表示)(2)假如这个单位现组织包括带队管理人员在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?(3)如果计划在5月份外出旅游七天,设最中间一天的日期为b,求这七天的日期之和.(用含b的代数式表示)(4)假如这七天的日期之和为63的倍数,则他们可能于5月几号出发?(写出所有符合条件的可能情况,并写出简单的计算过程)答案一、1.A 2.B 3.C 4.C 5.B 6.A 7.C 8.C 9.C 10.A 二、11.112°27′ 12.42 13.0或-6 14.23;73 15.(1)7 (2)F三、16.解:(1)原式=-18×24-43×24+114×24+1=-3-32+66+1=32.(2)原式=-⎝ ⎛⎭⎪⎫232×3-2×⎝ ⎛⎭⎪⎫-23×32+4×⎝ ⎛⎭⎪⎫-322=-49×3+2+4×94=-43+2+9=293.点拨:第(1)小题要注意利用乘法分配律进行简便运算,(-1)2 020=1;第(2)小题要注意运算顺序,要特别注意符号的处理.17.解:(1)原式=-x 2+5x -x +3-4x =-x 2+3,当x =-1时,原式=-(-1)2+3=2.(2)原式=15m 2n -5mn 2-mn 2-3m 2n =12m 2n -6mn 2, 当m =-12,n =13时,原式=12×⎝ ⎛⎭⎪⎫-122×13-6×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫132=43. 18.解:(1)(ab -πr 2)m 2;(2)广场空地的面积为400×100-100π=(40 000-100π)(m 2). 19.解:如图所示.20.解:如图①,因为AC∶CD∶DB=1∶2∶4,AC+CD+DB=AB,AB=14 cm,所以AC=17AB=2 cm,CD=27AB=4 cm,BD=47AB=8 cm.因为AM=12AC=12× 2=1(cm),DN=14DB=14× 8=2(cm),所以BN=BD-DN=8-2=6(cm).所以MN=AB-AM-BN=14-1-6=7(cm).如图②,因为AC∶CD∶DB=1∶2∶4,AC+CD+DB=AB,AB=14 cm,所以AC=2 cm,CD=4 cm,BD=8 cm.因为AM=12AC=12× 2=1(cm),DN=14BD=14× 8=2(cm),所以MN=AC+CD-AM-DN=2+4-1-2=3(cm).综上可知,MN的长为7 cm或3 cm.21.解:(1)42°;互余(2)∠AOE与∠COD互补.理由如下:∵OC平分∠AOB,∴∠COB=90°.∵∠DOE=90°,∴∠AOE+∠BOD=90°,∴∠AOE+∠COD=∠AOE+∠BOD+∠COB=90°+90°=180°,∴∠AOE与∠COD互补.22.解:(1)AD∥BC.理由:∵∠ADE+∠ADF=180°,∠ADE+∠BCF=180°,∴∠ADF=∠BCF,∴AD∥BC.(2)AB∥EF.∵BE平分∠ABC,∴∠ABE=12∠ABC.又∵∠ABC=2∠E,即∠E=12∠ABC,∴∠E=∠ABE,∴AB∥EF.(3)∵AD∥BC,∴∠DAB+∠CBA=180°.∵AF平分∠BAD,BE平分∠ABC,∴∠OAB=12∠DAB,∠OBA=12∠CBA,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∴∠EOF=∠AOB=90°,∴∠E+∠F=90°.23.解:(1)1 500a;(1 600a-1 600)(2)当a=20时,甲旅行社的费用为1 500×20=30 000(元);乙旅行社的费用为1 600×20-1 600=30 400(元).∵30 000<30 400,∴该单位选择甲旅行社比较优惠.(3)最中间一天的日期为b,则这七天的日期分别为b-3,b-2,b-1,b,b+1,b+2,b+3.∴这七天的日期之和为(b-3)+(b-2)+(b-1)+b+(b+1)+(b+2)+(b+3)=7b.(4)由题意知7b≥7×4=28,且7b≤7×28=196,所以分以下三种情况:①若这七天的日期之和是63,则7b=63,解得b=9,所以b-3=6,即6号出发;②若这七天的日期之和是63的2倍,即126,则7b=126,解得b=18,所以b-3=15,即15号出发;③若这七天的日期之和是63的3倍,即189,则7b=189,解得b=27,所以b-3=24,即24号出发.所以他们可能于5月6号或15号或24号出发.华师大版数学七年级上册期末试卷2一、选择题(每题3分,共30分)1.-715的相反数是( )A .-715B .-157 C.715 D.1572.我国自主研发的“复兴号”CR 300AF 型动车于2020年12月21日在贵阳动车所内运行,其最高运行速度为250 000m /h ,其中数据250 000用科学记数法表示为( )A .25×104B .2.5×104C .2.5×105D .2.5×1063.若-3a 2b x 与-3a y b 是同类项,则y x 的值是( )A .1B .2C .3D .44.下列说法中正确的是( )A.-2xy 3的系数是-2B .角的两边画得越长角的度数越大C .直线AB 和直线BA 是同一条直线D .多项式x 3+x 2的次数是55.已知线段AB =10 cm ,P A +PB =20 cm ,下列说法中正确的是( )A .点P 不能在直线AB 上 B .点P 只能在直线AB 上C .点P 只能在线段AB 的延长线上D .点P 不能在线段AB 上6.已知a ,b ,c 三个有理数在数轴上的对应点的位置如图所示,化简|a +c |-|b-c |+|b |的结果为( )(第6题)A .-2b -aB .-2b +aC .2c +aD .-2c -a7.根据如图所示的流程图中的程序,当输入数据为x=-2,y=1时,输出的m 的值为()A.5 B.3 C.-2 D.4(第7题)(第9题)8.已知a,b为有理数,下列式子:①|ab|>ab;②ab<0;③⎪⎪⎪⎪⎪⎪ab=-ab;④a3+b3=0.其中一定能够表示a,b异号的有()A.1个B.2个C.3个D.4个9.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°10.观察如图图形,它们是按一定规律排列的,根据图形我们可以发现:第1个图中十字星与五角星的个数和为7,第2个图中十字星与五角星的个数和为10,第3个图中十字星与五角星的个数和为13,按照这样的规律,第9个图中,十字星与五角星的个数和为()(第10题)A.28 B.29 C.31 D.32二、填空题(每题3分,共15分)11.对圆周率的研究最早发源于我国,在南北朝时期,数学家祖冲之经过大量的科学实践,计算出圆周率π在3.141 592 6与3.141 592 7之间,他是当时世界上计算圆周率最准确的数学家,为后人打开数学宝库提供了钥匙.将π四舍五入精确到百分位得________.12.小莉在办板报时,需要画一条直的隔线,由于尺子不够长,于是她和一名同学找来一根线绳,给线绳涂上彩色粉笔末,两人拉紧线绳各按住一头,把线绳从中间拉起再松手便完成了,请写出她们这样做根据的数学事实是______________________.13.如图,点C 是线段AB 上一点,点D 是线段BC 的中点,AC =3 cm ,BC =4 cm ,则AD =________cm.(第13题) (第14题)14.如图,△ABC 中,∠A 与∠B 互余,一直尺(对边平行)的一边经过点C ,另一边分别与一直角边和斜边相交,则∠1+∠2=________°.15.定义:若a +b =n ,则称a 与b 是关于n 的“平衡数”.比如3与-4是关于-1的“平衡数”,5与12是关于17的“平衡数”.现有a =6x 2-8kx +12与b =-2(3x 2-2x +k )(k 为常数)始终是关于m 的“平衡数”,则m =________.三、解答题(16题6分,22,23题每题12分,其余每题9分,共75分)16.计算:(1)-27×(-5)+16÷(-8)-|-4×5|;(2)-16+42-(-1)×⎝ ⎛⎭⎪⎫13-12÷16-54.17.先化简,再求值:2ab 2-[3a 2b -2(3a 2b -ab 2-1)],其中a ,b 满足(a +1)2+|b-2|=0.18.如图,正方形ABCD的边长为8,正方形EFGC的边长为a,且a≤8,点B、点C、点E在一条直线上.(1)用含a的代数式表示DG的长;(2)用含a的代数式表示三角形AEG的面积,并求出当a=8时三角形AEG的面积.(第18题)19.近年来,电动小汽车在某市广泛使用,市治安巡警某分队常常在一条东西走向的道路上巡逻.一天下午,该巡警分队驾驶电动小汽车从位于这条道路上的某派出所出发巡逻,如果规定向东为正,向西为负,行驶里程(单位:千米)如下:-5,-2,+8,-3,+6,-4,+5,+3.(1)这辆电动小汽车完成上述巡逻后在该派出所的哪一侧?距离该派出所多少千米?(2)已知这种电动小汽车平均每千米耗电0.15度,则这天下午电动小汽车共耗电多少度?20.