2017年中考数学模拟试题
- 格式:doc
- 大小:390.50 KB
- 文档页数:14
2017年某某省某某市九校联合中考数学模拟试卷(4月份)一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b23.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×10114.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.5.不等式组的最小整数解是()A.1 B.2 C.3 D.46.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,509.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x=.12.若二次根式有意义,则x的取值X围是.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.14如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是.(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为.三、解答题(本大题有8小题,共66分)17.(6分)计算:|﹣2|﹣(1+)0+﹣cos30°.18.(6分)如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF=.证明:19.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)20.(8分)李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.22.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?23.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D 作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(12分)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E 为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?2017年某某省某某市九校联合中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.【点评】本题主要考查了绝对值的定义,掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2【考点】47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【分析】根据幂的乘方,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.【解答】解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】由勾股定理求得AC=5,再根据余弦函数的定义可得答案.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴AC===5,∴cosA==,故选:D.【点评】本题主要考查锐角三角函数的定义和勾股定理,熟练掌握勾股定理和余弦函数的定义是解题的关键.5.不等式组的最小整数解是()A.1 B.2 C.3 D.4【考点】CC:一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式的解集,求出整数解即可.【解答】解:,由①得:x≥1,由②得:x>2,∴不等式组的解集为x>2,则不等式组的最小整数解是3.故选C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°【考点】JA:平行线的性质.【分析】根据平行线的性质可得∠GEB=∠1=60°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=60°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=30°,∴∠2=180°﹣∠FEB=150°.故选C.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是,故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,50【考点】W5:众数;W4:中位数.【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.【解答】解:第8个数是48,所以中位数为48,49出现的次数最多,出现了5次,所以众数为49.故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3【考点】G6:反比例函数图象上点的坐标特征;KQ:勾股定理.【分析】先设点B坐标,再由等腰直角三角形的性质得出OA=AC,AB=AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函数的解析式,然后联立方程,解方程即可求得P的横坐标.【解答】解:设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,∴反比例函数y=,∵△OAC是等腰直角三角形,∴直线OA的解析式为y=x,解得或,∴P(3,3),故选C.【点评】本题考查的是等腰三角形的性质和待定系数法求反比例函数的解析式,反比例函数图象上点点坐标特征,解答时,注意因式分解的运用.二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.若二次根式有意义,则x的取值X围是x≤.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质(被开方数大于等于0)列出关于x的不等式,然后解不等式即可.【解答】解:根据二次根式有意义,分式有意义得:1﹣2x≥0,解得:x≤.故答案是:x≤.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20 .【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;K6:三角形三边关系.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为π﹣9,.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】连接OB,OA,根据圆周角定理得出∠AOD的度数,再根据弦AB⊥CD,得到OA,OE 的长,然后根据图形的面积公式即可得到结论.【解答】解:连接OA,OB,∵∠C=22.5°,∴∠AOD=45°,∵AB⊥CD,∴∠AOB=90°,∴OE=AB=3,OA=OB=AB=3,∴S阴影=S扇形﹣S△AOB=﹣6×3=π﹣9,故答案为:π﹣9.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.【考点】L8:菱形的性质.【分析】由在边长为2的菱形ABCD中,∠ABC=120°,易得△ABD、△CBD都是边长为2的正三角形,继而证得△BDE≌△BCF(SAS),继而证得△BEF是正三角形,继而可得当BE⊥AD,即E为AD的中点时,线段EF长最小.【解答】解:∵四边形ABCD是边长为2的菱形,∠ABC=120°,∴△ABD、△CBD都是边长为2的正三角形,∵AE+CF=2,∴CF=2﹣AE=AD﹣AE=DE,又∵BD=BC=2,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最小值为.故答案为:.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△BDE≌△BCF是解此题的关键.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是0<t<3或t=4 .(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为(,)或(﹣5,﹣32).【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)把函数化为顶点式y=a(x﹣h)2+k的形式,向下平移使抛物线与x轴只有一个交点,即把解析式中的k变成0即可.(2)取AC的中点M,过M作MN⊥AC交OC于N,连接AN则AN=,∠ACO=∠CAN,通过△M∽△OCA,求得的值,进而求得NO的值,从而得出tan∠NAO==;当P在BC的上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E,通过证明△BDE∽△CBO,进而求得tan∠BCP1=tan∠NAO=,从而确定D点的坐标,把D点代入直线CP1的解析式为y=k1x+3,求得P1点的坐标;当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1,延长DB交直线CP2于E,则点B是DE的中点,求得E点坐标,代入直线CP2的解析式为y=k2x+3,即可求得P2的坐标.【解答】解:(1)由题意,抛物线只能沿y轴向下平移,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴设平移后的抛物线的解析式为y=﹣(x﹣1)2+4﹣t(t>0),当原点O落在平移后的抛物线上时,把(0,0)代入得:0=﹣(0﹣1)2+4﹣t,解得t=3;当平移后的抛物线的顶点落在x轴上时,x=1,y=0即0=﹣(1﹣1)2+4﹣t,解得t=4,∵平移后的抛物线与线段OB有且只有一个交点∴0<t<3或t=4,故答案为:0<t<3或t=4;(2)当y=0时,﹣x2+2x+3=0,解得:x=﹣1或x=3,即A(﹣1,0)、B(3,0),取AC的中点M,过M作MN⊥AC交OC于N,连接AN,则AN=,∴∠ACO=∠CAN∵∠BCP=∠BAC﹣∠ACO,∴∠BCP=∠BAC﹣∠CAN=∠NAO∵∠ACO=∠NCM,∠AOC=∠CMN=90°,∴△M∽△OCA,∴=,∴====,∴NO=CO﹣=3﹣=,∴tan∠NAO==;当点P在BC上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E ∵∠OCB=∠DBE,∠BOC=∠BED=90°,∴△BDE∽△CBO,∴===tan∠BCP1=tan∠NAO=,∴BE=CO=4,DE=BO=4,OE=3+4=7∴D(7,4)设直线CP1的解析式为y=k1x+3,把(7,4)代入4=7k1+3,∴k1=,∴y=x+3令﹣x2+2x+3=x+3,解得x1=0(舍去),x2=∴P1(,),当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1延长DB交直线CP2于E,则点B是DE的中点∴解得,∴E(﹣1,﹣4)设直线CP2的解析式为y=k2x+3,把(﹣1,﹣4)代入﹣4=﹣k2+3,∴k2=7,∴y=7x+3令﹣x2+2x+3=7x+3,解得x1=0(舍去),x2=﹣5∴P2(﹣5,﹣32)综上所述,抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,P点坐标为(,)或(﹣5,﹣32),故答案为:(,)或(﹣5,﹣32).【点评】此题是二次函数的综合题,主要考查了相似三角形的判定和性质,对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.三、解答题(本大题有8小题,共66分)17.计算:|﹣2|﹣(1+)0+﹣cos30°.【考点】78:二次根式的加减法;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先分别计算绝对值、零次幂、二次根式和特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2﹣1+2﹣×,=2﹣1+2﹣,=.【点评】此题主要考查了实数的运算,关键是熟练掌握绝对值、零次幂、二次根式和特殊角的三角函数.18.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF= CD或AB .证明:【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB=CD,AB∥CD,又由E是AD的中点,易证得△AEF≌△DEC,继而证得结论.【解答】解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)【考点】T8:解直角三角形的应用.【分析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.