动量和能量综合专题46980
- 格式:doc
- 大小:247.00 KB
- 文档页数:9
微专题50动量和能量的综合问题1.如果要研究某一时刻的速度、加速度,可用牛顿第二定律列式.2.研究某一运动过程时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究对象为一系统,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这些问题由于作用时间都极短,满足动量守恒定律.1.(多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示.爆炸之后乙由静止自由下落,丙沿原路径回到原射出点.若忽略空气阻力,则下列说法正确的是()A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 23答案CD解析爆炸后甲、丙从同一高度做平抛运动,乙从同一高度自由下落,则落地时间均为t =2H g ,选项A 、B 错误;爆炸过程动量守恒,以向右为正方向,有m v =-13m v 丙+13m v 甲,由题意知v 丙=v ,得v 甲=4v ,又因x =v t ,t 相同,则x ∝v ,甲、丙落地点到乙落地点O 的距离比为x 甲∶x 丙=v 甲∶v 丙=4∶1,选项C 正确;释放的化学能ΔE =12×m 3v 甲2+12×m 3v 丙2-12m v 2=73m v 2,选项D 正确.2.(2023·湖南永州市第一中学模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C (可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,则下列说法不正确的是()A .A 、B 两木块分离时,A 、B 的速度大小均为mm mgL 2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL 2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL 2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L 2m +m 0答案C解析小球C 下落到最低点时,A 、B 开始分离,此过程水平方向动量守恒.根据机械能守恒定律有m 0gL =12m 0v C 2+12×2m v AB 2,由水平方向动量守恒得m 0v C =2m v AB ,联立解得v C =2mgL 2m +m 0,v AB =m 0m mgL2m +m 0,故A 、B 正确;C 球由静止释放到最低点的过程中,选B为研究对象,由动量定理得I AB =m v AB =m 0mgL2m +m 0,故C 错误;C 球由静止释放到最低点的过程中,系统水平方向动量守恒,设C 对地水平位移大小为x 1,AB 对地水平位移大小为x 2,则有m 0x 1=2mx 2,x 1+x 2=L ,可解得x 2=m 0L2m +m 0,故D 正确.3.(多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点.一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则()A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR10C .全过程小车相对地面的位移大小为R +L 5D .μ、L 、R 三者之间的关系为R =μL答案BCD解析滑块与小车组成的系统水平方向动量守恒,由人船模型特点有Mx 1=mx 2,x 1+x 2=R+L ,又M =4m ,由上两式解得x 1=R +L 5,x 2=4 R +L5,全过程滑块在水平方向上相对地面的位移的大小为4 R +L 5,全过程小车相对地面的位移大小为R +L5,所以A 错误,C 正确;滑块滑到圆弧轨道最低点时,小车速度最大,滑块与小车组成的系统水平方向动量守恒,则有M v 1=m v 2,mgR =12M v 12+12m v 22,解得v 1=gR10,小车在运动过程中速度的最大值为gR10,所以B 正确;滑块最后恰好停在C 点时,小车也停止运动,全程由能量守恒定律有mgR =μmgL ,解得R =μL ,所以μ、L 、R 三者之间的关系为R =μL ,所以D 正确.4.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落,重力加速度为g .则()A .细绳被拉断瞬间木板的加速度大小为FMB .细绳被拉断瞬间弹簧的弹性势能为12m v 2C .弹簧恢复原长时滑块的动能为12m v 2D .滑块与木板AB 段间的动摩擦因数为v 22gl答案ABD解析细绳被拉断瞬间,对木板,由于OA 段光滑,没有摩擦力,在水平方向上只受到弹簧的弹力,则细绳被拉断瞬间弹簧的弹力大小等于F ,根据牛顿第二定律有F =Ma ,解得a =FM ,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时木板获得动能,由系统机械能守恒知滑块的动能小于12m v 2,C 错误;由于细绳被拉断瞬间,木板速度为零,小滑块速度为零,所以小滑块的动能全部转化为弹簧的弹性势能,即E p =12m v 2,小滑块恰未掉落时滑到木板的右端,且速度与木板相同,设为v ′,取向左为正方向,由动量守恒定律和能量守恒定律得0=(m +M )v ′,E p =12(m +M )v ′2+μmgl ,联立解得μ=v 22gl,D 正确.5.(多选)(2023·湖南省长沙市高三检测)如图所示,竖直放置的轻弹簧下端固定在地上,上端与质量为m 的钢板连接,钢板处于静止状态.一个质量也为m 的物块从钢板正上方h 处的P 点自由落下,打在钢板上并与钢板一起向下运动x 0后到达最低点Q ,重力加速度为g .下列说法正确的是()A .物块与钢板碰后的速度大小为2ghB .物块与钢板碰后的速度大小为2gh2C .从P 到Q 的过程中,弹性势能的增加量为mg (2x 0+h2)D .从P 到Q 的过程中,弹性势能的增加量为mg (2x 0+h )答案BC解析物块下落h ,由机械能守恒定律得mgh =12m v 12,物块与钢板碰撞,以竖直向下的方向为正方向,由动量守恒定律得m v 1=2m v 2,解得v 2=12v 1=2gh2,选项A 错误,B 正确;从碰撞到Q 点,由能量守恒定律可知12×2m v 22+2mgx 0=ΔE p ,则弹性势能的增加量为ΔE p =mg (2x 0+h2),选项C 正确,D 错误.6.(2023·广东韶关市适应性考试)短道速滑接力赛是北京冬奥会上极具观赏性的比赛项目之一,如图所示为A 、B 两选手在比赛中的某次交接棒过程.A 的质量m A =60kg ,B 的质量m B =75kg ,交接开始时A 在前接棒,B 在后交棒,交棒前两人均以v 0=10m/s 的速度向前滑行.交棒时B 从后面用力推A ,当二人分开时B 的速度大小变为v 1=2m/s ,方向仍然向前,不计二人所受冰面的摩擦力,且交接棒前后瞬间两人均在一条直线上运动.(1)求二人分开时A 的速度大小;(2)若B 推A 的过程用时0.8s ,求B 对A 的平均作用力的大小;(3)交接棒过程要消耗B 体内的生物能,设这些能量全部转化为两人的动能,且不计其他力做功,求B 消耗的生物能E .