如图,射线AH交折线ACGFEN于点B,D,E,已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.试说明:∠2=∠3.(第20题)21.【问题情景】某综合实践小组进行废物再利用的环保小卫士行动.他们准备用废弃的宣传单制作装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖正方体纸盒,图①中的哪个图形经过折叠能围成无盖正方体纸盒?(2)如图②是小明的设计图,把它折成无盖正方体纸盒后,与“保”字所在面相对的面上是哪个字?(3)如图③是一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体纸盒.①请你在图③中画出示意图,用实线表示剪裁线,用虚线表示折痕;②若四角各剪去了一个边长为x cm的小正方形,用含x的代数式表示这个纸盒的高为______cm,底面积为________cm2;③当小正方形的边长为4 cm时,求纸盒的容积.(宣传单厚度忽略不计)(第21题)22.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图,当OB,OC重合时,求∠EOF的度数.(2)如图,当OB,OC重合时,求∠AOE-∠BOF的值.(3)当∠COD从如图的位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE-∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(第22题)23.已知AB∥CD,∠ABE的平分线与∠CDE的平分线相交于点F.(1)如图①,请说明:①∠ABE+∠CDE+∠E=360°;②∠ABF+∠CDF=∠BFD.(2)如图②,若∠ABM=13∠ABF,∠CDM=13∠CDF,请你写出∠M与∠E之间的关系,并说明理由.(3)如图②,当∠ABM=1n∠ABF,∠CDM=1n∠CDF,且∠E=m°时,请你直接写出∠M的度数(用含m,n的式子表示).(第23题)答案一、1.C 2.C 3.B 4.C 5.D 6.D 7.B8.B 【点拨】当⎪⎪⎪⎪⎪⎪a b =-a b 时,a b ≤0,a 可能等于0,b ≠0,a ,b 不一定异号;当a 3+b 3=0时,a 3=-b 3,即a 3=(-b )3,所以a =-b ,有可能a =b =0,a ,b 不一定异号.所以一定能够表示a ,b 异号的有①②.9.A 【点拨】如图,(第9题)因为AP ∥BC ,所以∠2=∠1=50°.所以∠3=∠4-∠2=80°-50°=30°,即此时的航行方向为北偏东30°.10.C 【点拨】因为第1个图中,十字星与五角星的个数和为6+1=7,第2个图中,十字星与五角星的个数和为8+2=10,第3个图中,十字星与五角星的个数和为10+3=13,…,所以第9个图中,十字星与五角星的个数和为2×(2+9)+9=31.故选C. 二、11.3.1412.两点确定一条直线13.5(第14题)14.90 【点拨】如图,因为∠A 与∠B 互余,所以∠A +∠B =90°,所以∠ACB =∠1+∠3=90°.因为a ∥b ,所以∠2=∠3,所以∠1+∠2=90°.15.11 【点拨】由题意得a +b =6x 2-8kx +12-2(3x 2-2x +k )=6x 2-8kx +12-6x 2+4x -2k =(4-8k )x +12-2k =m ,所以4-8k =0,解得k =12,即m =12-2×12=11. 三、16.解:(1)原式=135+(-2)-20=113.(2)原式=-16+16-1×16×6-54=-1-54=-94.17.解:原式=2ab 2-3a 2b +6a 2b -2ab 2-2=3a 2b -2.由(a +1)2+|b -2|=0,得a =-1,b =2,则原式=3×(-1)2×2-2=6-2=4.18.解:(1)DG =CD -CG =8-a .(2)S 三角形AEG =S 正方形ABCD +S 正方形EFGC -S 三角形ABE -S 三角形ADG -S 三角形EFG =82+a 2-12×8×(8+a )-12×8×(8-a )-12a 2=12a 2.当a =8时,12a 2=12×82=32.即三角形AEG 的面积为32.19.解:(1)-5-2+8-3+6-4+5+3=8(千米).答:这辆电动小汽车完成上述巡逻后在该派出所的东侧,距离该派出所8千米.(2)(|-5|+|-2|+|+8|+|-3|+|+6|+|-4|+|+5|+|+3|)×0.15=(5+2+8+3+6+4+5+3)×0.15=36×0.15=5.4(度).答:这天下午电动小汽车共耗电5.4度.20.解:因为∠A =∠1,所以AC ∥GF ,所以∠C =∠G .又因为∠C =∠F ,所以∠F =∠G ,所以CG ∥EF ,所以∠CBD =∠FEH .因为BM 平分∠CBD ,EN 平分∠FEH ,所以∠2=12∠CBD ,∠3=12∠FEH ,所以∠2=∠3.21.解:(1)题图①中的C 图形经过折叠能围成无盖正方体纸盒.(2)折成无盖正方体纸盒后,与“保”字所在面相对的面上的字是“卫”.(3)①如图所示.(第21题)②x;(20-2x)2③易知当小正方形的边长为4cm时,长方体纸盒的高为4cm,底面是边长为20-2×4=12(cm)的正方形,所以纸盒的容积为12×12×4=576(cm3).22.解:(1)因为OE平分∠AOC,OF平分∠BOD,所以∠EOC=12∠AOC=55°,∠COF=12∠BOD=20°,所以∠EOF=∠EOC+∠COF=75°.(2)因为OE平分∠AOC,OF平分∠BOD,∠AOC=110°,∠BOD=40°,所以∠AOE=55°,∠BOF=20°,所以∠AOE-∠BOF=35°.(3)不发生变化,由题意可得∠AOC=110°+3°t,∠BOD=40°+3°t.因为OE平分∠AOC,OF平分∠BOD,所以∠AOE=12(110°+3°t),∠BOF=12(40°+3°t),所以∠AOE-∠BOF=12(110°+3°t)-12(40°+3°t)=35°,所以在旋转过程中∠AOE-∠BOF的值不会因t的变化而变化.23.解:(1)①如图,过点E作EN∥AB,则∠ABE+∠BEN=180°.因为AB∥CD,AB∥NE,所以NE∥CD,所以∠CDE+∠NED=180°,所以∠ABE+∠CDE+∠BEN+∠NED=∠ABE+∠CDE+∠BED=360°.②如图,过点F作FG∥AB,则∠ABF=∠BFG.因为AB∥CD,FG∥AB,所以FG∥CD,所以∠CDF=∠GFD,所以∠ABF+∠CDF=∠BFG+∠GFD=∠BFD.(2)∠E+6∠M=360°.理由:设∠ABM=x°,∠CDM=y°,则∠ABF=3x°,∠CDF=3y°,因为BF,DF分别平分∠ABE,∠CDE,所以∠ABE=2∠ABF=6x°,∠CDE=2∠CDF=6y°.由(1)知∠ABE+∠E+∠CDE=360°,所以6x°+6y°+∠E=360°,又因为∠M+∠EBM+∠E+∠EDM=360°,所以6x°+6y°+∠E=∠M+(6x°-x°)+(6y°-y°)+∠E,所以∠M=x°+y°,所以∠E+6∠M=360°.(3)∠M=360°-m°2n.(第23题)。
华师版数学 七年级上学期 期末测试题一、选择题(每题3分,共30分) 1、-2017的绝对值是( )A 、2017B 、-2017C 、20171 D 、20171-答案:A解析:绝对值表示的是某个数在数轴上到原点的距离。
-2017距离原点有2017个单位长度,因此选A 2、当x=3,代数式10-2x 的值是( )A 、1B 、2C 、3D 、4 答案:D解析:将x=3代入10-2x 中:10-2×3=4 3、下面不是同类项得是( ) A 、-2与12 B 、b a b a 222与- C 、2m 与2n D 、222212y x y x 与-答案:C解析:考察同类项得定义:所含字母相同、相同字母的指数也相同,这样的两个单项式,叫做同类项。
特别的,数字与数字是同类项。
4、下列式子计算正确的是( ) A 、05522=-xy y xB 、32522=-a aC 、22234xy xy xy =- D 、2a+3b=5ab答案:C解析:A 和D 中不是同类项,不能合并;B 合并之后应该是2a 35、下列各数中,比-3大的是( )A 、-πB 、-3.1C 、-4D 、-2 答案:D解析:两个负数比大小,绝对值大的数反而小6、下列物体中,主视图是圆的是()答案:C解析:圆柱的主视图是长方形,圆锥的主视图是三角形,正方体的主视图是正方形7、如图,是一个正方体的表面展开图,则“2”所对的面是()A、0B、9C、快D、乐答案:D解析::“222”这种展开图的对应面的特征是:14,25,36,也就是2--9,0---快,1----乐相对。