【解答】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+≈37(cm).答:AB的长度为37cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有 3 名,D类男生有 1 名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数;(2)用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)根据题意得:3÷15%=20(名),答:李老师一共调查了20名同学;故答案为:20;(2)C类女生:20×25%﹣2=3(名),D类男生有20﹣3﹣10﹣5﹣1=1(人),如图所示;故答案为:3,1;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是=.【点评】此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.【考点】MC:切线的性质;MN:弧长的计算.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到=,解方程即可得到结论;(3)利用三角函数求得∠DCE的度数,根据△AEC∽△CED,求得∠A的度数,则∠DIB即可求得,然后在直角△ABD中求得BD,从而求得半径,然后利用弧长公式求解.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴=,∴EC2=DE•AE,∴(2)2=2(2+AD),∴AD=4.(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tanA=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.【点评】本题考查了切线的性质、相似三角形的判定与性质以及特殊角的三角函数值,正确证明△AEC∽△CED是关键.22.(10分)(2017•某某二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)分两种情形分别代入解方程即可.(2)分两种情形写出所获利润y(元)关于x(天)的函数关系式即可.(3)分两种情形根据函数的性质解决问题即可.【解答】解:(1)分两种情况①当1≤x≤20时,将m=25代入m=20+x,解得x=10②当21≤x≤30时,25=10+,解得x=28经检验x=28是方程的解∴x=28答:第10天或第28天时该商品为25元/件.(2)分两种情况①当1≤x≤20时,y=(m﹣10)n=(20+x﹣10)(50﹣x)=﹣x2+15x+500,②当21≤x≤30时,y=(10+﹣10)(50﹣x)=综上所述:(3)①当1≤x≤20时由y=﹣x2+15x+500=﹣(x﹣15)2+,∵a=﹣<0,∴当x=15时,y最大值=,②当21≤x≤30时由y=﹣420,可知y随x的增大而减小∴当x=21时,y最大值=﹣420=580元∵∴第15天时获得利润最大,最大利润为612.5元.【点评】本题考查二次函数的应用、反比例函数的性质等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.23.(10分)(2017•某某模拟)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB 上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【考点】SO:相似形综合题.【分析】(1)①先利用平行线分线段成比例定理得,,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+n2,而DE=AE=p,即可得出结论;【解答】解:(1)①∵DE∥BC,∴,由旋转知,∠EAC=∠DAB,∴△ABD∽△ACE,②在Rt△ABC中,AC=BC,∴AB=AC,由①知,△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,∵△ABD∽△ACE,∴=,∴AD=AE,BD=CE,∵BD=,∴CE=,在Rt△CDE中,CD=1,CE=,根据勾股定理得,DE=2,在Rt△ADE中,AD=AE,∴AD=DE=2,(2)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=k,∵AD=3,BD=2,∴AE=kAD=3k,CE=kBD=2k,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DC E=90°,在Rt△CDE中,DE2=CD2+CE2=1+4k2,在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,∴1+4k2=9﹣9k2,∴k=﹣(舍)或k=;(3)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=∵AD=p,BD=n,∴AE=AD=p,CE=BD=n,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,在Rt△CDE中,DE2=CD2+CE2=m2+n2,∵DE=AE=p,∴p2=m2+n2,∴9p2=25m2+9n2.【点评】此题是相似三角形综合题,主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,直角三角形的判定,解本题的关键是得出∠DCE=90°和利用两边对应成比例夹角相等来判断两三角形相似的方法应用,还用到类比的方法解决问题.24.(12分)(2017•某某模拟)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?【考点】FI:一次函数综合题.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,推出DM=EH=1,EM=FH=n﹣2,推出F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,即可解决问题;②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,即可解决问题;(3)分三种情形①如图3中,当AE′⊥AC时,②如图4中,当AE′⊥BC时,延长AE′交BC于G,③如图5中,当AE′⊥AB时,分别求解即可;【解答】解:(1)由题意A(﹣2,0),C(0,4),把D(m,2)代入y=2x+4解得m=﹣1,∴D(﹣1,2),∵OB=3OC,OC=4,∴OB=12,∴B(12,0),设直线BC的解析式为y=kx+b则有,解得,∴直线BC的解析式为y=﹣x+4.(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,∴DM=EH=1,EM=FH=n﹣2,∴F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,得到n﹣1=﹣(n﹣2)+4,∴n=.②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,∴n=1,综上所述,满足条件的n的值为或1.(3)①如图3中,当AE′⊥AC时,。
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN 所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B (3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活m的函数关系式.动二关于22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);。
2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.0 1.5 2.5 3.6?0 0 0 0A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP 与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时, =,即=,解得AP=4;当△ADP ∽△ACB 时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD 内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的,则cosA=.【考点】菱形的性质;解直角三角形.【分析】如图,连接AN 、CM ,延长BM 交AD 于H .AN 是菱形ABCD 的角平分线,同理CM 也是菱形ABCD 的角平分线,设BD 与AC 交于点O ,易知四边形BMDN 是菱形,设S △OMB =S △ONB =S △OMD =S △OND =a ,因为四边形BMDN 的面积是菱形ABCD 面积的,所以S △AMB =S △AMD =S △CNB =S △CND =4a ,推出AM=4OM ,CN=4ON ,设ON=OM=k ,则AM=CN=4k ,由△ABO ∽△BNO ,推出OB 2=OA •ON=5k 2,推出OB=k ,AB=AD==k ,由AD •BH=•BD •AO ,推出BH==,再利用勾股定理求出AH 即可解决问题.【解答】解:如图,连接AN 、CM ,延长BM 交AD 于H .∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=x sin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC 是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH ⊥AB 于H ,Rt △ACH 中,求得CH 和AH 的长,在Rt △CDH 中,根据勾股定理得出:CD 2=x 2﹣x+9,再判定△BDC ∽△CDE ,得出CD 2=DE •DB ,即x 2﹣x+9=(5﹣x ﹣y )(5﹣x ),最后求得y 关于x 的函数解析式,并写出定义域.【解答】(1)在△ABC 中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD ⊥AB 时,△ACD 为直角三角形,∴CD=AC •sinA=,∴AD==, 又∵∠DCE=∠ABC ,∴在Rt △CDE 中,DE=CD •tan ∠DCE=×=,∴BE=AB ﹣AD ﹣DE=5﹣﹣=;(2)当△CDE 时等腰三角形时,可知∠CDE >∠A >∠B=∠DCE ,∠CED >∠B=∠DCE ,∴唯有∠CED=∠CDE ,又∵∠B=∠DCE ,∠CDE=∠BDC ,∴∠BCD=∠CED=∠CDE=∠BDC ,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH ⊥AB 于H ,∵×BC ×AC=AB ×CH ,∴CH=,∴Rt △ACH 中,AH==,∴在Rt △CDH 中,CD 2=CH 2+DH 2=()2+(﹣x )2=x 2﹣x+9, 又∵∠CDE=∠BDC ,∠DCE=∠B ,∴△BDC ∽△CDE ,∴CD 2=DE •DB ,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2017年广东省中考数学模拟试卷(一)及答案1.﹣3的相反数是()A.13B.-13C.3D.﹣32.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.州3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108B.[1.309\times {{10}^{10}}\).C.1.309×109D.1309×1064.如图所示,几何体的主视图是()A.B.C.D.图象的每条曲线上y都随x增大而增大,则k的取值范围是5.反比例函数y=1−kx()图象的每条曲线上y都随x增大而增大,则k的取值范围是(1)反比例函数y=1−kx()A.k>1B.k>0C.k<1D.k<06.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°8.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.129.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.72048+x −72048=5B.72048+5=72048+xC.72048−720x=5D.72048−72048+x=510.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(√22)2013B.(√22)2014C.(12)2013D.(12)201411.分解因式:x y2−x=_ _.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是_ _.