答案(1)20m/s(2)750N(3)5400J解析(1)设二人分开时A 的速度大小为v 2,取v 0的方向为正方向,根据动量守恒定律可得(m A +m B )v 0=m B v 1+m A v 2解得v 2=20m/s(2)对A 由动量定理得F ·t =m A v 2-m A v 0解得F =750N(3)设B 消耗的生物能为E ,对二人组成的系统,根据能量守恒定律得12(m A +m B )v 02+E =12m B v 12+12m A v 22解得E =5400J.7.(2023·天津市南开区模拟)如图所示,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,圆弧轨道的半径R =0.32m ,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接).轨道左侧的光滑水平地面上停着一质量为M =2kg 、足够长的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车且恰好没有掉下小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.物块A 与小车之间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)物块B 运动到圆弧轨道的最低点b 时对轨道的压力大小;(2)细绳剪断之前弹簧的弹性势能E p ;(3)小车长度L 和物块A 在小车上滑动过程中产生的热量Q .答案(1)60N(2)12J(3)0.5m2J解析(1)物块B 在最高点时,有m B g =m Bv d 2R从b 到d 由动能定理可得-m B g ·2R =12m B v d 2-12m B v b 2在b 点有F N -m B g =m B v b 2R联立解得F N =60N由牛顿第三定律可知物块B 对轨道的压力大小为60N.(2)由动量守恒定律可得m A v A =m B v b 由能量守恒定律可得E p =12m A v A 2+12m B v b 2联立解得E p =12J(3)物块滑至小车左端时与小车恰好共速,设速度为v ,根据动量守恒定律得m A v A =(m A +M )v 由能量守恒定律可得Q =μm A gL =12m A v A 2-12(m A +M )v 2联立解得Q =2J ,L =0.5m.8.(2023·河北省模拟)如图是某个同学设计的一个游戏装置,该游戏装置的滑道分为光滑的OA 、AB 、BE 、CD 四段,O 点右端固定安装一弹簧发射装置.将一质量为M 的物块a 与弹簧紧贴,释放弹簧,物块a 从O 处出发,运动到A 处时与质量为m 的滑块b 发生弹性碰撞.已知物块a 的质量为M =2kg ,滑块b 的质量为m =1kg ,竖直面内四分之一圆弧轨道CD 的半径为R =0.9m ,BE 段水平且距底座高度h =0.8m ,四分之一圆弧轨道C 端的切线水平,C 、E 两点间的高度差刚好可容滑块b 通过,两点间水平距离可忽略不计,滑块b 可以视为质点,不计空气阻力,重力加速度g =10m/s 2.若滑块b 恰好能够通过C 处并沿轨道滑落,求:(1)碰撞后瞬间滑块b 的速度大小;(2)碰撞后a 在AB 上运动能上升到的最大高度(保留两位有效数字);(3)释放物块a 前弹簧的弹性势能(保留两位小数).答案(1)5m/s(2)0.078m(3)14.06J解析(1)滑块b 恰好能够通过C 处并沿轨道滑落,有mg =mv C 2R解得v C =3m/s滑块b 由A 到C ,根据机械能守恒定律,有mgh +12m v C 2=12m v A 2解得v A =5m/s(2)物块a 与滑块b 发生弹性碰撞,根据动量守恒定律,有M v 0=m v A +M v根据机械能守恒定律,有12M v 02=12m v A 2+12M v 2联立解得v 0=3.75m/s ,v =1.25m/s对物块a 由机械能守恒定律,有Mgh M =12M v 2解得h M ≈0.078m(3)物块a 和弹簧组成的系统机械能守恒,可知释放物块a 前弹簧的弹性势能E p =12M v 02≈14.06J.。
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
精品文档动量与能量结合与弹簧相结合的碰撞问题mh的水平桌面的边缘,质量为年·全国理综Ⅱ)质量为M的小物块A静止在离地面高1(20055.(2000年·全国)在原子核物理中,与之发生正碰(碰撞时间极短).碰后A离开桌面,其落地研究核子与核子关联的最有效途径是“双电荷交换反应”.这的小物块B沿桌面向A运动并以速度v0类反应的前半部分过程和下述力学模型类似.两个小球A和B点离出发点的水平距离为L.碰后反向运动.求B后退的距离.已知B与桌面间的动摩擦因数为B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P.,右边有一小球C沿轨道gμ.重力加速度为以速度v射向B球,如图所示.C与B发生碰撞并立即结成一个整体D.在它们继续向左运动0的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A球与挡板P发生碰、D 都静止不动,A与PA撞,碰后接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A、B、C三球的质量均为m.求:(1)弹簧长度刚被锁定后A球的速度;上,木板与水平面间的木板m.2(2005年·天津理综)如图所示,质量为4.0kgA放在水平面C A(2)求在A球离开挡板(视为质点)为m0.24μ为,木板右端放着质量1.0kg的小物块B,它们均处于P之后的运动过程中,弹簧的动摩擦因数B的最大弹性势能.s的瞬时冲量I作用开始运动,当小物块滑离木板时,木板突然受到水平向右的静止状态.12N·2,重力加速度取为0.50J10m/s,求:E为木板的动能E8.0J,小物块的动能kBkA;v1()瞬时冲量作用结束时木板的速度0 B)木板的长度(2L.ACL,bab如图所示,长木板的端固定一挡板,M=4.0kg木板连同档板的质量为年·(.2004全国理综Ⅲ)3、且足够长的端有一小物块,其质量在木板s=b间距离2.0m.木板位于光滑水平面上.am 的长滑块静止在光滑水平面上,左端固定一劲度系数为k6、如图所示,质量为M=1.0kg,小物块与a,使一质F=4.0m/sv它们都处于静止状态.=0.10木板间的动摩擦因数μ,现令小物块以初速沿木板向前滑动,水平轻质弹簧,右侧用一不可伸长的细绳连接于竖直墙上,细绳子能承受的最大拉力为T0的小物体,在滑块上无摩擦地向左滑动而后压缩弹簧,弹簧的弹性势能表达V量为m、初速度为端而不脱离木板.求碰撞过程中损失的机械能.碰撞后,小物块恰好回到.直到和挡板相碰a012kx?E.为弹簧的形变量)式为k为弹簧的劲度系数,x(p2应满足什么条件?)要使细绳被拉断,初速度V1(02)长滑块在细绳被拉断后,所获得的最大加速度为多大?()小物体最后离开滑块时,相对地面速度恰好为零的条件是什么?(3的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹m1997(.4年·全国)质量为处自由落下,打在钢板上并立刻与,如图所示.一物块从钢板正上方距离为的x簧的压缩量为3xA00时,它们恰能钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m点时,还具有向上的速度.求2点.若物块质量为O回到O处自由落下,则物块与钢板回到A,仍从m 点的距离.O物块向上运动到达的最高点与精品文档.精品文档v B. 的大小点时速度(1)物块到达B,如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg7、?.放在车的最左端,和车,OBaAO部分粗糙且长L=2m,动摩擦因数部分光滑。