8、木工师傅在锯木板时,往往先在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C、在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行答案:A解析:题中已经非常清晰的写着:先在木板两端固定两个点,用墨盒弹一根墨线9、下面图形中,射线OP是表示北偏东60°方向的是().A B C D 答案:C解析:本题考查方位角10、几个相同的正方体叠合在一起,该组合体的主视图和俯视图如图所示,那么组合体中正方体的个数至少有几个?至多有几个?( )A 、5,6B 、6,7C 、7,8D 、8,10 答案:D解析:由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数和最少个数,加上第一层的正方体的个数即为所求答案.第一层有1+2+3=6个正方体,第二层最少有2个正方体,所以这个几何体最少有8个正方体组成; 第一层有1+2+3=6个正方体,第二层最多有4个正方体,所以这个几何体最多有10个正方体组成. 故答案为8,10.二、填空题(每小题3分,共15分)11、若单项式n m ab b a 762-与单项式是同类项,则m-n=-1. 解析:由同类项得定义可知,m=1,n=2,所以m-n=1-2=-112、把多项式5342332-+-y x y x xy 按字母x 的降幂排列是5243323-+-xy y x y x 。
华师大版七年级上册数学期末考试试题一、单选题1.-2022的相反数是()A .-2022B .12022C .2022D .12022-2.若α∠的补角是150°,则α∠的余角是()A .30°B .60°C .120°D .150°3.下列说法中正确的是()A .单项式25xy -的系数是5-,次数是2B .单项式m 的系数是1,次数是0C .12ab -是二次单项式D .单项式45xy -的系数是45-,次数是24.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是()A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-5.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是()A .a+b <0B .a ﹣b >0C .ab <0D .ba>06.如图,由几个相同的小正方体搭成一个几何体,从上面观察该图形,得到的平面图形是A .B .C .D .7.一只跳蚤在数轴上从原点开始,第1次向右跳2个单位长度,第2次向左跳4个单位长度,第3次向右跳6个单位长度,第4次向左跳8个单位长度,…依此规律跳下去,当它第2020次落下时,落点表示的数是()A .2019B .2020C .2020-D .10108.如图是一个正方体的平面展开图,标注了字母m 的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m 的值为()A .3B .﹣3C .2D .﹣29.已知当1x =时,代数式334ax bx ++值为8,那么当1x =-时,代数式334ax bx ++值为()A .0B .5-C .1-D .310.下面四个图形中,1∠与2∠是同位角的是()A .B .C .D .11.如图是一款手推车的平面示意图,其中AB ∥CD ,126∠=︒,274∠=︒,那么3∠的度数为()A .100°B .132°C .142°D .154°12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A .4mB .4nC .2(m +n)D .4(m -n)二、填空题13.如果单项式﹣12xa ﹣2y 2b +1与单项式7x 2a ﹣7y 4b ﹣3是同类项,则ab =.14.10.8万用科学记数法可表示为_____.15.已知两个角分别为35︒和145,︒且这两个有一条公共边,则这两个角的平分线所成的角为_________________________.16.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n ;(其中k 是使2kn为奇数的正整数),并且运算可以重复进行,例如,取26n =,则:若49n =,则第2021次“F”运算的结果是___________.17.如图是一个数值运算的程序,若输出y 的值为1,则输入的值为____.18.如果一个数的平方是14,那么这个数是______.19.在数轴上从左到右有A ,B ,C 三点,其中1AB =,2BC =,如图所示.设点A ,B ,C 所对应数的和是x .(1)若以点A 为原点,则C 表示的数是______;(2)若以BC 的中点为原点,则x 的值是______.20.已知关于x ,y 的多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,则m ﹣n =_____.三、解答题21.计算(1)5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭(2)2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦22.先化简,再求值:2xy-12(4xy-8x 2y 2)+2(3xy-5x 2y 2);其中x 、y 满足(x-1)2+|y+2|=0.23.如图,CE 平分ACD ∠,F 为CA 延长线上一点,//FG CE 交AB 于点G ,140ACD ∠=︒,45B ∠=︒,求AGF ∠的度数.24.如图,P 是线段AB 上一点,AB =12cm ,M ,N 两点分别从点P ,B 出发以1cm/s 、3cm/s 的速度同时向左运动,运动时间为ts .(1)当t =1,且PN =3AM 时,求AP 的长.(2)当点M 在线段AP 上,点N 在线段BP 上运动的任一时刻,总有PN =3AM ,AP 的长度是否变化?若不变,请求出AP 的长;若变化,请说明理由.(3)在(2)的条件下,Q 是直线AB 上一点,且AQ =PQ+BQ ,求PQ 的长.25.分别指出下列图中的同位角、内错角、同旁内角.26.一个高为8cm ,容积为50mL 的圆柱形容器里装满了水,现把高16cm 的圆柱垂直放入,使圆柱的底面与容器的底面接触,这时一部分水从容器中溢出,当把圆柱从容器中拿出后,容器中水的高度为6厘米.求圆柱的体积.参考答案1.C【分析】根据相反数的定义:只有符号不同的两个数互为相反数,特别地,0的相反数是0,求解即可.【详解】解:-2022的相反数是2022,故选:C .【点睛】本题考查相反数,熟练掌握相反数的定义是解题的关键.2.B【分析】根据补角、余角的定义即可求解.【详解】∵α∠的补角是150°∴α∠=180°-150°=30°∴α∠的余角是90°-30°=60°故选B .【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角3.D【分析】直接根据单项式的系数与次数的定义、多项式以及多项式的次数的定义解决此题.【详解】A .单项式25xy -的系数是15-,次数是3,故A 不符合题意;B .单项式m 的系数是1,次数是1,故B 不符合题意;C .12ab -是二次多项式,故C 不符合题意;D .单项式45xy -的系数是45-,次数是2,故D 符合题意;故选:D .【点睛】本题主要考查单项式的系数与次数、多项式,熟练掌握单项式的系数与次数的定义,多项式的定义是解题的关键.4.D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【详解】解:()22537351x x x x +---+22+--+-=537351x x x x2=+-x x288所以的计算过程是:()22+---+288351x x x x22+288351=+---x x x x2139=-+-x x故选:.D【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.5.D【分析】根据数轴的特点即可依次判断.【详解】由数轴可得a+b<0,正确;a>b,故a﹣b>0,正确;a>0>b,故ab<0,正确;ba<0,故错误;故选D.【点睛】此题主要考查数轴的应用,解题的关键是熟知有理数的运算.6.D【分析】观察图形可知,从上面看到的图形是两行:后面一行3个正方形,前面一行2个正方形靠左边,据此即可解答问题.【详解】解:根据题干分析可得,从上面看到的图形是.故选:D.【点睛】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.7.C【分析】根据数轴上的点的移动规律“左减右加”计算即可得出答案.【详解】解:设向左跳为负,向右跳为正,由题意得,[][](2)(4)(6)(8)4034(4036)4038(4040)++-+++-+++-++- (24)(68)(1012)(40344036)(40384040)=-+-+-++-+- 2020=-,故选:C .【点睛】本题考查了数轴上的点的变化规律,解题关键注意计算时的正负数的表示方法.8.