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是_ _元.14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为_ _.15.若关于x 的方程x 2+2x +m −5=0有两个相等的实数根,则m =_ _.16.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_ _.17.计算:2cos45∘+(√2−1)0−(12)−1.18.化简,再求值:(a −2ab−b 2a )÷a−b a,其中a =2,b =﹣3. 19.如图,点C 、E 、B 、F 在同一直线上,AB ∥DE ,AC ∥DF ,AC =DF ,判断CE 与FB 的数量关系,证明你的结论.20.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共_ _吨;,每回收1吨塑料类垃圾可获得0.7吨二(3)调查发现,在可回收物中塑料类垃圾占15级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.√3(取1.732)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;的解集;(2)根据所给条件,请直接写出不等式k1x+b>k2x图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(−2,y2)是函数y=k2x24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.25.如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?个平方单位?若存在,求出相应的x (3)是否存在某个时刻x,使△OPQ的面积为3√34值;若不存在,请说明理由.1.【能力值】无【知识点】(1)相反数【详解】(1)【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.【答案】(1)C2.【能力值】无【知识点】(1)正方体相对两个面上的文字【详解】(1)【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“州”是相对面,“美”与“广”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【答案】(1)D3.【能力值】无【知识点】(1)正指数科学记数法【详解】(1)【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C4.【能力值】无【知识点】(1)由立体图形到视图【详解】(1)【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【答案】(1)B5.【能力值】无【知识点】(1)反比例函数的应用【详解】(1)【考点】反比例函数的性质来说,当k<0时,每一条曲线上,y随x的增大而增大;当k 【分析】对于函数y=kx>0时,每一条曲线上,y随x的增大而减小.的图象上的每一条曲线上,y随x的增大而增大,【解答】解:∵反比例函数y=1−kx∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运中k的意义不理解,直接认为k<0,造成错误.用.易错易混点:学生对解析式y=kx【答案】(1)A6.【能力值】无【知识点】(1)众数、中位数【详解】(1)【考点】统计量的选择【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.【答案】(1)D7.【能力值】无【知识点】(1)圆周角定理及其推理【详解】(1)【考点】圆周角定理【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC 的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∠BOC=48°.∴∠A=12故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.【答案】(1)B8.【能力值】无【知识点】(1)平行四边形及其性质、相似三角形的性质【详解】(1)【考点】平行四边形的性质;相似三角形的判定与性质【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得DEDA =EFAB,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴DEDA =EFAB,∵EF=3,∴37=3AB,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.【答案】(1)B9.【能力值】无【知识点】(1)分式方程的应用【详解】(1)【考点】由实际问题抽象出分式方程【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048+x,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048+x , 可以列出方程:72048−72048+x =5.故选:D .【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.【答案】(1)D10.【能力值】无【知识点】(1)等腰直角三角形【详解】(1)【考点】等腰直角三角形【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn 的值,根据面积的变化即可找出变化规律“S n =4×(12)n−1”,依此规律即可解决问题.【解答】解:观察,发现:S 1=22=4,S 2=(2×√22)2=2,S 3=(√2×√22)2=1,S 4=(1×√22)2=12,…,∴S n =[2×(√22)n−1]2=4×(12)n−1,∴S 2016=4×(12)2016−1=(12)2013.故选:C .【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“S n =4×(12)n−1”是解题的关键.【答案】(1)C11.【能力值】无【知识点】(1)因式分解法【详解】(1)【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)解:x y2−x,=x(y2−1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.【能力值】无【知识点】(1)三角形的内角和【详解】(1)【考点】三角形内角和定理【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.【答案】(1)解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.【能力值】无【知识点】(1)解常规一元一次方程【详解】(1)【考点】一元一次方程的应用【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.【答案】(1)解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.【能力值】无【知识点】(1)公式求概率【详解】(1)【考点】概率公式【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.【答案】(1)解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:510=12.故答案为:12.15.【能力值】无【知识点】(1)一元二次方程的根【详解】(1)【考点】根的判别式【分析】根据已知条件“关于x的方程x2+2x+m−5=0有两个相等的实数根”知,根的判别△=b2−4ac=0式,然后列出关于m的方程,解方程即可.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2﹣4ac:①△>0⇒方程有两个不等实数根;②△=0⇒方程有两个相等实数根;③△<0⇒方程没有实数根.【答案】(1)解:∵关于x 的方程x 2+2x +m −5=0有两个相等的实数根, ∴△=4﹣4(m ﹣5)=0,解得,m =6;故答案为:6.16.【能力值】无【知识点】(1)扇形面积的计算、旋转变换、菱形的性质【详解】(1)【考点】菱形的性质;扇形面积的计算;旋转的性质【分析】连接OB 、OB ′,阴影部分的面积等于扇形BOB ′的面积减去两个△OCB 的面积和扇形OCA ′的面积.根据旋转角的度数可知:∠BOB ′=90°,已知了∠A =120°,那么∠BOC =∠A ′OB ′=30°,可求得扇形A ′OC 的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB 、OB ′,过点A 作AN ⊥BO 于点N ,菱形OABC 中,∠A =120°,OA =1,∴∠AOC =60°,∠COA ′=30°,∴AN =12,∴NO =√12−(12)2=√32, ∴BO =√3,∴S △CBO =S △C ′B ′O =12×12AO.2CO.sin60∘=√34, S 扇形OCA ′=30π×1360=π12, S 扇形OBB =90π×(√3)2360=3π4; ∴阴影部分的面积=3π4﹣(2×√34+π12)=2π3−√32. 故答案为:2π3−√32.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.【答案】(1)2π3−√3217.【能力值】无【知识点】(1)实数、锐角三角函数的性质、负指数幂运算、零指数幂运算【详解】(1)【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】根据45°角的余弦等于√22,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.【答案】(1)解:2cos45∘+(√2−1)0−(1)−1=2×√22+1﹣2=√2﹣1.18.【能力值】无【知识点】(1)分式的混合运算【详解】(1)【考点】分式的化简求值【分析】首先化简(a−2ab−b2a )÷a−ba,然后把a=2,b=﹣3代入化简后的算式,求出算式的值是多少即可.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.【答案】(1)解:(a−2ab−b2a )÷a−ba=(a−b)2a ÷a−ba=a﹣b当a=2,b=﹣3时,原式=2﹣(﹣3)=5.19.【能力值】无【知识点】(1)全等形的概念及性质【详解】(1)【考点】全等三角形的判定与性质【分析】根据两直线平行,内错角相等可得∠ABC=∠DEF,∠C=∠F,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得BC=EF,然后都减去BE 即可得证.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于利用平行线的性质求出三角形全等的条件.【答案】(1)答:CE=FB.证明如下:∵AB∥DE,∴∠ABC=∠DEF,∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,{∠ABC=∠DEF∠C=∠FAC=DF,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣BE=EF﹣BE,即CE=FB.20.【能力值】无【知识点】(1)扇形统计图、条形统计图(2)扇形统计图、条形统计图(3)扇形统计图、条形统计图【详解】(1)【考点】扇形统计图;条形统计图【分析】根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(2)【考点】扇形统计图;条形统计图【分析】求得C组所占的百分比,即可求得C组的垃圾总量;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(3)【考点】扇形统计图;条形统计图【分析】首先求得可回收垃圾量,然后求得塑料颗粒料即可;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【答案】(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.21.【能力值】无【知识点】(1)解直角三角形的实际应用【详解】(1)【考点】解直角三角形的应用﹣方向角问题【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【答案】(1)解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×√3≈108.25(米)>100米.2答:消防车不需要改道行驶.22.