专题二能量和动量力学问题的求解,通常有三条思路:一是应用牛顿定律;二是应用动量规律(动量守恒定律);三是应用功能关系的规律(动能定理、机械能守恒)。
牛顿定律反映了力的瞬时效应,动能定理反映了力的空间积累作用规律。
在涉及加速度时应选择牛顿第二定律;在涉及功、位移和与位移有联系的问题时,应考虑选用动能定理;在只研究一个物理过程的始末状态,不涉及过程细节时,或研究变力问题时,考虑选用两个守恒定律和动能定理。
一般研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定律和动能定理。
在一些复杂的问题中,往往用上述规律中的两个或多个联合求解。
在应用这些规律解题时,首先注重对物体进行受力情况的分析、运动情况的分析及能量转化情况的分析,这三个分析的准确及透彻与否是选用规律和求解的前提。
高考对能量和动量的考查的特点是灵活性强、综合性及能力要求高。
在历年的高考中所占分值比例一直较高,须特别关注。
知识记忆:1.______________________________________________________ 动量守恒定律公式表达:条件: ____________________________________________________________________________________2.动能定理公式表达:______________________________________________是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W & = 仍+不叶...+仍,;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.说明:应用这定理时,涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.3.两类力做功的特点:保守力(如重力、电场力)做功只与初、末位置有关,与无关;耗散力(如滑动摩擦力)做功与运动的路径有关,且有时力总是与运动方向向相反,大小保持不变,此时做功的绝对值等于力的大小与路程的乘积.4.摩擦力做功的特点:一对滑动摩擦力做功的过程中,能量的转化有两个方面:一是相互摩擦的物体之间机械能的转移,二是机械能转化为内能,转化为内能的量值等于滑动摩擦力与相对位移的乘积,一对滑动摩擦力所做功的和为负值,其绝对值等于系统损失的机械能.5.机械能是否守恒的判断:从做功来判断:分析物体或物体系受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒.从能量转化来判断:若物体或物体系中只有动能和重力势能、弹性势能的相互转化而无机械能与其他形式的能的转化,则物体或物体系机械能守恒.如绳子突然绷紧、物体间碰撞粘合等现象时,机械能不守恒.6.机械能守恒定律的几种表达式:(1)物体或系统初态总机械能昂等于未态的总机械能幼,此时应选定零势能面.(2)系统减少的势能减等于增加的动能即△妁敬=沽(或△可质=△&做)(3)系统内只有刀、8两物体时,则X减少的机械能等于3增加的机械能△&增7.物体做功公式:功率公式:1 2.8.做功对应能量的转化:%1W G=-AE P(重力做功等于重力势能的变化)%1W E=-AE P(电场力做功等于电势能的变化)%1W ^=AE K(合外力的功等于动能的变化)%1W «te=AE机(重力和弹簧弹力以外的力的功等于机械能的变化)%1Q=FfS相对(摩擦力与相对位移的乘积等于内能的变化)A.小球的动能和重力势能的总和越来越小,B.小球的动能和重力势能的总和越来越小,C.小球的动能和重力势能的总和越来越大, 小球的动能和重力势能的总和越来越小, 小球的动能和弹性势能的总和越来越大. 小球的动能和弹性势能的总和越来越小. 小球的动能和弹性势能的总和越来越大. 小球的动能和弹性势能的总和越来越小.%1W安=一E电(安培力做功等于电能的变化)巩固练习:1 .如图所示,光滑的水平地面上放着一个光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中()A.系统的动量守恒,机械能不守恒B.系统的动量守恒,机械能守恒C.系统的动量不守恒,机械能守恒D.系统的动量守恒,机械能不守恒2.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体块做的功等于()A.物块动能的增加量B.物块重力势能的减少量与物块克服摩擦力做的功之和C.物块重力势能的减少量和物块动能的增加是以及物块克服摩擦力做的功之和D.物块动能的增加量与物块克服摩擦力做的功之和3.一个静止的放射性原子核处于垂直纸面向里的匀强磁场中,由于发生衰变而形成了如图所示的两个圆形轨迹,两圆半径之比为1 : 16,下列说法正确的是()A.该原子核发生了□衰变B.反冲核沿大圆做逆时针方向的圆周运动C.原来静止的原子核的序数为15D.沿大圆和沿小圆运动的粒子周期相同4.如图甲所示,质量为新的木板静止在光滑水平面上,一个质量为/〃的小滑块以初速度〃。
1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒机械 综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停12 3 4 5t在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r甲 乙D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为 A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v 2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos 60)()2m m gR m m v '+-︒=+, 联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块-v甲B的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零. 26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin30cos30t g t g mg μμ==︒-︒ 29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022()解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.v【答案】(1;(2)208(12)25v m g Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv m Mv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ② 当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③ 联立①②③解得v =(2)由①②两式解得208(12)25v m l g Mμ=- 33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02 ②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12 mv 2 ③在最高点Q ,由牛顿第二定律得Rmv mg 2= ④ 联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求:(1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得221(2)2(2)2mg x m v μ=解得20168v l x g μ=- 35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能.【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+① 解得v =1.2m/s 由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++ ②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求:(1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =m M m +v 0 ②木块A 的速度:V =2m/s③ (2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱? 已知:返回过程中需克服火星引力做功(1)R W mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r - 解析:物体m 在火星表面附近2mMG mg R =,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m Mv Gm r r = 联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r== 返回舱返回过程克服引力做功(1)R W mgR r=-返回舱返回时至少需要能量k E E W =+ 解得(1)2R E mgR r =- 38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小;(2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v -- 解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v MmG m RR = 同理,在轨道Ⅲ上有232()()v M m m G m m rr -∆=-∆由上两式可得31v v = 探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r= 解得212Ra v r = (2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv 解得122v v m m u v -∆=- 78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2)【答案】(1)0.017m ;(2)0.1s解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++. 再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++ 绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B系统动量守恒:0=m v A +3m v B系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =?【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍).【答案】(1)H H 2m v v m m =+,N N 2m v v m m =+;(2) 1.0165m m=' 解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21H H v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+。
专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新、联系实际密切、综合性强,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决运动的多过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子的运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性地选择相应的规律和方法.第1课时几个重要功能关系的应用1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.(3)静电力做功一般利用W=qU来求,在匀强电场中也可以利用W=Eqs cos α求解.(4)洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.(5)电流做功的实质是电场对移动电荷做功,即W=UIt=qU.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F·s相对.(6)电场力做功等于电势能的变化,即W AB=-ΔE p.(7)电流做功等于电能的变化,即ΔE=UIt.(8)安培力做功等于电能的变化,即W安=-ΔE电.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.3.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.题型1力学中的几个重要功能关系的应用例1(双选)如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()图1A.B物体的机械能先增大后减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量解析把A、B和弹簧看做一个系统,该系统机械能守恒,在B下落直至B获得最大速度的过程中,A的动能增大,弹簧弹性势能增大,所以B物体的机械能一直减小,选项A错误;由动能定理知,B物体的动能的增加量等于它所受重力与拉力做的功之和,选项B正确;B物体机械能的减少量等于弹簧的弹性势能的增加量与A物体动能的增加量之和,选项C错误;对A物体和弹簧组成的系统,由功能关系得,细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量,选项D正确.答案BD以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.