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“m”与“x”是相对面,“﹣2”与“3”是相对面,“4”与“2x”是相对面,解∵正方体的左面与右面标注的式子相等,∴4=2x ,解得x =2;∵标注了m 字母的是正方体的前面,左面与右面标注的式子相等,前面与后面标注的数字互为相反数,∴m =﹣2.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.A【分析】把x =1分别代入两个等式得到两个关于a 、b 的等式,然后把x =−1代入代数式,再把两个a 、b 、的等式整理代入进行计算即可得解.【详解】解:∵当1x =时,代数式334ax bx ++值为8,∴a+3b+4=8,即:a+3b=4,∴当1x =-时,334ax bx ++=()()()3131********a b a b a b ⋅-+⋅-+=--+=-++=-+=,故选A.【点睛】本题考查了代数式求值,根据系数的特点表示出所求代数式是解题的关键.10.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A、不是同位角,故本选项错误;B、不是同位角,故本选项错误;C、不是同位角,故本选项错误;D、是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.11.B【分析】先根据平行线性质求出∠A,再根据邻补角的定义求出∠4,最后根据三角形外角性质得出∠3=∠4+∠A.【详解】解:如图:∵AB∥CD,∠1=26°,∴∠A=∠1=26°,∵∠2=74°,∠2+∠4=180°,∴∠4=180°-∠2=180°-74°=106°,∴∠3=∠4+∠A=106°+26°=132°.故选:B.【点睛】本题考查了平行线性质和三角形外角性质的应用,解题的关键是求出∠A的度数和得出∠3=∠4+∠A.12.B【分析】本题需先设小长方形卡片的长为a ,宽为b ,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.【详解】解:设小长方形卡片的长为a ,宽为b ,∴L 上面的阴影=2(n-a+m-a ),L 下面的阴影=2(m-2b+n-2b ),∴L 总的阴影=L 上面的阴影+L 下面的阴影=2(n-a+m-a )+2(m-2b+n-2b)=4m+4n-4(a+2b ),又∵a+2b=m ,∴4m+4n-4(a+2b)=4n ,故选:B .【点睛】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.13.25【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,求出a ,b ,再代入b a 中即可得出答案.【详解】 单项式22112a b x y -+-与单项式27437a b x y --是同类项,2272143a ab b -=-⎧∴⎨+=-⎩,解得:52a b =⎧⎨=⎩,2525b a ∴==.故答案为:25.【点睛】本题考查同类项的定义以及有理数的乘方运算;同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,掌握同类项的定义是解题的关键.14.51.0810⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10.8万=51.0810⨯,故答案为:51.0810⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.15.90 或55 .【分析】根据题意易得这两个角有两种位置关系:一种是叠合,一种是不叠合,然后直接求解即可.【详解】设35BOC ∠=︒,145,AOC ∠=︒OD 平分∠AOC ,OE 平分∠BOC .当这两个角叠合时,如图所示:∴()()11145355522DOE AOC BOC ∠=∠-∠=⨯︒-︒=︒;当这两个角不叠合时,如图所示:∴()()11145359022DOE AOC BOC ∠=∠+∠=⨯︒+︒=︒.故答案为90 或55 .【点睛】本题主要考查角的角度计算,关键是根据题意进行分类讨论,然后利用角的和差关系求解即可.16.98【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F ①运算,即3×49+5=152(偶数),需再进行F ②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故答案为:98.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.17.3±【分析】设输入的数为x,根据程序列出关于x的方程,求出x即可.【详解】设输入的数为x,根据程序列方程得(1)x-÷2=112x-=3x=3x=±故答案为3±【点睛】本题考查了整式的程序计算,正确理解程序是解题的关键.18.1 2±【分析】根据有理数的乘方运算即可求出答案.【详解】解:2 11 24⎛⎫±= ⎪⎝⎭,∴这个数是1 2±,故答案为:12±.【点睛】本题考查有理数的乘方,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.19.3-2【分析】根据数轴上两点之间的距离进行解答即可.【详解】解:(1)∵点A 为原点,1AB =,2BC =,∴3AB BC +=,∴点C 表示的数为3,(2)∵以BC 的中点为原点,2BC =,∴点B 表示的数为-1,点C 表示的数为1,又1AB =,∴点A 表示的数为-2,∴x=-2+(-1)+1=-2.故答案为:3,-2.【点睛】本题考查数轴上两点之间的距离,理解数轴上两点之间的距离等于两点差的绝对值是解题关键.20.1【分析】根据多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,可得216m ++=,根据单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,可得256n m +-=,两式联立即可得到m 、n 的值,代入计算即可求解.【详解】∵多项式212325m x y xy x ++--是六次四项式,∴216m ++=,解得3m =,∵单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,∴256n m +-=,即2536n +-=,解得2n =,∴1m n -=,故答案为1.【点睛】此题考查了单项式与多项式的定义和性质.解题的关键是掌握单项式和多项式的相关定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.21.(1)-7(2)34-【解析】(1)解:5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭5357242212481277⎛⎫⎛⎫=+-+⨯-- ⎪⎝⎭⎝⎭5243245247242212747871277⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-⨯-+⨯-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1018152227777=--+--7=-.(2)解:2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦()1112922=--⨯⨯-()1174=--⨯-714=-+34=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.2266xy x y -,-36【分析】根据去括号法则,合并同类项法则,对整式的加减化简,然后根据非负数的意义求得x 、y 的值,再代入求值即可.【详解】解:原式=2222224610xy xy x y xy x y -++-2266xy x y =-由题意得:x 1,y 2==-∴2266xy x y -=6×1×(-2)-6×21×(-2)2=-36.【点睛】考点:整式加减运算,非负数23.25°【分析】根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG=∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠GAF ,根据三角形的内角和定理即可得到结论.【详解】解:∵CE 平分ACD ∠,140ACD ∠=︒∴111407022ACE ACD ∠=∠=⨯︒=︒,18040ACB ACD ∠=︒-∠=︒,∵//FG CE ,∴70AFG ACE ∠=∠=︒,∵85FAG B ACB ∠=∠+∠=︒,∴18025AGF AFG FAG ∠=︒-∠-∠=︒,故AGF ∠的度数是25°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.24.(1)AP 的长为3cm ;(2)AP 的长度不变,AP=3cm ,(3)PQ 的长为6cm 或12cm .