【能力值】无【知识点】(1)全等三角形的性质(D )(2)全等三角形的性质(D )【详解】(1)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】由AD ∥BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE ≌△BFE ;【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.(2)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】在Rt △BCD 中,CD =2,∠ADB =∠DBC =30°,知BC =2√,在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =BC ﹣EC =4√33. 【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.【答案】(1)∵AD ∥BC ,∴∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,∠F =∠A =∠C =90°,∴∠DBC =∠BDF ,∴BE =DE ,在△DCE和△BFE中,{∠BEF=∠DEC∠C=∠FBE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2√3,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE=BC﹣EC=4√33.23.【能力值】无【知识点】(1)一次函数的应用(2)一次函数的应用(3)一次函数的应用【详解】(1)【考点】反比例函数与一次函数的交点问题【分析】把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(2)【考点】反比例函数与一次函数的交点问题【分析】根据A、B的横坐标,结合图象即可得出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(3)【考点】反比例函数与一次函数的交点问题【分析】分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.【答案】(1)得:k2=2m=﹣2n,把A(2,m),B(n,﹣2)代入y=k2x即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC =12.BC.BD∴12×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=k2x得:k2=6,即反比例函数的解析式是y=6x;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>k2x的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.24.【能力值】无【知识点】(1)等边三角形的性质、切线的判定、解直角三角形(2)等边三角形的性质、切线的判定、解直角三角形(3)等边三角形的性质、切线的判定、解直角三角形【详解】(1)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(2)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(3)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=12BD=3,DH=√3BH=√33.解Rt△AFG,得AG=12AF=92,则GH=AB﹣AG﹣BH=92,于是根据正切函数的定义得到tan∠GDH=GHDH =√32,则tan∠FGD可求.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.【答案】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6.在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×√32=9√32; (3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH .在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =√3BH =3√3.在Rt △AFG 中,∵∠AFG =30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan∠GDH=GHDH =923√3=√32,∴tan∠FGD=tan∠GDH=√32.25.【能力值】无【知识点】(1)解直角三角形(2)解直角三角形(3)解直角三角形【详解】(1)【考点】三角形综合题【分析】过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(2)【考点】三角形综合题【分析】由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(3)【考点】三角形综合题【分析】存在某个时刻x的值,使△OPQ的面积为3√34个平方单位,由(2)可知把y=3√34代入求出对应的x值即可.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.【答案】(1)过点Q 作QD ⊥OA 于点D ,如图所示:∵△ABO 是等边三角形,∴∠AOB =60°,∵动点Q 从B 点出发,速度为每秒1个单位长度,∴BQ =x ,∴OQ =4﹣x ,在Rt △QOD 中,OD =OQ •cos60°=(4﹣x )×12=2﹣12x ,QD =OQ •sin60°=(4﹣x )×√32=2√3﹣√32x ,∴点Q 的坐标为(2﹣12x ,2√﹣√32x );(2)∵动点P 从O 点出发,速度为每秒1个单位长度,∴OP =x ,∴S =12OP •QD =12x (2√﹣√32x )=-√34x 2+x ,=−√34(x −2)2+√3(0<x <4),∵a =﹣√34<0,∴当x =2时,S 有最大值,最大值为√3;(3)存在某个时刻x 的值,使△OPQ 的面积为3√34个平方单位,理由如下:,假设存在某个时刻,使△OPQ 的面积为3√34个平方单位,由(2)可知)=−√34x 2+√3x =3√34,解得x =1或x =3,∵0<x<4,∴x=1或x=3都成了,个平方单位.即当x=1s或3s时,能使△OPQ的面积为3√34。
2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n,B n,等腰△A n B n﹣1B n为第n个三角﹣1形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC ﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日21。
2017年黑龙江省哈尔滨四十七中中考数学模拟试卷(5月份)一、选择题(共10小题,每小题3分,满分30分)1.在﹣4、﹣2、0、1、3、4这六个数中,正数有(A.1个B.2个C.3个D.42.在下列运算中,正确的是()A.a6÷a6=0B.(ab4)4=a4b16C.3﹣1=﹣3D.=±33.下面所给的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.若反比例函数y=﹣的图象经过第二象限的点(a,﹣a),则a的值为(A.2或﹣2B.﹣2C.2D.45.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,则cos A的值为()A.B.C.D.37.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F,连接CD,交EF于点K.则下列说法不正确的是()A.B.C.D.8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.如图,在▱ABCD中,∠BCD的平分线CN交▱ABCD的边AD于点N,BF⊥CN,交CN于点F,交CD的延长线交于点E,连接BN,NE.若BN=6,BC=8,则△DNE的周长为()A.14B.11C.9D.1210.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=﹣96x+384;④甲车到达B市时乙车已返回A市2.5小时.其中正确的个数是()A.1个B.2个C.3个D.4二、填空题(每空3分,共30分)11.将4717000用科学记数法表示为12.函数的自变量的取值范围是.13.计算﹣3=.14.把多项式4x3﹣9xy2分解因式的结果是.15.不等式组的解集是.16.二次函数y=﹣2(x﹣3)2﹣1的最大值为.17.半径为6的扇形的面积为15π,则该扇形的周长为.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.19.在⊙O中,AB为直径,AB=10,点M、N均在⊙O上,MN⊥AB,将⊙O沿MN翻折,翻折后点D与点B对应,当AD=2时,MD的长为.20.如图,点O是四边形ABCD内的一点,OB=OC=OD,OD⊥AD,当∠BCD=∠BAD=75°时,AB:OD的值为.三、解答题21.(7分)先化简,再求代数式÷﹣的值,其中x=4cos60°﹣2sin45°.22.(7分)图①、图②是两张完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C在小正方形的顶点上,请在图①、图②中各画一个四边形,满足以下要求:(1)在图①中以AB、BC为边画四边形ABCD,点D在小正方形顶点上,使四边形中有一个内角的正切值为2,且该四边形为非轴对称图形;(2)在图②中以AB、BC为边画四边形ABCE,点E在小正方形的顶点上,使四边形中有一个内角的正切值为3,且该四边形为轴对称图形.23.(8分)某奶品生产企业,2013年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2013年酸牛奶的生产量比2012年增长20%,按照这样的增长速度,请你估算2014年酸牛奶的生产量是多少万吨?24.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G,∠G=90°.(1)求证:四边形BEDF是菱形;(2)当CD=CG时,请直接写出图中所有与∠C互补的角.25.哈市地铁3号线是哈市唯一一条环线,3号线共分两期建设,一期工程已于2017年1月26日载客试运行,二期工程正在建设中,甲、乙两工程队提交了建设投标方案,若独立完成该项目,甲队所用的时间是乙队所用时间的1.5倍,若两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成该建筑工程各需多少天?(2)在施工过程中,该公司派一名技术人员到现场全程监督,每天补助100元,若由甲队单独施工,平均每天的费用为0.8万元,为了保障工程质量、缩短工期,该工程选择由乙程队完成,但要求施工的总费用不能超过甲工程队,求乙工程队平均每天施工费用最多是多少万元?26.如图1,△ABC内接于圆O,点D为弧BC上一点,连接AD交BC于点E,∠ACD﹣∠B=2∠BAD.(1)求证:AE=AC;(2)如图2,连接CO并延长交圆O于点F,连接AF,∠DAF=2∠BCD,求证:AF=AE;(3)如图3,在(2)条件下,过点F作FH∥BC交AB于点H,连接CH,过点A作AK∥BF交CH于点K,当AK=EC,AB=3时,求线段AD的长度.27.如图,已知:抛物线y=a(x+2)(x﹣5)交x轴于A、B两点,交y轴于C,且OB=OC.(1)求a的值;(2)点D为抛物线上第一象限上一点,过B作BP⊥x轴于B,交直线AD于P,若AE=2DP,求点D的坐标;(3)在(2)的条件下,R为AD上方抛物线上一点,RM⊥AD于H,交抛物线于另一点M,连接AR,若∠ARM=2∠DAB,∠RAD的平分线交抛物线于N,交y轴于G,求∠GMN的正切值.2017年黑龙江省哈尔滨四十七中中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在﹣4、﹣2、0、1、3、4这六个数中,正数有(A.1个B.2个C.3个D.4【分析】根据正数的定义,可得答案.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.【点评】本题考查了正数和负数,利用整数的定义是解题关键.2.在下列运算中,正确的是()A.a6÷a6=0B.(ab4)4=a4b16C.3﹣1=﹣3D.=±3【分析】根据同底数幂的除法、积的乘方、负整数指数幂和二次根式判断即可.【解答】解:A、a6÷a6=1,错误;B、(ab4)4=a4b16,正确;C、3﹣1=,错误;D、,错误;故选:B.【点评】此题考查同底数幂的除法、积的乘方、负整数指数幂和二次根式,关键是根据法则进行计算.3.下面所给的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.若反比例函数y=﹣的图象经过第二象限的点(a,﹣a),则a的值为(A.2或﹣2B.