(双选)(2013·山东·16)如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图2A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,M和m组成的系统机械能减小,减小的机械能等于M克服摩擦力所做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.题型2几个重要的功能关系在电学中的应用例2(双选)如图3所示,在竖直平面内有一匀强电场,其方向与水平方向成α=30°斜向上,在电场中有一质量为m、电量为q的带电小球,用长为L的不可伸长的绝缘细线挂于O点,当小球静止于M点时,细线恰好水平.现用外力将小球拉到最低点P,然后无初速度释放,则以下判断正确的是()图3A.小球再次到达M点时,速度刚好为零B.小球从P到M过程中,合外力对它做了3mgL的功C.小球从P到M过程中,小球的机械能增加了3mgLD.如果小球运动到M点时,细线突然断裂,小球以后将做匀变速曲线运动审题突破小球静止在M时,受几个力的作用?重力和电场力的大小关系是什么?小球由P到M的过程中,各力做功是多少?解析小球从P到M的过程中,线的拉力不做功,只有电场力和小球重力做功,它们的合力也是恒力,大小为3mg,方向水平向右,所以小球再次到达M点时,速度最大,而不是零,选项A错.小球从P到M过程中,电场力与重力的合力大小为3mg,这个方向上位移为L,所以做功为3mgL,选项B正确.小球从P到M过程中,机械能的增加量等于电场力做的功,由于电场力为2mg,由P到M沿电场线方向的距离为d=L sin 30°+L cos 30°=L2(1+3),故电场力做功为2mg·d=mgL(1+3),故选项C错误.如果小球运动到M点时,细线突然断裂,小球的速度方向竖直向上,所受合外力水平向右,小球将做匀变速曲线运动,选项D正确.答案BD以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.(单选)如图4所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m的带正电小球在外力F的作用下静止于图示位置,小球与弹簧不连接,弹簧处于压缩状态.现撤去F,小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做的功分别为W1、W2和W3,不计空气阻力,则上述过程中()图4A .小球与弹簧组成的系统机械能守恒B .小球重力势能的变化为W 1C .小球动能的变化为W 1+W 2+W 3D .小球机械能的变化为W 1+W 2+W 3 答案 C解析 由于电场力做功,小球与弹簧组成的系统机械能不守恒,选项A 错误.重力对小球做的功为W 1,小球重力势能的变化为-W 1,选项B 错误.由动能定理可知,小球动能的变化为W 1+W 2+W 3,选项C 正确.由功能关系可知,小球机械能的变化为W 2,选项D 错误.题型3 动力学方法和动能定理的综合应用图5例3 (15分)如图5所示,上表面光滑、长度为3 m 、质量M =10 kg 的木板,在F =50 N 的水平拉力作用下,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg 的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L =1 m 时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m 就在其最右端无初速度地放上一个同样的小铁块.(g 取10 m/s 2)求: (1)木板与地面间的动摩擦因数; (2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.审题突破 木板在F =50 N 的水平拉力作用下,沿水平地面匀速运动,隐含什么条件?放上小铁块后木板的受力如何变化?解析 (1)木板做匀速直线运动时,受到地面的摩擦力设为f 由平衡条件得: F =f①(1分) 又f =μMg ②(2分) 联立①②并代入数据得:μ=0.5③(1分)(2)每放一个小铁块,木板所受的摩擦力增加μmg设刚放第三个小铁块时木板的速度为v 1,对木板从放第一个小铁块到刚放第三个小铁块的过程,由动能定理得:-μmgL -2μmgL =12M v 21-12M v 2④(5分)联立③④并代入数据得: v 1=4 m/s⑤(1分)(3)从放第三个小铁块开始到木板停止之前,木板所受的合外力大小均为3μmg .从放第三个小铁块开始到木板停止的过程,设木板运动的距离为s ,对木板由动能定理得:-3μmgs =0-12M v 21⑥(4分) 联立③⑤⑥并代入数据得s =169m ≈1.78 m⑦(1分)答案 (1)0.5 (2)4 m/s (3)1.78 m以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg .2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图6所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.图6(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 点的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间t .答案 (1)0.375 (2)2 3 m/s (3)0.2 s解析 (1)滑块从A 点到D 点的过程中,根据动能定理有mg ·(2R -R )-μmg cos 37°·2Rsin 37°=0-0解得:μ=12tan 37°=0.375(2)若使滑块能到达C 点,根据牛顿第二定律有mg +F N =m v 2CR由F N ≥0得v C ≥Rg =2 m/s滑块从A 点到C 点的过程中,根据动能定理有-μmg cos 37°·2R sin 37°=12m v 2C -12m v 20 则v 0=v 2C +4μgR cot 37°≥2 3 m/s 故v 0的最小值为2 3 m/s(3)滑块离开C 点后做平抛运动,有x =v C ′t ,y =12gt 2由几何知识得tan 37°=2R -yx整理得:5t 2+3t -0.8=0 解得t =0.2 s(t =-0.8 s 舍去)题型4 应用动能定理分析带电体在电场中的运动例4 如图7所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图7(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.审题突破 带电粒子在水平匀强电场中做什么运动?速度与电场方向成30°角,隐含条件是什么?解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C =1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V . 答案 (1)104 m/s (2)1.732×103 N/C (3)400 V以题说法 1.电场力做功与重力做功的特点类似,都与路径无关.2.