【分析】(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t-x)cm ,AM=AP-MP=(x-t)cm ,当t =1,PN =3AM ,列方程12-3-x=3(x-1),解方程即可;(2)根据PN =3AM ,列方程12-3t-x=3(x-t),解方程得出x=3,AP 的长度不变;(3)根据点Q 的位置可分三种情况,当点Q 在BA 延长线上,QA <QP <QB ,此种情况AQ =PQ+BQ 不成立;当点Q 在AB 上,根据AQ=PQ+QB ,列方程2(3+PQ )=PQ+12,当点Q 在AB 延长线上,根据AQ =PQ+BQ ,列方程12+BQ=PQ+BQ ,解方程即可.【详解】解:(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t-x)cm ,AM=AP-MP=(x-t)cm ,当t =1,PN =3AM ,即12-3-x=3(x-1),解得x=3,∴AP 的长为3cm ;(2)∵PN =3AM ,∴12-3t-x=3(x-t)解得x=3cm ,AP的长度不变,AP=3cm,(3)根据点Q的位置可分三种情况,当点Q在BA延长线上,QA<QP<QB,此种情况AQ=PQ+BQ不成立;当点Q在AB上,∵AQ=PQ+QB,AQ=AP+PQ=3+PQ,BQ=12-AQ,∴AQ=PQ+12-AQ,∴2AQ=PQ+12,∴2(3+PQ)=PQ+12,解得PQ=6cm;当点Q在AB延长线上,AQ=PQ+BQ,AQ=12+BQ,∴12+BQ=PQ+BQ,∴PQ=12cm,∴PQ的长为6cm或12cm.【点睛】本题考查了一元一次方程的应用,两点间的距离,列代数式,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.25.图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.如图2,同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【点睛】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.26.325m 【分析】根据题意得出:因为浸入的圆柱体是垂直放入的,所以浸入的圆柱体的高度是8厘米,所以浸入部分的体积等于下降的水的体积,下降的水的体积等于高为8-6=2厘米的圆柱容器的体积;先用圆柱形容器的容积除以8求出圆柱形容器的底面积,再利用圆柱的体积公式计算出浸入的圆柱体的体积,因为浸入的8厘米是16厘米的一半,所以体积就是浸入的部分的体积的2倍,再乘2即可解答.【详解】解:()()()50886168÷⨯-⨯÷6.2522=⨯⨯()325cm =,答:圆柱的体积是325m .【点睛】解决本题的关键是明确浸入水中的圆柱体的体积等于下降的水的体积,而下降的水的高度是2厘米,不是6厘米.。
华师新版初一数学期末综合检测命题:李晓(120分钟120分)一、选择题(本大题共10个题,每题3分,共30分)1.计算-12的结果是( )A.-1B.1C.-2D.22.如图是某一立方体的侧面展开图,则该立方体是( )3.2012年国内生产总值为47.2万亿元,数据47.2万亿精确到( )A.千亿位B.亿位C.千位D.十分位4.下列说法中正确的是( )A.若a⊥b,b⊥c,则a⊥cB.在同一平面内,不相交的两条线段必平行C.两条直线被第三条直线所截,所得的同位角相等D.两条平行线被第三条直线所截,一对内错角的角平分线互相平行5.(2012·广州中考)下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b6.如图,有下列说法:①若∠1=∠3,AD∥BC,则BD是∠ABC的平分线;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,则AD∥BC;④若∠C+∠3+∠4=180°,则AD∥BC.其中正确的有( )A.1个B.2个C.3个D.4个7.(2012·怀化中考)如图,已知AB∥CD,AE平分∠CAB,且交CD于点D,∠C= 110°,则∠EAB为( )A.30°B.35°C.40°D.45°8.甲、乙、丙、丁四个学生在判断时钟的分针和时针互相垂直的时刻时,每个人说两个时刻,说对的是( )A.甲说3点和3点半B.乙说6点1刻和6点3刻C.丙说9点和12点1刻D.丁说3点和9点9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )A.50B.64C.68D.7210.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依次类推,则a2014的值为( ) A.-1 005 B.-1 006C.-1 007D.-2 014二、填空题(本大题共8个题,每题3分,共24分)11.计算错误!未找到引用源。
华师大版七年级上册数学期末试题一、单选题1.下列代数式是同类项的一组是()A.2与a bB.3与3 ab2b a3abC.ab与D.m与n abc//b ,140,260,则3等于(2.如图,已知直线a)A.100B.90C.70D.503.2019年9月8日至16日,中华人民共和国第十届少数民族传统体育运动会在郑州市举行.运动会期间,公交运营车次476208次,完成运营里程742万公里.742万用科学计数法表示为()A.7.42x102B.7.42x10C.7.42x10D.7.42x107564.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.C.B.D.5.实数a、在数轴上的位置如图所示,下列结论正确的是() bb b a a b a b a b b aA . aB . D . b a a bC . 6.下列等式成立的是( )22 2 22A . C . 2B .222 2 2 2 33 D . 337.用一副三角尺 可以画出许多不同的角度 ,以下角度不能用三角尺画出的是( )B .607540A . C . D .308.数线上有O 、 A 、 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点B d 5 d c D , D 点所表示的数为d ,且 ,则关于 D 点的位置,下列叙述何者正确?()A .在 A 的左边B .介于 A 、C 之间 C .介于C 、O 之间D .介于O 、 之间B 9.某正方体的每个面上都有一个汉字 ,如图是它的一种展开图,那么在原正方体中,与“祝” 字所在面相对的面上的汉字是( )A .新B .年C .快D .乐10.如图,将一张长方形纸片按图中方式折叠,图中与1一定相等的角有( )A .1 个B .2 个C .3 个D .4 个二、填空题//BA,图中一定与相等的角是__________.11.如图,CE B312m互为相反数,则m12.m__________.与,B13.如图,在一条笔直道路l的两侧,分别有A两个小区,为了方便居民出行,现要在公,B路l上建一个公共自行车存放点,要使存放点到A小区的距离之和最小,则存放点应该建在处,理由是__________.E5.5,y 4 14.在一张长方形纸片上剪去个小长方形得到如图所示的纸片(阴影部分),当x时,阴影部分的周长是__________.15.如图,已知O A⊥O B,点O为垂足,O C是∠A O B内任意一条射线,O B,O D分别平分∠C O D,∠B O E,下列结论:①∠C O D=∠B O E;②∠C O E=3∠B O D;③∠B O E=∠A O C;④∠A O C与∠B O D互余,其中正确的有______(只填写正确结论的序号).三、解答题 16.计算:111 2 3 2 2020;6 3 1 1 4 2 2525 25 ;4 23 108 18 56 30 20 33 .1 32 3x y 4xy4 xyx y 2 x 1,y 2.17.先化简再求值:2222 ,其中 22 18.一个几何体由大小相同的小立方块搭建而成,从上面看到的几何体形状如图所示,其中 小正方形中的数字表示在该位置的小立方块的个数,请在下面网格图中分别画出从正面和从 左面看到的这个几何体的形状图.ABC / / 和 C D E , E 在 AB 边上,且 AB C D , 为 AE D 的角平分 19.如图,已知 E C线,若BCE 30, 44 ,求 D 的度数.B20.我们将两数的和与积相等的等式称为“和谐”等式. (1)计算并完成下列等式的填空:1 1 (1) (1) ① ② ③ __________;2 2 2 2(2) (2) __________; 3 3 3 3(3) (3) __________;…… 4 4(2)按此等式的规律,请再写出符合这个规律的一个“和谐”等式; (3)请表示第 个“和谐”等式的规律.n 21.在数轴上点 A 表示数a ,点 表示数b ,点C 表示数 ,并且 是多项式 c a 2 4 12 B x x 1x y c 4 的次数为 .