﹣2C.2D.4【分析】将点(a,﹣a)代入反比例函数y=﹣,然后解关于a的一元二次方程即可.【解答】解:∵反比例函数y=﹣的图象经过点(a,﹣a),∴﹣a=﹣,即a2=4,解得,a=±2.∵a<0,∴a=﹣2,故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征.若一个点在这个函数的图象上,则这个点的坐标必然满足该函数解析式,5.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,则cos A的值为()A.B.C.D.3【分析】首先根据勾股定理求得AB的长,然后根据余弦函数的定义即可求解.【解答】解:在直角△ABC中,AB===2,则cos A===.故选:B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F,连接CD,交EF于点K.则下列说法不正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵DE∥BC,∴,,∵EF∥AB,∴,,∴,故选:A.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.9.如图,在▱ABCD中,∠BCD的平分线CN交▱ABCD的边AD于点N,BF⊥CN,交CN于点F,交CD的延长线交于点E,连接BN,NE.若BN=6,BC=8,则△DNE的周长为()A.14B.11C.9D.12【分析】首先根据CN为∠BCE的平分线可证出ND=DC,再证明BC=CE,进而可得DN+DE =EC=8,然后再证明BN=NE可得△DNE的周长.【解答】解:∵BF⊥CN,∴∠EFC=∠BFC=90°,∵∠BCD的平分线CN交▱ABCD的边AD于点N,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠3,∴∠2=∠3,∴DN=DC,在△CFE和△BCF中,,∴△CFE≌△CFB(ASA),∴BF=EF,BC=CE=8,∴ND+ED=CD+ED=8,∵BF⊥CN,∴CN是BE的垂直平分线,∴BN=NE=6,∴△DNE的周长为:8+6=14,故选:A.【点评】此题主要考查了平行四边形的性质,关键是平行四边形对边平行,CN为∠BCE的平分线可证出ND=DC.10.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=﹣96x+384;④甲车到达B市时乙车已返回A市2.5小时.其中正确的个数是()A.1个B.2个C.3个D.4【分析】①根据速度=路程÷时间×倍数,即可求出甲车提速后的速度,①正确;②根据速度=路程÷时间,即可求出乙车的速度,②正确;③根据修车时间可求出点C的坐标,根据C点及(4,0)利用待定系数法,即可求出乙车返回时y与x的函数关系式,③正确;④先求出甲车到达B市的时间,用其减4即可得出甲车到达B市时乙车已返回A市时间,④错误.综上即可得出结论.【解答】解:①甲车提速后的速度为:80÷2×1.5=60(千米/时),故①正确;②乙车的速度为80×2÷(4﹣2﹣)=96(千米/时),故②正确;③∵修车用了20分钟,∴点C的横坐标为4﹣(4﹣2﹣)÷2=,∴点C的坐标为(,80).设乙车返回时y与x的函数关系式为y=kx+b,将点(,80)、(4,0)代入y=kx+b,,解得:,∴乙车返回时y与x的函数关系式为y=﹣96x+384,故③正确;④甲车到达B市的时间为+(260﹣80)÷60=(小时),∵﹣4=(小时),∴甲车到达B市时乙车已返回A市小时,故④错误.综上所述:正确的结论有①②③.故选:C.【点评】本题考查了一次函数的应用以及待定系数法求一次函数解析式,结合函数图象,逐一分析四条结论的正误是解题的关键.二、填空题(每空3分,共30分)11.将4717000用科学记数法表示为 4.717×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4717000用科学记数法表示为:4.717×106.故答案为:4.717×106.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数的自变量的取值范围是x≥1且x≠2.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为x≥1且x≠2.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算﹣3=.【分析】原式各项化为最简二次根式,合并即可得到结果.【解答】解:原式=2﹣3×=2﹣=.故答案为:.【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.把多项式4x3﹣9xy2分解因式的结果是x(2x﹣3y)(2x+3y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(4x2﹣9y2)=x(2x+3y)(2x﹣3y).故答案为:x(2x+3y)(2x﹣3y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.不等式组的解集是﹣2<x<2.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.【解答】解:,由①得:x<2;由②得:x>﹣2,则不等式组的解集为﹣2<x<2.故答案为:﹣2<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.16.二次函数y=﹣2(x﹣3)2﹣1的最大值为﹣1.【分析】所给形式是二次函数的顶点式,易知其顶点坐标是(3,﹣1),也就是当x=3时,函数有最大值﹣1.【解答】解:∵y=﹣2(x﹣3)2﹣1,∴此函数的顶点坐标是(3,﹣1),即当x=3时,函数有最大值﹣1.故答案为﹣1.【点评】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.17.半径为6的扇形的面积为15π,则该扇形的周长为5π+12.【分析】根据扇形面积公式求出扇形的弧长,根据扇形周长公式计算即可.【解答】解:扇形的弧长=2×15π÷6=5π,则该扇形的周长=5π+12,故答案为:5π+12.【点评】本题考查的是扇形的面积、弧长的计算,掌握扇形面积公式S=rl是解题的关键.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=4.【分析】根据黄球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:=,解得n=4.故答案为4.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.19.在⊙O中,AB为直径,AB=10,点M、N均在⊙O上,MN⊥AB,将⊙O沿MN翻折,翻折后点D与点B对应,当AD=2时,MD的长为2或2.【分析】连接OM,根据垂径定理PM=PN,由折叠的性质得出DB=8或12,进而求得OP=1,由勾股定理求得PM,然后根据勾股定理即可求得MD的长.【解答】解:连接OM,∵AB为直径,MN⊥AB,∴PM=PN,∵AB=10,AD=2,∴DB=8或12,∴PD=PB=4或6,DO=3或7,∴OP=1,∴PM==2,∴DM===2,或DM===2.故答案为2或2.【点评】本题考查了垂径定理,对称的性质,以及勾股定理的应用,作出辅助线求得PM的长是解题的关键.20.如图,点O是四边形ABCD内的一点,OB=OC=OD,OD⊥AD,当∠BCD=∠BAD=75°时,AB:OD的值为.【分析】如图:连接BD.作△BDC的外接圆,首先证明BD=BA,作BK⊥DO交DO的延长线于点K.设BK=m,求出OD,BD(用m表示),即可解决问题.【解答】解:如图:连接BD.作△BDC的外接圆,∵OD=OB=OC,∴点O是△BDC的外接圆的圆心,∴∠DOB=2∠DCB=150°,∵OD=OB,∴∠ODB=∠OBD=15°,∵OD⊥AD,∴∠ADO=90°,∴∠ADB=75°,∵∠A=75°,∴∠A=∠ADB,∴BA=BD,作BK⊥DO交DO的延长线于点K.设BK=m,∵∠BOK=180°﹣∠DOB=30°,∴OB=2BK=2m,OK=m,在Rt △DBK 中,BD ===(+)m ,∴===.故答案为. 【点评】本题考查圆的有关知识,解直角三角形,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考填空题中的压轴题.三、解答题21.(7分)先化简,再求代数式÷﹣的值,其中x =4cos60°﹣2sin45°.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入即可解答本题.【解答】解:÷﹣===,当x =4cos60°﹣2sin45°=4×=时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.22.(7分)图①、图②是两张完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 、C 在小正方形的顶点上,请在图①、图②中各画一个四边形,满足以下要求:(1)在图①中以AB 、BC 为边画四边形ABCD ,点D 在小正方形顶点上,使四边形中有一个内角的正切值为2,且该四边形为非轴对称图形;(2)在图②中以AB 、BC 为边画四边形ABCE ,点E 在小正方形的顶点上,使四边形中有一个内角的正切值为3,且该四边形为轴对称图形.【分析】(1)保证AC=2AD,画出点D;(2)先构建轴对称图形,再满足tan∠BAE=3,画出图形.【解答】解:(1)如图①所示,tan∠D==2;(2)如图②所示,连接BD交AE于F,∴∠AFB=∠AFD=180°﹣45°﹣45°=90°,AF==,BD==2,∴BF=×=,∴tan∠BAE===3,且由图形可知:四边形ABCE是轴对称图形.【点评】此题主要考查了勾股定理、三角函数以及应用设计与作图,根据题意利用网格画出符合题意的图形是解题关键.23.(8分)某奶品生产企业,2013年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2013年酸牛奶的生产量比2012年增长20%,按照这样的增长速度,请你估算2014年酸牛奶的生产量是多少万吨?【分析】(1)根据纯牛奶有120万吨,占50百分,即可求得总数,然后利用总数减去其它类型的数量,即可求得酸牛奶的数量,利用360°乘以酸牛奶对应的比例即可求得对应的圆心角;(2)根据增长率的意义即可求解.【解答】解:(1)﹣120﹣40=80(万吨),答:酸牛奶生产了80万吨;补全条形统计图如图所示,酸牛奶在图2中所对应的圆心角是360°×=120°;(2)80×(1+20%)=96(万吨).答:估算2014年酸牛奶的生产量是96万吨.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G,∠G=90°.(1)求证:四边形BEDF是菱形;(2)当CD=CG时,请直接写出图中所有与∠C互补的角.【分析】(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,再证明DE=BE,根据邻边相等的平行四边形是菱形,从而得出结论.(2)先得到△BCF是等边三角形,即可得到图中所有与∠C互补的角.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD,∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,∵在Rt△ADB中,E为AB的中点,∴AE=BE=DE,∴四边形DEBF是菱形.(2)由(1)可得,AD=BC,AD=BG,∴CB=BG,即B是CG的中点,又∵F是CD的中点,∴当CD=CG时,CF=CB,又∵Rt△BCD中,CF=BF,∴△BCF是等边三角形,∴∠C=60°,∠FBG=120°,∴∠ADC=∠ABC=120°,∠DFB=60°+60°=120°,∴∠DEB=120°,∴图中所有与∠C互补的角为∠ADC、∠ABC、∠DFB、∠DEB、∠FBG.【点评】本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质,解题时注意:在直角三角形中斜边中线等于斜边一半,正确得出ED=BE是解题关键.25.哈市地铁3号线是哈市唯一一条环线,3号线共分两期建设,一期工程已于2017年1月26日载客试运行,二期工程正在建设中,甲、乙两工程队提交了建设投标方案,若独立完成该项目,甲队所用的时间是乙队所用时间的1.5倍,若两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成该建筑工程各需多少天?(2)在施工过程中,该公司派一名技术人员到现场全程监督,每天补助100元,若由甲队单独施工,平均每天的费用为0.8万元,为了保障工程质量、缩短工期,该工程选择由乙程队完成,但要求施工的总费用不能超过甲工程队,求乙工程队平均每天施工费用最多是多少万元?