对于电场力做功或电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.如图8所示,在光滑绝缘水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B .A 球的带电量为+2q ,B 球的带电量为-3q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,开始时A 和B 分别静止于虚线MN 的两侧,虚线MN 恰为AB 两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN 、PQ 间加上水平向右的电场强度为E 的匀强电场后,系统开始运动.试求:图8(1)B 球刚进入电场时,带电系统的速度大小;(2)带电系统向右运动的最大距离和此过程中B 球电势能的变化量; (3)A 球从开始运动至刚离开电场所用的时间.答案 (1) 2qEL m (2)73L 4qEL (3)(32-2)mLqE解析 (1)设B 球刚进入电场时带电系统的速度为v 1,由动能定理得2qEL =12×2m v 21 解得:v 1= 2qELm(2)带电系统向右运动分为三段:B 球进入电场前、带电系统在电场中、A 球出电场后. 设A 球出电场后移动的最大位移为s ,对于全过程,由动能定理得 2qEL -qEL -3qEs =0解得s =L3,则B 球移动的总位移为s B =73LB 球从刚进入电场到带电系统从开始运动到速度第一次为零时的位移为43L其电势能的变化量为ΔE p =-W =3qE ·43L =4qEL(3)取向右为正方向,B 球进入电场前,带电系统做匀加速运动:a 1=2qE 2m =qE m ,t 1=v 1a 1= 2mLqE带电系统在电场中时,做匀减速运动:a 2=-qE 2m设A 球刚出电场时速度为v 2,由动能定理得:-qEL =12×2m (v 22-v 21) 解得:v 2= qELmt 2=v 2-v 1a 2=2(2-1) mL qE解得总时间t =t 1+t 2=(32-2) mLqE6.综合应用动力学和能量观点分析多过程问题审题示例(12分)如图9所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图9(1)小球被抛出时的速度v 0;(2)小球到达半圆轨道最低点B 时,对轨道的压力大小; (3)小球从C 到D 过程中摩擦力做的功W f . 审题模板答题模板(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示. 则有v 21=2gh① 由几何关系得v 0=v 1cot θ② 联立①②式得v 0=432gh③ (2)A 、B 间竖直高度H =R (1+cos θ)④设小球到达B 点时的速度为v ,则从抛出点到B 过程中由机械能守恒定律得 12m v 20+mg (H +h )=12m v 2⑤ 在B 点,根据牛顿第二定律有F N -mg =m v 2R ⑥联立③④⑤⑥式 解得F N =5.6mg ⑦由牛顿第三定律知,小球在B 点对轨道的压力大小是5.6mg ⑧(3)全过程应用动能定理:W f =0-12m v 20即W f =-12m v 20=-169mgh ⑨(评分标准:本题共12分,其中,⑤式2分,⑨式3分,其余每式1分)答案 (1)432gh (2)5.6mg (3)-169mgh点睛之笔 多个运动的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要各个运动过程独立分析,而不同过程往往通过连接点的速度建立联系;有时对整个过程应用能量的观点解决问题会更简单.如图10,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N .一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图10(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2R /g 小球距坐标原点O 的距离s 为多远?答案 (1)正电 mg E (2)2E B Rg(3)27R解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有 qE =mg① 解得:q =mgE②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r ,由洛伦兹力提供向心力得: qB v =m v 2/r③ 小球恰能通过半圆轨道的最高点并沿轨道运动,则应满足: mg =m v 2/R④ 由②③④得:r =EBR g⑤ 即PO 的最小距离为:y =2r =2EBR g⑥(3)小球由O 运动到N 的过程中设到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12m v 2N -12m v 2⑦ 由④⑦解得:v N =5gR ⑧ 小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有:沿x 轴方向有:x =v N t⑨ 沿电场方向有:z =12at 2⑩由牛顿第二定律得:a =qE /m ⑪t 时刻小球距O 点为:s =x 2+z 2+(2R )2=27R(限时:45分钟)一、单项选择题1.(2013·安徽·17)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1 B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 答案 C解析 由万有引力提供向心力知G Mm r 2=m v 2r ,所以卫星的动能为12m v 2=GMm2r,则卫星在半经为r 的轨道上运行时机械能为E =12m v 2+E p =GMm 2r -GMm r =-GMm2r.故卫星在轨道R 1上运行时:E 1=-GMm 2R 1,在轨道R 2上运行时:E 2=-GMm2R 2,由能的转化和守恒定律得产生的热量为Q =E 1-E 2=GMm 2⎝⎛⎭⎫1R 2-1R 1,故正确选项为C. 2.(2013·新课标Ⅰ·16)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将 ( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回答案 D解析 粒子两次落到小孔的速度相同,设为v ,下极板向上平移后由E =Ud 知场强变大,故粒子第二次在电场中减速运动的加速度变大,由v 2=2ax 得第二次减速到零的位移变小,即粒子在下极板之上某位置返回,设粒子在距上极板h 处返回,对粒子两次运动过程应用动能定理得mg (d 2+d )-qU =0,mg (d 2+h )-q U 23d ·h =0.两方程联立得h =25d ,选项D 正确.3.质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图1所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为f ,以下说法正确的是( )图1 A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(m v 1ft 1+1)v 1答案 D解析 0~t 1时间内汽车的加速度大小为v 1t 1,m v 1t 1为汽车所受的合外力大小,而不是牵引力大小,选项A 错误;t 1时刻汽车牵引力的功率为F v 1=(m v 1t 1+f )v 1,之后汽车功率保持不变,选项B 错误;t 1~t 2时间内,汽车的平均速率大于v 1+v 22,选项C 错误;牵引力等于阻力时速度最大,即t 2时刻汽车速率达到最大值,则有(m v 1t 1+f )v 1=f v 2,解得v 2=(m v 1ft 1+1)v 1,选项D 正确.4.