的一次项系数, b 是数轴上最小的正整数,单项式 22 1,ca, b .2 , , 请你画出数轴,并把点 A B C 表示在数轴上;3请你通过计算说明线段 与 AC 之间的数量关系.AB 22.如图,一只蚂蚁在55的方格(每小格边长为1 )上沿着网格线运动,它从 A 处出发,爬向 B ,C, D处.规定:向上或向右走为正,向下或向左走为负,如从A 到 记为:BA B 1,4: BA 1,4 .其中括号内第一个数表示左右方向运动,从 到 A 记为 B 情况,第二个数表示上下方向运动情况,根据以上材料,解答下面的问题:1CBD从 A 到C 记为 A,从 到 记为 B;D 2B C D 若这只蚂蚁的行走路线为 A,请计算该蚂蚁走过的路程.23.如图,已知直线AB 与射线CD 平行,CEB/ /EC .作PCF PCQ,CF交直线 AB 于点100.点 是直线 AB 上一动点,过点 o P 作 P Q 交射线C D 于点 ,连接 Q C P P F,C G 平分ECF, ,,点 P F C 都在点 E 的右侧.1求 PC G的度数;2 EG C EC G 40,求 CP Q 的度数;若3, , 把题中条件“射线C D ”改为“直线CD ” ,条件点 P F C 都在点 E 的右侧”改为“点 ,P F,G ,都在点 E 的左侧”,请你在图 2 中画出 PC,CF,C G ,并直接写出PC G的度数.参考答案1.B【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同判断即可.【详解】A、字母相同,但相同的字母的指数不相同,故此选项不符合题意;B、字母相同,且相同的字母的指数也相同,故此选项符合题意C、字母不同,故此选项不符合题意;D、字母不同,故此选项不符合题意;故选:B.【点睛】本题考查了同类项,关键是根据同类项是字母相同,且相同的字母的指数也相同解答.2.A【解析】【分析】先过点作C∥,根据平行于同一直线的两条直线互相平行,即可得C D a∥∥,根据两C D a b直线平行,内错角相等,即可求得∠ACB的度数.【详解】如图,过点作C∥.C D a∵a∥b,∴C D∥a∥b,∴∠AC D=∠1=40°,∠BC D=∠2=60°,∴∠ACB=∠AC D+∠BC D=100°.故选A.【点睛】本题考查了平行线的性质.正确作出辅助线是解答本题的关键.3.C【分析】科学记数法的表示形式为a×10的形式,其中 1≤|a|<10,n为整数.确定n的值时,要看把n原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1 时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:将742万用科学记数法表示为7.42×10.6故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中 1≤|a|<10,nn为整数,表示时关键要正确确定a的值以及n的值.4.D【解析】【分析】根据从正面看是两个直角三角形,即可得出答案.【详解】从正面看图2的几何体,看到的平面图形是两个直角三角形.故选D.【点睛】此题主要考查的是从不同方向看几何体,题目比较简单,通熟练掌握简单的几何体的观察方法是解决本题的关键.5.A【解析】试题解析:依题意得:a<0,b>0,|a|>|b|.b b a∴a故选A.6.A【解析】【分析】利用乘方的意义计算即可得到结果.A、2=(−2)=4,正确;22B、−2=−4,|−2 |=4,错误;22C、−(−2)=8,−|−2 |=−8,错误;33D、2=8,−2=−8,错误,33故选:A.【点睛】此题考查了有理数的乘方,以及相反数,熟练掌握运算法则是解本题的关键.7.C【解析】【分析】一副三角板中的角有30°、45°、60°、90°,利用三角板中角的和或差可以画出15°倍数的角.【详解】A、75°=30°+45°,75°的角可以用三角形板中30°和45°的角画;B、60°的角可以用三角形板中60°的角画;C、40°的角不能用三角形板中画出;D、30°的角可以用三角形板中30°的角画.故选:C.【点睛】本题考查了学生用一副三角尺拼成角度情况的掌握,能找到规律是解决此类题目最好的方法.8.D【解析】【分析】根据O、、、四点在数轴上的位置和绝对值的定义即可得到结论.A B C【详解】0b 5c 5d 5d c,,解:c,,BD C D,∴D点介于故选:D.O、之间,B本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,“快”与“新”是相对面,“年”与“祝”是相对面,“我”与“快”是相对面;故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.10.C【解析】【分析】根据图形的特点及平行线的性质即可求解.【详解】如图,∠1=∠2,∵平行,∴∠2=∠3=∠4故与1相等的角有3个故选C.【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的角度特点.11.ECD【解析】【分析】根据平行线的性质即可求解.【详解】//BA∵CEB=EC D故填:.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.12.4【解析】【分析】根据相反数得出方程,求出方程的解即可.【详解】∵m+3与 1−2m 互为相反数,∴m+3+1−2m=0,m=4,故答案为:4.【点睛】本题考查了解一元一次方程,相反数的应用,能根据题意得出方程是解此题的关键.13.两点之间,线段最短【解析】【分析】根据两点之间线段最短可得公共自行车存放点的位置是E处.【详解】公共自行车存放点建在E处,理由是两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】此题主要考查了线段的性质,关键是掌握两点之间线段最短.14.46【解析】【分析】根据图形的特点即可列出阴影部分的周长的代数式,再代入x,y的值即可求解.【详解】根据图形可知:阴影部分的周长是2(2y+2x)+2y=4y+4x+2y=4x+6y5.5,y4把x代入原式=4×5.5+6×4=22+24=46故填:46.【点睛】此题主要考查列代数式,解题的关键是根据图形的特点写出代数式.15.①②④【解析】【分析】由角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】解:①∵O B,O D分别平分∠C O D,∠B O E,∴∠C O B=∠B O D=∠D O E,设∠C O B=x,∴∠C O D=2x,∠B O E=2x,∴∠C O D=∠B O E,故①正确;②∵∠C O E=3x,∠B O D=x,∴∠C O E=3∠B O D,故②正确;③∵∠B O E=2x,∠A O C=90°-x,∴∠B O E与∠A O C不一定相等,故③不正确;④∵O A⊥O B,∴∠A O B=∠A O C+∠C O B=90°,∵∠B O C=∠B O D,∴∠A O C与∠B O D互余,故④正确,∴本题正确的有:①②④; 故答案为:①②④. 【点睛】本题考查了角平分线的性质,互余的定义,垂直的定义,掌握图形间角的和、差、倍、分关 系是解题的关键.11 2 3 31 15'. 16. ; 25; 6【解析】 【分析】(1)根据有理数的运算法则即可求解; (2)根据乘法分配律即可求解; (3)根据角度的运算法则即可求解. 【详解】111 2 9 原式611 7 6 7 16 1 63 1 14 225 25 25 原式 4 2 3 1 1 254 2 4 251 253原式108 18' 7663'10778'7663'3115' . 【点睛】此题主要考查有理数及角度的运算,解题的关键是熟知其运算法则.17.6xy8;原式=16.【解析】【分析】根据整式的加减即可化简,再代入x,y即可求解.【详解】6x y8xy2xy6x y8原式22226xy8.x1,y2614824816当时,原式.【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则.18.如图所示.见解析.【解析】【分析】由条件可知,从正面看有3列,每列小正方形个数为3,4,2;从左面看有2列,每列小正方形个数为4,2,据此可画出图形.【详解】如图所示.【点睛】本题考查三视图的画法,主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列中的最大数字,左视图与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中的最大数字.19.32°【解析】【分析】根据两直线平行,内错角相等求出∠D C B的度数,从而求得∠D C E的度数,再根据两直线平行,内错角相等求得∠AE C的度数,根据两直线平行同旁内角互补即可求解.