【分析】(1)设乙队完成该工程需要x天,甲队完成该工程需要1.5x天,根据两队合作完成该项目,则共需72天,列方程求解;(2)先求出甲工程队完成任务需要的花费,然后令乙工程队的花费小于等于甲工程队的花费,列不等式求解.【解答】解:(1)设乙队完成该工程需要x天,甲队完成该工程需要1.5x天,由题意得,()×72=1,解得:x=120,则1.5x=120×1.5=180(天),答:乙队完成该工程需要120天,甲队完成该工程需要180天;(2)甲工程队完成任务需要的花费为:(100+8000)×180=1458000(元),设乙工程队平均每天施工费用为y万元,由题意得,(100+10000y)×120≤1458000,解得:y≤1.205.答:乙工程队平均每天施工费用最多为1.205万元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.如图1,△ABC内接于圆O,点D为弧BC上一点,连接AD交BC于点E,∠ACD﹣∠B=2∠BAD.(1)求证:AE=AC;(2)如图2,连接CO并延长交圆O于点F,连接AF,∠DAF=2∠BCD,求证:AF=AE;(3)如图3,在(2)条件下,过点F作FH∥BC交AB于点H,连接CH,过点A作AK∥BF交CH于点K,当AK=EC,AB=3时,求线段AD的长度.【分析】(1)根据同弧所对的圆周角相等得:∠BAD=∠BCD,∠B=∠D,再将已知∠ACD﹣∠B=2∠BAD进行变形得:∠ACE=∠AEC,由等角对等边可得:AE=AC;(2)设∠BAD=α,则∠DAF=2α,根据已知∠DAF=2∠BCD,证明∠ACF=∠F=β,则AC=AF,由(1)中的AC=AE,可得结论AE=AF;(3)如图3中,连接HE,延长AK交BC于N,延长FH交AN于T,作AM⊥BF于M.利用三角形全等,证明四边形BFHE是正方形,推出△ANB,△AHT,△HTK,△CNK是等腰直角三角形,再利用相似三角形的性质求出DE即可解决问题;【解答】证明:(1)如图1中,∵∠BAD=∠BCD,∠B=∠D,又∵∠ACD﹣∠B=2∠BAD,∴∠ACD﹣∠BAD=∠B+∠BAD,∴∠ACD﹣∠BCD=∠D+∠BCD,即∠ACE=∠AEC,∴AE=AC;(2)如图2中,∵∠BAD=∠BCD,∠DAF=2∠BCD,∴∠DAF=2∠BAD,∴设∠BAD=α,则∠DAF=2α,∴∠FAB=∠DAF﹣∠BAD=2α﹣α=α,∵∠FCB=∠FAB=α,∠BCD=α,∵,∴设∠F=∠B=∠D=β,∴∠AEC=∠B+∠BAD=α+β,∵∠ACE=∠AEC,∴∠ACE=α+β,∴∠ACF=∠ACE﹣∠BCF=β+α﹣α=β,∴∠ACF=∠F,∴AC=AF,∵AC=AE,∴AE=AF;(3)如图3中,连接HE,延长AK交BC于N,延长FH交AN于T,作AM⊥BF于M.∵CF是直径,∴∠FBC=∠FAC=90°,∵AF=AC,∴∠AFC=∠ACF=45°,∴∠ABF=∠ACF,∠ABC=∠AFC,∴∠ABF=∠ABC,∵AM⊥BM,AN⊥BC,∴AM=AN,∵AF=AE,∴△AMF≌△ANE,∴∠MAF=∠EAN,∵AB=AB,∴△ABM≌△ABN,∴∠BAM=∠BAN,∴∠BAF=∠BAE,∵AB=AB,AF=AE,∴△ABF≌△ABE,∴BE=BF,∵FH∥BE,∴四边形BFHE是平行四边形,∵∠FBE=90°,BF=BE,∴四边形BFHE是正方形,∴HE⊥BE,四边形HTNE是矩形,∴HT=EN,∵∠AHT=∠BHF=45°,∴AT=HT,∴AE=AC,AN∥BF,BF⊥BC,∴AN⊥EC,∴EN=NC=AT=TH,∵AK=EC,∴TK=AT=HT,∴△HTK,△KNC第三等腰直角三角形,∴AT=TK=KN,∵AB=3,∴BN=AN=3,EN=CN=AT=TK=KN=1,BE=EC=2,在Rt△AEN中,AE==,∵△AEB∽△CED,∴AE•DE=BE•EC,∴•DE=4,∴DE=,∴AD=AE+DE=.【点评】本题考查圆综合题、圆周角定理、等腰三角形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题.27.如图,已知:抛物线y=a(x+2)(x﹣5)交x轴于A、B两点,交y轴于C,且OB=OC.(1)求a的值;(2)点D为抛物线上第一象限上一点,过B作BP⊥x轴于B,交直线AD于P,若AE=2DP,求点D的坐标;(3)在(2)的条件下,R为AD上方抛物线上一点,RM⊥AD于H,交抛物线于另一点M,连接AR,若∠ARM=2∠DAB,∠RAD的平分线交抛物线于N,交y轴于G,求∠GMN的正切值.【分析】(1)利用待定系数法求出A、B、C的坐标即可解决问题;(2)如图2中,作DK⊥PB于K.由△AOE∽△DKP,推出==2,由OA=2,可得DK =1,推出点D的横坐标为4,由此即可解决问题;(3)如图3中,作RF⊥AB于F,RF交AP于T,首先证明△AEO∽△RAF,可得==2,设F(m,0),则RF=2(m+2)=2m+4,把R(m,2m+4),代入y=﹣(x+2)(x﹣5),得到m=1或﹣2(舍弃),推出R(1,6),设AR交OC于Q,由直线AR的解析式为y=2x+4,可得Q(0,4),推出AQ=2,AE=,由AG平分∠QAE,可得OA:AQ=EG:EQ=1:2,由EQ=3,推出EG=1,GQ=2,可得G(0,2),再求出M、N的坐标,证明△MNG的Rt△即可解决问题;【解答】解:(1)对于抛物线y=a(x+2)(x﹣5),令y=0,得到a(x+2)(x﹣5)=0,解得x=﹣2或5,∴A(﹣2,0),B(5,0),∵OB=OC,OB=5,∴OC=5,∴C(0,5),把(0,5)代入抛物线y=a(x+2)(x﹣5)得到a=﹣,∴a=﹣.(2)如图2中,作DK⊥PB于K.∵PB⊥AB,∴DK∥AB,∴∠PDK=∠PAB,∵∠AOE=∠DKP=90°,∴△AOE∽△DKP,∴==2,∵OA=2,∴DK=1,∴点D的横坐标为4,把x=4代入y=﹣(x+2)(x﹣5)中,得到y=3,∴D(4,3).(3)如图3中,作RF⊥AB于F,RF交AP于T,∵RM⊥AP于H,∴∠ATF=∠RHT=90°,∵∠ATF=∠RTH,∴∠TAF=∠TRH,∵∠ARM=2∠DAB,∴∠ARF=∠TAF,∵A(﹣2,0),D(4,3),∴直线AD的解析式为y=x+1,∴E(0,1),易知△AEO∽△RAF,∴==2,设F(m,0),则RF=2(m+2)=2m+4,∴R(m,2m+4),代入y=﹣(x+2)(x﹣5),得到m=1或﹣2(舍弃),∴R(1,6),设AR交OC于Q,∵直线AR的解析式为y=2x+4,∴Q(0,4),∴AQ=2,AE=,∵AG平分∠QAE,∴OA:AQ=EG:EQ=1:2,∵EQ=3,∴EG=1,GQ=2,∴G(0,2),∴直线AN的解析式为y=x+2,由,解得或,∴N(3,5),∵RM⊥AD,∴直线RM的解析式y=﹣2x+8,由,解得或,∴M(6,﹣4),∴NG2=18,GM2=72,MN2=90,∴MN2=QM2+NG2,∴∠MGN=90°,∴tan∠GMN===.【点评】本题考查二次函数综合题、一次函数的应用、角平分线的性质定理、勾股定理以及勾股定理的逆定理等知识,解题的关键是灵活运用待定系数法解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.。
2017年山东省济南市市中区中考数学一模试卷一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.22.数字3300用科学记数法表示为()A.0.33×104B.3.3×103C.3.3×104D.33×1033.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°4.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣15.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.6.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x57.下面四个手机应用图标中是中心对称图形的是()A.B.C.D.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,59.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位10.化简÷是()A.m B.﹣m C.D.﹣11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m 的取值范围在数轴上表示为()A.B.C.D.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>514.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.415.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x=.17.计算﹣(﹣1)2=.18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.19.方程=的解是.20.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.21.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.三、解答题(本大题共8小题,共57分)22.(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.23.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.24.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.25.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?26.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.27.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.28.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.29.如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.2017年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.数字3300用科学记数法表示为()A.0.33×104B.3.3×103C.3.3×104D.33×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3300用科学记数法可表示为:3.3×103,故选:B.3.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.4.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【考点】相反数.【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.5.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.6.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x5【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】根据合并同类项法则、幂的乘方、单项式乘以单项式、完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、x2和x3不能合并,故本选项不符合题意;B、结果是x2﹣4x+4,故本选项不符合题意;C、结果是x12,故本选项不符合题意;D、结果是2x5,故本选项符合题意;故选D.7.下面四个手机应用图标中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【考点】众数;中位数.【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选A.9.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位【考点】坐标与图形变化﹣平移.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.10.化简÷是()A.m B.﹣m C.D.﹣【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=﹣•=﹣m,故选B.11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m 的取值范围在数轴上表示为()A.B.C.D.【考点】一次函数图象与系数的关系;在数轴上表示不等式的解集.【分析】根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.