如图2所示,质量为m 的物块(可视为质点),带正电Q ,开始时让它静止在倾角α=60°的固定光滑绝缘斜面顶端,整个装置放在水平方向向左、大小为E =3mg /Q 的匀强电场中(设斜面顶端处电势为零),斜面高为H .释放后,物块落地时的电势能为ε,物块落地时的速度大小为v ,则( )图2A .ε=33mgH B .ε=-33mgH C .v =2gHD .v =2gH答案 C解析 由电场力做功等于电势能的变化可得物块落地时的电势能为ε=-QEH /tan 60°=-3mgH /3=-mgH ,选项A 、B 错误;由动能定理,mgH +QEH /tan 60°=12m v 2,解得v =2gH ,选项C 正确,D 错误. 二、双项选择题5.如图3所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中( )图3A .物体的重力势能增加了34mghB .物体的重力势能增加了mghC .物体的机械能损失了12mghD .物体的动能减少了mgh 答案 BC解析 该过程物体克服重力做功为mgh ,则物体的重力势能增加了mgh ,选项A 错误,选项B 正确;由牛顿第二定律有f +mg sin 30°=ma ,解得f =14mg ,克服摩擦力做的功等于机械能的减少量,W f =-f ·h sin 30°=-12mgh ,选项C 正确;根据动能定理知,合外力做的功等于动能的变化量,故动能减少量为32mgh ,选项D 错误.6.如图4所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )图4A .金属棒在导轨上做匀减速运动B .整个过程中金属棒克服安培力做功为12m v 2C .整个过程中金属棒在导轨上发生的位移为2qRBLD .整个过程中电阻R 上产生的焦耳热为12m v 2解析由题意可知金属棒在安培力作用下做减速运动直至静止,由于速度一直减小,故安培力的大小一直减小,金属棒的加速度减小,故金属棒做加速度减小的减速运动,选项A错误.在整个过程中,只有安培力做负功,由动能定理可知金属棒克服安培力做功为12m v2,选项B正确.由q=ΔΦR总可知q=BLs2R,解得s=2qRBL,选项C正确.由B项可知整个回路中产生的焦耳热为12m v2,电阻R上产生的焦耳热为14m v2,选项D错误.7.将带正电的甲球放在乙球的左侧,两球在空间形成了如图5所示的稳定的静电场,实线为电场线,虚线为等势线.A、B两点与两球球心的连线位于同一直线上,C、D两点关于直线AB对称,则()图5A.乙球一定带负电B.C点和D点的电场强度相同C.正电荷在A点具有的电势能比其在B点具有的电势能大D.把负电荷从C点移至D点,电场力做的总功为零答案CD解析电场线从正电荷出发指向负电荷,根据电场线知乙球左侧带负电,右侧带正电,整体带电情况不确定,A错误;电场强度是矢量,C、D两点电场强度的方向不同,B 错误;电场线的方向是电势降落最快的方向,A点的电势比B点的电势高,由电势能的定义式E p=qφ知,正电荷在A点的电势能比在B点的电势能大,C正确;C、D两点在同一等势面上,故将电荷从C点移至D点电势能不变,电场力做功是电势能变化的量度,故电场力不做功,D正确.8.如图6所示,绝缘轻弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现把与Q大小相同、电性相同的小球P,从N点由静止释放,在小球P与弹簧接触到压缩至最短的过程中(弹簧始终在弹性限度内),以下说法正确的是()图6A.小球P和弹簧组成的系统机械能守恒B.小球P和弹簧刚接触时其速度最大C.小球P的动能与弹簧弹性势能的总和增大D.小球P的加速度先减小后增大。
高中物理竞赛讲义动量和能量专题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中物理竞赛讲义动量和能量专题一、冲量1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。
2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。
如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。
因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。
换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。
例:以初速度竖直向上抛出一物体,空气阻力不可忽略。
关于物体受到的冲量,以下说法正确的是:()A、物体上升阶段和下落阶段受到的重力的冲量方向相反;B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。
二、动量1.定义:质量m和速度v的乘积mv.2.公式:p=mv3.单位:千克•米/秒(kg•m/s),1N•m=1kg•m/s2•m=1kg•m/s4.动量也是矢量:动量的方向与速度方向相同。
三、动量的变化1.动量变化就是在某过程中的末动量与初动量的矢量差。
即△P=P’-P。
例1:一个质量是的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化变化了多少例2:一个质量是的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向?2.动量是矢量,求其变化量可以用平行四边形定则四、动量定理1.物理意义:物体所受合外力的冲量等于物体的动量变化2.公式:Ft=p’一p=mv'-mv3.动量定理的适用范围:恒力或变力 (变力时,F为平均力)例:质量2kg的木块与水平面间的动摩擦因数μ=,木块在F=5N的水平恒力作用下由静止开始运动。
高考物理能量和动量的综合运用
能量和动量的综合运用动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图景,抽象出物理模型,选择物理规律,建立方程进行求解。
这一部分的主要模型是碰撞。
而碰撞过程,一般都遵从动量守恒定律,但机械能不一定守恒,对弹性碰撞就守恒,非弹性碰撞就不守恒,总的能量是守恒的,对于碰撞过程的能量要分析物体间的转移和转换。
从而建立碰撞过程的能量关系方程。
根据动量守恒定律和能量关系分别建立方程,两者联立进行求解,是这一部分常用的解决物理问题的。
动量和能量综合例析例1、如图,两滑块A、B的质量分别为m1和m2,置于光滑的水平面上,A、B间用一劲度系数为K的弹簧相连。
开始时两滑块静止,弹簧为原长。
一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。
试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。