【详解】解:∵A B∥C D,∴∠B=∠D C B,∠D C E=∠A E C,∠AE D+∠D=180°∵∠B=44°,∴∠D C B=44°∵∠BCE=30°,∴∠D CE=∠D C B+∠B CE=44°+30°=74°,∴∠AE C=∠D C E=74°,∵EC为∠AE D的角平分线,∴∠AE D=2∠AEC=2×74°=148°,∴∠D=32°.【点睛】本题主要考查平行线的性质,由“平行”到“角的数量关系”的转换思想是解答此题的重要途径.1 2439433n n(3)(3)()()20.(1)①②③(;2)(;3)n n44n1n1【解析】【分析】(1)由有理数的加法法则和乘法法则进行计算即可;(2)由规律即可得出答案;(3)由题意得出规律;由有理数的加法法则和乘法法则进行计算即可.【详解】1 2112 (1)(1)(1)①−21故答案为− ;22 3243 (2)(2)②,34故答案为:;33 4 39 4 (3) (3) ③, 49故答案为: ;4454(4) (4) (2)根据已知的式子可写: (答案不唯一), 5nn(n ) (n )n 1(3)第 个“和谐”等式的规律为n n 1理由如下:n n n 2 n n 2(n ) ∵ ,n 1 n 1 n 1 n 1 n n 2(n ) n 1 n 1n n(n ) (n ) .∴n 1 n 1 【点睛】本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.31 4,1,62 A CAB .221. ; 如图所示,即为所求.见解析;【解析】 【分析】(1)根据多项式、正整数与单项式的概念即可求出答案. (2)根据数轴的特点即可求解;(3)根据数轴的特点求出 A B,AC 的长即可求解. 【详解】11x y 多项式2x 2 4x 1的一次项系数为-4,数轴上最小的正整数是 1,单项式 4 的 2 2次数为 6 ∴a=-4,b=1,c=6.4,1,6 故填: ; 2如图所示,即为所求.3 AB b a 14 5, AC c a 6 4 10 . 105 2,AC 2AB .【点睛】本题考查数轴,涉及整式的概念,点到点之间的距离等知识,较为综合.1 3,4 3,22 ;该蚂蚁走过的路程为 10.22. , 【解析】 【分析】(1)根据规定结合图形写出即可;(2)根据图形的路线列式进行计算即可得解. 【详解】13,43,2由题意得从 到 记为 A,从 到记为 DA C CB BD3,4 3,2 ;故填:,21,4 ,B C2,0 ,C D1,2B 根据已知可得 A记为:记为记为,故该蚂蚁走过的路程为1 4 212 10.【点睛】本题考查了正数和负数,读懂题目信息,理解正负数的意义以及写法的规定是解题的关键.CP Q 60 31 402 PC G ;PC G 50.; 如图所示,即为所求.见解析; 23. 【解析】 【分析】(1)先根据平行求出EC Q 80,再根据PCF PC Q,C G平分 ECF ,利用PC G PCFFC G 即可求解;(2)根据平行得到QC G EG C , EC Q 80,再根据角平分线的性质得到EC G GCF ,再根据已知条件 E G C E C G 40 ,得到 QC GGCF 40 40 PC Q ,得到,再根据 PCF,即可求出 Q C F1 PC QQC F ,再利用ECP EC Q PC Q求出 ECP 的度数,最后根据平2行线的性质即可求出CP Q的度数;(3)根据题意作图,再根据平行线的性质及角平分线的性质进行求解. 【详解】1AB / /C D,CEB 100EC Q 80 .PCF PC Q ,CG平分 ECF ,1 1 1PC G PCF FC G QCF ECF EC Q 40 .2 2 22/ / ,AB C DQC G EGC,EC Q 180 CEB 80,平分ECF,EC G GCF,C G EG CEC G 40 又,QC G GCF 40 ,即QCF 40 , PCF PC Q 平分QCF,,即CP1 1PC QQ C F 40 20 , 2 2ECP ECQ PC Q 80 20 60 P Q / /CE,CPQ ECP 60 ., 3如图所示./ /C D,CEB 100∵ AB EC Q 100 .∵C G 平分∠ECF , EC G GCF PCF PC Q∴ ∵111PC G PCF FC G QCF ECF EC Q50222PC G50.故【点睛】此题主要考查平行线与角平分线的性质,解题的关键是根据图形找到角度关系进行求解.1 PC QQC F ,再利用ECP EC Q PC Q求出 ECP 的度数,最后根据平2行线的性质即可求出CP Q的度数;(3)根据题意作图,再根据平行线的性质及角平分线的性质进行求解. 【详解】1AB / /C D,CEB 100EC Q 80 .PCF PC Q ,CG平分 ECF ,1 1 1PC G PCF FC G QCF ECF EC Q 40 .2 2 22/ / ,AB C DQC G EGC,EC Q 180 CEB 80,平分ECF,EC G GCF,C G EG CEC G 40 又,QC G GCF 40 ,即QCF 40 , PCF PC Q 平分QCF,,即CP1 1PC QQ C F 40 20 , 2 2ECP ECQ PC Q 80 20 60 P Q / /CE,CPQ ECP 60 ., 3如图所示./ /C D,CEB 100∵ AB EC Q 100 .∵C G 平分∠ECF , EC G GCF PCF PC Q∴ ∵111PC G PCF FC G QCF ECF EC Q50222PC G50.故【点睛】此题主要考查平行线与角平分线的性质,解题的关键是根据图形找到角度关系进行求解.第19页。
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 如果一个数的相反数是-5,那么这个数是()A. 5B. -5C. 0D. 无法确定3. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 矩形4. 下列等式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²5. 如果一个数的平方根是3,那么这个数是()A. 9B. -9C. 3D. -3二、填空题(每题5分,共20分)6. -2的相反数是_________,2的倒数是_________。
7. 如果x = 4,那么2x + 3的值是_________。
8. 下列数中,最小的负数是_________。
9. 如果a = 5,b = -3,那么a² - b²的值是_________。
10. 下列图形中,中心对称图形是_________。
三、解答题(每题10分,共30分)11. 简化下列各式:(1) (a + b)² - (a - b)²(2) (x + 3)(x - 3)(3) (2a - b)(a + 2b)12. 解下列方程:(1) 3x - 2 = 11(2) 2(x + 1) = 5x - 313. 已知等腰三角形底边长为8cm,腰长为10cm,求该三角形的周长。
四、应用题(每题15分,共30分)14. 小明骑自行车去图书馆,先以每小时15公里的速度行驶了20分钟,然后以每小时10公里的速度行驶了30分钟。
求小明全程的平均速度。
15. 某商品原价每件100元,现在打八折销售,同时再赠送一件价值50元的赠品。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-42. 已知a=3,b=-2,则a²+b²的值是()A. 7B. 5C. 9D. 13. 如果x²=4,那么x的值是()A. ±2B. ±3C. ±4D. ±54. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 下列函数中,是反比例函数的是()A. y=2x+1B. y=3/xC. y=x²+2D. y=x-36. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 3,7,11,15C. 2,5,8,11D. 4,8,12,167. 如果等腰三角形的底边长为6,腰长为8,那么这个三角形的面积是()A. 24B. 28C. 32D. 368. 已知一元二次方程x²-5x+6=0的解为x₁和x₂,那么(x₁-2)(x₂-2)的值是()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,-3)到直线y=-x+4的距离是()A. 1B. 2C. 3D. 410. 如果a,b,c是等差数列中的连续三项,且a+b+c=24,那么a²+b²+c²的值是()A. 144B. 108C. 90D. 72二、填空题(每题3分,共30分)11. 若x=2,则x²-3x+2=__________。
12. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB=__________。
13. 下列各数中,负数是__________。
14. 如果a,b,c是等比数列中的连续三项,且a×b×c=27,那么b²的值是__________。