【考点】切线的性质;解直角三角形.【分析】连接OC,如图,利用圆周角定理得到∠BOC=∠CDB=30°,再根据切线的性质得∠OCE=90°,所以∠E=30°,然后根据特殊角的三角函数值求解.【解答】解:连接OC,如图,∠BOC=∠CDB=30°,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∴∠E=30°,∴sinE=sin30°=.故选A.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>5【考点】二元一次方程组的解;解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选D14.对于实数x ,我们规定[x ]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4【考点】估算无理数的大小.【分析】[x ]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.【解答】解:121 []=11 []=3 []=1,∴对121只需进行3次操作后变为1,故选:C .15.如图,直线y=与y 轴交于点A ,与直线y=﹣交于点B ,以AB 为边向右作菱形ABCD ,点C 恰与原点O 重合,抛物线y=(x ﹣h )2+k 的顶点在直线y=﹣上移动.若抛物线与菱形的边AB 、BC 都有公共点,则h 的取值范围是( )A .﹣2B .﹣2≤h ≤1C .﹣1D .﹣1【考点】二次函数综合题.【分析】将y=与y=﹣联立可求得点B 的坐标,然后由抛物线的顶点在直线y=﹣可求得k=﹣,于是可得到抛物线的解析式为y=(x ﹣h )2﹣h ,由图形可知当抛物线经过点B 和点C 时抛物线与菱形的边AB 、BC 均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x=x(y+2)(y﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).17.计算﹣(﹣1)2=4.【考点】实数的运算.【分析】先分别根据数的开方法则、有理数乘方的法则求出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5﹣1=4.故答案为:4.18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.【考点】中心对称图形;平行四边形的性质.【分析】先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.【解答】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,则飞镖落在阴影区域的概率是.故答案为:.19.方程=的解是x=6.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=620.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【考点】反比例函数系数k的几何意义.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.21.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】首先由折叠的性质与矩形的性质,证得△BND是等腰三角形,则在Rt △ABN中,利用勾股定理,借助于方程即可求得AN的长,又由△ANB≌△C′ND,易得:∠FDM=∠ABN,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解.【解答】解:设BC′与AD交于N,EF与AD交于M,根据折叠的性质可得:∠NBD=∠CBD,AM=DM=AD,∠FMD=∠EMD=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=4,∠BAD=90°,∴∠ADB=∠CBD,∴∠NBD=∠ADB,∴BN=DN,设AN=x,则BN=DN=4﹣x,∵在Rt△ABN中,AB2+AN2=BN2,∴32+x2=(4﹣x)2,∴x=,即AN=,∵C′D=CD=AB=3,∠BAD=∠C′=90°,∠ANB=∠C′ND,∴△ANB≌△C′ND(AAS),∴∠FDM=∠ABN,∴tan∠FDM=tan∠ABN,∴,∴,∴MF=,由折叠的性质可得:EF⊥AD,∴EF∥AB,∵AM=DM,∴ME=AB=,∴EF=ME+MF=+=.故答案为:.三、解答题(本大题共8小题,共57分)22.(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.【考点】整式的混合运算—化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=x2+2x+1+2x﹣x2=4x+1,当x=时,原式=4+1;(2)∵解不等式①:x<4,解不等式②:x<3,∴原不等式组的解集是:x<3,原不等式组的解集在数轴上表示为:.23.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.【考点】全等三角形的判定与性质.【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.24.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.【考点】三角形的外接圆与外心.【分析】根据圆周角定理求出∠D=∠A=45°,BD是直径,根据勾股定理计算即可.【解答】解:∵∠A和∠D所对的弧都是弧BC,∴∠D=∠A=45°,∵BD是直径,∴∠DCB=90°,∴∠D=∠DBC=45°,∴CB=CD=2,由勾股定理得:BD==2.25.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【考点】一元二次方程的应用.【分析】设AB的长度为x米,则BC的长度为米;然后根据矩形的面积公式列出方程.【解答】解:设AB的长度为x米,则BC的长度为米.根据题意得x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.26.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.【考点】列表法与树状图法.【分析】(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.【解答】解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:=.27.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3≤x<0或x≥3时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.【考点】反比例函数综合题.【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)①利用对角线互相平分的四边形是平行四边形证明即可.②利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.【解答】解:(1)∵A、B关于原点对称,A(3,1),∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.故答案为(﹣3,﹣1),﹣3≤x<0或x≥3(2)①∵A、B关于原点对称,P、Q关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.(3)mn=k时,四边形APBQ是矩形,不可能是正方形.理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.28.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.【考点】三角形综合题.【分析】(1)欲证明BD=CE,只要证明△ABD≌△ACE即可.(2)①分两种情形a、如图2中,当点E在AB上时,BE=AB﹣AE=1.由△PEB∽△AEC,得=,由此即可解决问题.b、如图3中,当点E在BA延长线上时,BE=3.解法类似.②a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.分别求出PB即可.【解答】(1)证明:如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,∴△ADB≌△AEC,∴BD=CE.(2)①解:a、如图2中,当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=b、如图3中,当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上,PB=或.②解:a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD﹣PD=﹣1.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD+PD=+1.综上所述,PB长的最小值是﹣1,最大值是+1.29.如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:(﹣3,4);(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B 的坐标即可求得正方形ABCD的边长,从而求得点D的纵坐标;(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;(3)分点P位于y轴左侧和右侧两种情况讨论即可得到重叠部分的面积.【解答】解:(1)(﹣3,4);(2)设PA=t,OE=l由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE∴∴l=﹣+=﹣(t﹣)2+∴当t=时,l有最大值即P 为AO 中点时,OE 的最大值为;(3)存在.①点P 点在y 轴左侧时,DE 交AB 于点G , P 点的坐标为(﹣4,0),∴PA=OP ﹣AO=4﹣3=1,由△PAD ≌△EOP 得OE=PA=1∵△ADG ∽△OEG∴AG :GO=AD :OE=4:1∴AG==∴重叠部分的面积==②当P 点在y 轴右侧时,P 点的坐标为(4,0),此时重叠部分的面积为2017年4月9日。
2017年初中学业水平考试数 学 模 拟 试 题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2. 答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.若a 是负数,则a a +-是( )(A)负数 (B)正数 (C)零 (D)正数也可能是负数2.下列计算正确的是( )(A) 235a a a += (B) a a a 6)2()3(=⋅ (C) 236a a a =(D) 632)(a a = 3.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( )(A))2,3(- (B))2,3(- (C))3,2(- (D))3,2(4.如图,下列几何体的俯视图是右面所示图形的是( )A 、B 、C 、D 、5.给出下列四个结论:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中正确结论的个数是( )学校 班 姓名 考……………………………………………………………密…封…线…内…不…准…答…题…………………………………………………………(第8题) A .1 B .2 C .3 D .46.如图,⊙O 是△ABC 的外接圆,∠OCB =400,则∠A 的度数等于( ) A .60° B . 50° C .45° D .40°7.若a >3,则226944a a a a +-++-=( ) (A) 1 (B) -1 (C) 25a - (D)52a -8.如图所示,AB ∥CD ,∠E =37°,∠C =20°, 则∠EAB 的度数为( )(A) 57° (B) 60° (C) 63° (D)123°9. 如图,一个区域A 、B 、C 栽种观赏植物,要求同一个区域中种同一种植物,相邻的两块种不同的植物,现有3种不同的植物可供选择,那栽种方案有( ) A 、27种 B 、18种 C 、12种 D 、6种10.某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( ) A 、不盈不亏 B 、盈利2.5元 C 、亏本7.5元 D 、亏本15元 11.“*”表示一种运算符号,其意义是a*b=2a -b .如果x*(1*3)=2,那么x 等于( ).A .1B .21C .23 D .2 12.如果有2014名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,。