【解】(1)设子弹射入后A的速度为V1,有:mV0=(m+m1)V1(1)得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有:(m+m1)V1=(m+m1+m 2)V(2)(3)由(1)、(2)、(3)式解得:(2)mV0=(m+m1)V2+m2V3(4)(5)由(1)、(4)、(5)式得:V3[(m+m1+m2)V3-2mV0]=0解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。
开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。
若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。
【解】由于A 、B 碰撞过程极短,C 球尚未开始摆动,故对该过程依前文解题策略有:m A V 0=(m A +m B )V 1 (1)E 内= (2)对A 、B 、C 组成的系统,图示状态为初始状态,C 球摆起有最大高度时,A 、B 、C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +m C )V 0=(m A +m B +m C )V 2 (3)(4)由上述方程分别所求出A、B刚粘合在一起的速度V1=2m /s ,E内=4J ,系统最后的共同速度V2=2.4m /s ,最后求得小球C摆起的最大高度h=0.16m 。
例3、质量为m 的木块在质量为M 的长木板中央,木块与长木板间的动摩擦因数为μ,木块和长木板一起放在光滑水平面上,并以速度v 向右运动。
为了使长木板能停在水平面上,可以在木块上作用一时间极短的冲量。
试求:(1)要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何?(2)木块受到冲量后,瞬间获得的速度为多大?方向如何?(3)长木板的长度要满足什么条件才行?【解】(1)水平冲量的大小为:()I M m v =+(1分)水平冲量的方向向左(1分)(2)以木块为研究对象:取向左为正方向,则:()()I M m v mv mv m =+=--'(2分) ∴=v M m v m '(2分) (3)根据能的转化与守恒定律得: μmg L mv Mv m 21212022=+-'(2分) ()∴=+L M M m v m g22μ(2分) 即木板的长度要满足:()L M M m v m g ≥+22μ综上所述,解决动量守恒系统的功能问题,其解题的策略应为:一、分析系统受力条件,建立系统的动量守恒定律方程。
二、根据系统内的能量变化的特点建立系统的能量方程三、建立该策略的指导思想即借助于系统的动能变化来表现内力做功。
1、如图,在光滑绝缘的长直轨道上有A、B两个带同种电荷小球,其质量分别为m1、m2。
小球A以水平速度V0沿轨道向右冲向静止的B球,求最后两球最近时(A、B两球不相碰)系统电势能的变化。
2、如图所示,光滑的水平面上有质量为M的滑板,其中AB部分为光滑的1/4圆周,半径为r,BC水平但不光滑,长为。
一可视为质点的质量为m的物块,从A点由静止释放,最后滑到C点静止,求物块与BC的动摩擦因数。
3、如图所示, 在高为h的光滑平台上放一个质量为m2的小球, 另一个质量为m1的球沿光滑弧形轨道从距平台高为h处由静止开始下滑, 滑至平台上与球m2发生正碰, 若m1=m2, 求小球m2最终落点距平台边缘水平距离的取值范围.4、如图所示,A、B是位于水平桌面上的两质量相等的木块,离墙壁的距离分别为L1和L2,与桌面之间的滑动摩擦系数分别为μA和μB,今给A以某一初速度,使之从桌面的右端向左运动,假定A、B之间,B与墙间的碰撞时间都很短,且碰撞中总动能无损失,若要使木块A最后不从桌面上掉下来,则A的初速度最大不能超过______。
5、如图在光滑的水平台上静止着一块长50cm,质量为1kg的木板,板的左端静止着一块质量为1千克的小铜块(可视为质点),一颗质量为10g的子弹以200m/sAB的速度射向铜块,碰后以100m/s 速度弹回。
问铜块和木板间的摩擦系数至少是多少时铜块才不会从板的右端滑落。
(g 取10m/s 2 )7、如图所示,小球A 从半径为R=0.8m 的1/4光滑圆弧轨道的上端点以v 0=3m/s 的初速度开始滑下,到达光滑水平面上以后,与静止于该水平面上的钢块B 发生碰撞,碰撞后小球A 被反向弹回,沿原路进入轨道运动恰能上升到它下滑时的出发点(此时速度为零)。
设A 、B 碰撞机械能不损失,求A 和B 的质量之比是多少?8、如图,有光滑圆弧轨道的小车静止在光滑水平面上,其质量为M 。
一质量为m 的小球以水平速度V 0沿轨道的水平部分冲上小车,求小球沿圆弧形轨道上升到最大高度的过程中圆弧形轨道对小球的弹力所做的功。
9、如图6—5—5所示,一质量为M ,长为L 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块m <M 。
现以地面为参照系,给A 和B以大小相等方向相反的初速度(如图),使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系,则求解下例两问:(1)若已知A 和B 的初速度大小为v0,求它们最后的速度的大小和方向。
(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。
1、 m 1m 2V 02/2(m 1+m 2)2、 r /L3、 (h<s<2h )4、 5、0.456、 (1) 1m/s, 方向向下; (2) k>3, V F 方向向上; k =3,V F =0; k<3, V F 方向向下。
HM V 0 ml v 0 v S7、 1 : 9 8、20)(2M m mV M W +-= 9、(1) v = v 0,方向向右 ; (2) L 1= L滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -• ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统(13年高考35题)如图18,两块相同平板P 1、P 2至于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧最大压缩量x 和相应的弹性势能E p【解析】P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得m v 0=2m v 1解得v 1=v 02,方向向右 P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2m v 1+2m v 0=4m v 2解得v 2=34v 0,方向向右. (2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x )解得x =v 2032μg-L . 答案:(1)v 1=12v 0,方向向右 v 2=34v 0,方向向右 (2)v 2032μg -L 116m v 20练习6、如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J1、(2012肇庆一模第35题)如图所示,半径为R 的光滑半圆环轨道竖直固定在一水平光滑的桌面上,在桌面上轻质弹簧被a 、b 两个小球挤压(小球与弹簧不拴接),处于静止状态。