15. 在平面直角坐标系中,点P(-1,2)到点Q(3,-4)的距离是__________。
D CBA 华师版初一数学期末试题20XX 年7月本试卷1-6页,满分120分,考试时间90分钟一、选择题(本题共8个小题,每小题3分,共24分)说明:下列各题都给出A 、B 、C 、D 四个结论,把唯一正确结论的代号填在下面的表格中题 号 1 2 3 4 5 6 7 8 答 案1、下列四组变形中,属于移项变形的是 A 、由5100x +=,得510x =- B 、由43x=,得12x = C 、由34y =-,得43y =-D 、由2(3)6x x --=,得236x x -+=2、已知x y 、是有理数且21210x y +++=(),那么x y -的值为 A 、32 B 、32- C 、12 D 、12- 3、已知x y >,0a <,下列结论正确的是A 、ax ay ≥B 、ax ay ≤C 、ax ay >D 、ax ay <4、如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是5、若铺满地面的瓷砖每一个顶点处由6块相同的正多边形组成,此时的正多边形只能是A 、正三角形B 、正四边形C 、正六边形D 、正八边形 6、若一个三角形是轴对称图形,且有一个内角等于︒60,那么这个三角形是A 、直角三角形B 、等边三角形C 、等腰直角三角形D 、含︒30角的直角三角形 7、下列说法中正确的是 A 、不太可能是指发生的机会很小很小,甚至机会是0B 、 小芳同学一次同时掷三个骰子,共掷了20次,但没有掷出三个骰子的点数都是6,说明此事件不可能发生 C 、 很有可能发生与必然发生是有区别的D 、 小王运气好,他买了5注体育彩票就中了特等奖,说明习彩票中特等奖是必然事件8、等腰三角形中有一个角为50°,它的一条腰上的高与底边的夹角为 A 、25° B 、25°或40° C 、40° D 、90° 二、填空题(本题共8个小题,每小题3分,共24分) 9、若2x =是方程20x a +=的解,则a = .10、已知方程324x y +=,用含x 的代数式表示y ,则y = .11、写出一个二元一次方程组,使它的解为21x y =⎧⎨=-⎩, .12、在△ABC 中,AD 是∠BAC 的平分线,若55C ∠=°,95ADB ∠=°,则BAC ∠= .13、若一个多边形的内角和为540°,则这个多边形的边数为 . 14、若不等式23x m x +<-只有一个正整数解,则m 的取值范围是 . 15、若三角形两边长为4和5,则第三边长a 的取值范围是 . 16、把三角板切去一个角,使它成为四边形,这件事是 事件(填“确定”或“随机”).三、解答题(本题共6小题,17~21题各6分,22题8分,共38分) 17、解方程212243x x -=-+ 18、解方程组3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩19、解不等式,并把解集在数轴 20、解不等式组 上表示出来:21、洗衣机厂今年计划生产洗衣机25500台 ,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,这三种洗衣机计划各生产多少台 ?22、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息税=利息金额⨯20%)62(31)216x x --≥-532(3)2134x x x x ->-⎧⎪+⎨-<⎪⎩FEDCBA四、作图与设计(本题共2小题,23题8分,24题6分,共14分) 23、.在正方形网格上有一个△ABC . (1)作△ABC 关于直线MN 的轴对称图形; (2)在网格上最小正方形的边长为1,则△ABC 的面积为 .24、请你用3种方法,将如图所示的四块小正方形纸板拼成一个大的正方形,并且使拼成的大正方形是至少有两条对称轴的轴对称图案.五、解答题(本题共3小题,25、26题各7分,27题6分,共20分) 25、如图,在△ABC 中,45B ∠=°,AD 是∠BAC 的角平分线,EF 垂直平分AD ,交BC 的延长线于点F .求∠FAC 的大小.26、阅读下面解方程组的方法,然后回答有关问题:解方程组 时,如果直接消元,那将是很繁琐的, 若采用下面的解法则会简便许多.解:①-②,得222x y += ,即1x y += ③ ③×16,得161616x y += ④②-④,得1x =-,从而2y = ∴方程组的解为 请你采用上述方法解方程组:并猜测关于x y 、的方程组的解是什么?并利用方程组的解加以验证.200620052004200420032002x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩2121a x a y a a b b x b y b +++=⎧≠⎨+++=⎩()() ()()()191817 17+1615 x y x y +=⎧⎨=⎩①②27、某商场为提高彩电销售人员的积极性,制定了新的工资分配方案,方案规定:每位销售人员的工资总额=基本工资+奖励工资。
每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资。
奖励工资发放比例如表1所示。
(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)依法纳税是我们每个工民应尽的义务根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”。
表2是缴纳个人所得税税率表。
若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后的实际得到的工资为1275元,又知A型彩电销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?参考答案一、选择题(3分×8=24分) 题号 1 2 3 4 5 6 7 8 答案ADDCABCB二、填空题(3分×8=24分) 9、-4;10、x 232-;11、答案不唯一;12、80°;13、5;14、1<a <9;15、随机;16、-3≤m <0.三、解答题(共6小题,17~21题各6分,22题8分,共38分) 17、232412+-=-x x 解:方程变形得 3(2x-1)=-8x+24 6x-3= -8x+24 6x+8x=24+3 14x=27 x=1427 18、⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x解:原方程组化为⎩⎨⎧-=-=-②①205383y x y x①-②,得4y=28∴y=7把y=7带入①得3x-7=8 ∴x=5∴原方程组的解为⎩⎨⎧==75y x19、6-2(3x-1)≥2x-16解:6-6x+2≥2x-166x+2x ≤6+2+16 8x ≤24x ≤320、⎪⎩⎪⎨⎧⋯⋯+⋯⋯-②①41-32)3-(235x<x x >x 解:由不等式①得x >-1由不等式②得x <4∴不等式组的解集为-1<x <421、解:设生产Ⅰ型洗衣机x 台,则生产Ⅱ型、Ⅲ型洗衣机分别为2x 台和14x 台根据题意得:x+2x+14x=25500 17x=25500x=1500∴2x=3000,14x=21000答:略22、解:设2000元和1000元储蓄的年利率分别为x%和y%依题意得:⎩⎨⎧=⋅⋅+⋅⋅=+92.43%80%1000%80%2000%24.3%%y x y x即⎩⎨⎧=+=+92.4381624.3y x y x解这个方程组得⎩⎨⎧==99.025.2y x答:略四、作图与设计(23题8分,24题6分,共14分) 23、略 24、略25、解:∵EF 垂直平分AD ∴FA=FD∴∠ADF=∠DAF又∵∠ADF=∠B+∠BAD ∠DAF=∠FAC+∠DAC ∠BAD=∠DAC ∴∠FAC=∠B=45° 26、⎩⎨⎧=+=+②①200220032004200420052006y x y x解:①-②,得2x+2y=2即x+y=1③ ③×2003,得2003x+2003y=2003④ ②-④得x=-1从而y=2 ∴方程组得解为⎩⎨⎧=-=21y x猜想方程组⎩⎨⎧=+++=+++b y b x b a y a x a )1()2()1()2(的解为⎩⎨⎧=-=21y x检验略27、解:(1)当销售额为15000元时,工资总额=200+5000×5%=450元 当销售额为20000元时,工资总额=200+5000×5%+5000×8%=850元∵450<800<850设甲该月的销售额为x 元,则200+5000×5%+(x-15000) ×8%=800解得x=19375 答略(2)设乙未交个人所得税前的工资未a 元,则 a-(a-800) ×5%=1275 解得a=1300∴超过20000元部分得销售额为(1300-850)÷10%=4500 ∴乙的销售额=20000+4500=24500设A 型彩电销售x 台,则B 型彩电销售了(21-x)台,则 1000x+(21-x)×1500=24500 ∴x=14 答:略。