的规律报数,那么第2014名学生所报的数是( ) A 、1 B 、2 C 、3 D 、4DC FAE 第Ⅱ卷 (非选择题 共84分)注意事项:1. 第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.)13.方程220x xx-=的解为 14.分解因式:32656x x x --=15.多项式21x x --+的最大值是16.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距m17.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为20cm ,则图中阴影部分 的面积为______cm 2. (精确到整数)18.如图,等腰直角三角形ABC 中,∠C =90°,D 为BC 的中点. 将△ABC 折叠,使A 点与点D 重合. 若EF 为折痕,则sin ∠BED 的值为______(第18题)(第17题图)得 分评 卷 人三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19. (本小题满分10分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作 AG ∥BD 交CB 的延长线于点G . (1)求证:DE ∥BF ; (2)若∠G =90°,求证:四边形DEBF 是菱形.20.(本小题满分10分)小明很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小明左右为难,最后决定通过掷硬币来确定。
游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小明任意挑选两球队;如果两次正面朝上一次正面朝下,则小明加入足球阵营;如果两次反面朝上一次反面朝下,则小明加入篮球阵营。
(1)用画树状图的方法表示三次抛掷硬币的所有结果; (2)小刚任意挑选两球队的概率有多大?A B C D G E F (第19题)(3)这个游戏规则对两个球队是否公平?为什么?21.(本小题满分10分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米? (2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.学校 班级 姓名 考号……………………………………………………………密…封…线…内…不…准…答…题…………………………………………………………22.(本小题满分11分)如图,在菱形ABCD中,AB=2,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π).23. (本小题满分12分)根据市场调查,某种新产品投放市场30天内,每件产品的销售价格P (元)与时间t (天)的关系如图所示,日销售量Q (件)与时间t (天)之间的关系见表1.表1(1)根据图示求出前20天该产品每件销售价格P (元)与时间t (天)的函数关系式; (2)根据表1求出日销售量Q (件)与时间t (天)之间的函数关系式;(函数关系只限于一次函数、二次函数、反比例函数)(3)在这30天内,哪一天的日销售金额最大?最大是多少元?(日销售金额=每件产品销售价格 日销售量)24.(本小题满分13分)如图,在平面直角坐标系xOy 中,抛物线y =181x 2-94x -10与x 轴的交点为A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值;若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.2017年初中学业水平考试数学模拟题答案一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) CDCAB BCACC BD二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.) 13.2x =; 14. (23)(32)x x x -+; 15.45 ; 16. 200; 17. 314; 18. 53三、解答题(本大题共6小题,共66分.) 19.(本小题满分10分)解:(1)在□ABCD 中,AB ∥CD ,AB =CD ,∵E 、F 分别为边AB 、CD 的中点, ∴DF =21DC ,BE =21AB, ∴DF ∥BE ,DF =BE , …………………3分∴四边形DEBF 为平行四边形 , …………………4分∴DE ∥BF . ……………… 5分 (2) 证明: ∵AG ∥BD,∴∠G=∠DBC=90°,∴△DBC 为直角三角形 , ……………… 7分 又∵F 为边CD 的中点,∴BF =21CD =DF , ……………… 9分 又∵四边形DEBF 为平行四边形,∴四边形DEBF 是菱形 . ………………10分20.(本小题满分10分)解:(1)根据题意画树状图(3分)(2)由树状图可知,共有8种等可能的结果:正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反。
………………………5分其中三次正面正面朝上的或三次反面向上共2种, …………………6分所以,P(小明任意挑选球队)=2/8=1/4 ………………………7分(3)这个游戏规则对两个球队公平。
两次正面朝上一次正面向下有三种,正正反,正反正,反正正两次反面朝上一次反面面向下有三种,正反反,反正反,反反正所以,P(小明去足球队)= P(小明去蓝球队)=3/8 ………………………10分21.(本小题满分10分)(1)解:设甲工程队每天能铺设x米,则乙工程队每天能铺设(20x-)米.根据题意得:35025020x x=-. ·······························································2分解得70x=. 检验:70x=是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ······································4分(2)解:设分配给甲工程队y米,则分配给乙工程队(1000y-)米.由题意,得10,70100010.50y y ⎧≤⎪⎪⎨-⎪≤⎪⎩ ································································ 6分解得500700y ≤≤. ·········································································· 7分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米. ············· 10分22.(本小题满分11分)(1)证明:过D 作DQ ⊥BC 于Q ,连接DE ,∵⊙D 切AB 于E ,∴DE ⊥AB , …………..2分∵四边形ABCD 是菱形,∴BD 平分∠ABC ,∴DE =DQ (角平分线性质), ··················································································· 4分 ∵DQ ⊥BC ,∴⊙D 与边BC 也相切; … …….…… ……..5分(2)解:过F 作FN ⊥DH 于N ,∵四边形ABCD 是菱形,∴AD =AB =2,∵∠A =60°,∴△ABD 是等边三角形,∴∠DBA =60°,DC ∥AB ,AD =BD =AB =2∵DE ⊥AB ,∴AE =BE =, 由勾股定理得:DE =3=DH =DF ,… …….…… ……..7分∵四边形ABCD 是菱形,∴∠C =∠A =60°,DC =BC ,∴△DCB 是等边三角形,∴∠CDB =60°,∵DF =DH ,∴△DFH 是等边三角形, … …….…… ……..9分∵FN ⊥DH , ∴DN =NH =,由勾股定理得:FN =, ∴S 阴影=S 扇形FDH ﹣S △FDH =﹣×3×=π﹣. ···································· 11分22.(本小题满分12分) .解:(1)根据图示,前20天该产品每件销售价格P (元)与时间t (天)的函数是一次函数,且过点(0,30),(20,50),所以可设为y at b =+,把(0,30),(20,50)代入得{502030a b b =+=,解得{130a b ==,所求函数关系为30+=t P . (020t <<) … ………..3分(2)由表1设日销售量Q (件)与时间t (天)之间的函数关系式为y mt n =+,把(20,20),(30,10)代入得{20201030m nm n =+=+,解得{140m n =-=,所求函数关系为40+-=t Q . (030)t <≤ …………..6分 把点(5,35),(15,25)代入40y t =-+验证成立. …………..7分(3)前20天,日销售金额=PQ=(30)(40)t t +-+,)200(<<t ………..8分 =222101200(1025)1225(5)1225t t t t t -++=--++=--+, …………..9分 所以当=t 5时,日销售金额取得最大值,最大值等于1225元. ……..10分 后10天,每件产品的销售价格50元,日销售金额=PQ=50(40)502000,t t -+=-+(2030)t ≤≤,所以当20t =时,日销售金额取得最大值,最大值等于1000元...11分 综上,当5t =时,即第5天时,日销售金额取得最大值,最大值等于1225元 …..12分24.(本小题满分13分)(1)在y =181x 2-94x -10中,令y =0,得x 2-8x -180=0. 解得x =-10或x =18,∴A (18,0)在y =181x 2-94x -10中,令x =0∴B (0,-10). ···························· 2∵BC ∥x 轴,∴点C 的纵坐标为-10由-10=181x 2-94x -10得x =0或x ∴C (8,-10). ···························· 3分∵y =181x 2-94x -10=181(x -4)2-998 ∴抛物线的顶点坐标为(4,-998). ·················································· 4分 (2)若四边形PQCA 为平行四边形,由于QC ∥PA ,故只要QC =PA 即可.∵QC =t ,PA =18-4t ,∴t =18-4t .解得t =518. ···················································································· 6分 (3)设点P 运动了t 秒,则OP =4t ,QC =t ,且0<t <4.5,说明点P 在线段OA 上,且不与点O ,A 重合.∵QC ∥OP , ∴PD QD =OD CD =OPQC =t t 4=41. 同理QC ∥AF ,∴AF QC =AE CE =OD CD =41,即AFt =41. ∴AF =4t =OP .∴PF =PA +AF =PA +OP =18. ······························· 8分∴S △PQF =21PF ·OB =21×18×10=90, ∴△PQF 的面积总为定值90. ·························································· 9分(4)设点P 运动了t 秒,0<t <4.5, 则P (4t ,0),F (18+4t ,0),Q (8-t ,-10) ,∴PQ 2=(4t -8+t )2+102=(5t -8)2+100, FQ 2=(18+4t -8+t )2+102=(5t +10)2+100. ①若FP =FQ ,则182=(5t +10)2+100. 即25(t +2)2=224,(t +2)2=25224. ∵0≤t ≤4.5,∴2≤t +2≤6.5,∴t +2=25224=5144. ∴t =5144-2. ············································································· 11分 ②若QP =QF ,则(5t -8)2+100=(5t +10)2+100. 即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ·························· 12分 ③若PQ =PF ,则(5t -8)2+100=182. 即(5t -8)2=224,由于224≈15,又0≤5t ≤22.5, ∴-8≤5t -8≤14.5,而14.52=(229)2=4841<224. 故无0≤t ≤4.5的t 满足此方程. (注:也可解出t =51448 -<0或t =51448 +>4.5均不合题意, 故无0≤t ≤4.5的t 满足此方程.) 综上所述,当t =5144-2时,△PQF 为等腰三角形. ··················· 13分。