新型承载网络架构和技术NEW
- 格式:doc
- 大小:78.00 KB
- 文档页数:8
透视Hot-Point PerspectiveI G I T C W 热点144DIGITCW2020.121 5G 应用场景根据ITU (国际电信联盟)建议,对5G 网络可能要服务的业务类型进行了分类,主要有以下3种。
(1)eMBB (增强型移动宽带),也就是超大带宽,主要满足用户对大流量的需求,随着互联网的发展,流量已成为各个互联网企业必争之地,而运营商5G 商用的第一目标就是提升客户的体验速率,一般使用情况下用户体验速率达到1Gbps ,峰值速率达到数10Gbps ,流量密度最高可达和数10Tbps/km 2。
适用于连续广域覆盖和热点高容量的场景,也是5G 初步商用的第一目标。
(2)uRLLC (超低时延、高可靠),这类应用对时延及其敏感,并具有高可靠性的特点,主要面向的是车联网、工业控制等垂直领域,主要满用户毫秒级的端到端时延,并为时延敏感型的特殊行业提供高可靠性保证。
(3)mMTC (低功耗、大连接),这类应用的主要特点是数据包较小、功耗较低但是连接数量巨大,主要面向的应用场景是智慧城市(例如垃圾分类)、智能农业、森林防火和环境监测等方面。
要求网络能够支持海量连接,具有支持千亿级别的连接的能力,满足100万/km 2的连接密度要求,对终端产品也提出了要求,即满足低功耗和超低成本的特点。
总之,5G 关键能力指标所必须具备的特点有:大带宽高速率、低时延高可靠、海量连接,与4G 网络相比,在速率、时延、移动性、流量密度及连接数密度等关键指标上必须具有较大的飞跃。
表1 5G 关键指标与4G 参考值进行对比关键指标用户体验速率峰值速率时延移动性流量密度连接数密度4G 参考值10Mbps 1Gbps空口10ms 350km/h 0.1Mbps/m 210万/km 25G 取值0.1-1Gbps 20Gbps空口1ms500km/h10Mbps/m 2100万/km 22 5G 承载网应具备的特点(1)灵活性:随着各项业务不断发展,5G 网络必须具有灵活性及丰富性的特点才能够充分适应各类业务要求,与传统的4G 网络相比,必须具有更好的业务实现能力、更强的带宽承载能力、更合理的网络组织架构,与不断更新的新技术能够更好的融合。
5G网络架构与关键技术随着技术的进步和人们对通信需求的不断增长,5G网络已成为当前科技领域的热门话题。
5G网络将是第五代移动通信技术的缩写,它将以更高的速度、更低的延迟和更稳定的连接来实现更快速、更可靠的数据传输。
本文将主要介绍5G网络的架构和关键技术。
1.5G网络架构核心网络:5G核心网络具有分布式架构,它分为多个网络切片(Network Slicing),每个切片都专门用于实现不同的通信需求,如增强型移动宽带(eMBB)、大规模机器通信(mMTC)和超可靠低延迟通信(URLLC)。
这样的设计可以为不同行业和业务提供个性化的网络体验。
边缘计算:由于5G网络下的大量数据传输和处理可能导致网络延迟增加,为了使数据传输更加高效,5G引入了边缘计算概念。
边缘计算通过将计算和存储能力推向网络边缘,将计算任务分配到更接近终端用户的边缘节点上,从而降低网络延迟和流量负载,提高网络性能和用户体验。
无线接入网:5G无线接入网具有多层次的分布式结构,包括宏基站、微基站和室内小基站。
宏基站用于覆盖广域,微基站用于提供高密度的覆盖和容量,室内小基站用于提供室内覆盖。
此外,5G还引入了Massive MIMO(Massive Multiple Input Multiple Output)技术,通过使用大量天线和波束成形技术来提高网络容量和覆盖范围。
2.关键技术为了实现5G网络的高速率、低时延和大容量等特点,5G网络依赖于许多关键技术。
毫米波通信:5G网络广泛使用毫米波频段(mmWave),它具有更宽的频谱和更高的传输速率。
然而,由于毫米波频段的特殊传播特性,如高传输损耗和较短的传输距离,需要使用波束成形和中继技术来克服这些问题。
超密集组网:5G网络可以实现超密集组网,即高密度的基站部署。
通过将基站部署在更多的地方,并使用更小的基站,可以提供更好的覆盖和更高的容量。
网络切片技术:5G网络可以根据不同的应用需求,将网络划分为多个独立的逻辑切片,每个切片都适用于不同的应用场景。
5G SA的网络架构和关键技术5G SA是指基于5G独立组网(Standalone)的网络架构,与之相对应的是5G NSA (Non-Standalone)网络架构。
下面将介绍5G SA的网络架构和关键技术。
1. 网络架构:5G SA网络架构主要包括核心网、无线接入网与用户设备三个部分。
1.1 核心网:5G SA核心网的架构由5G核心网(5GC)和业务支持系统(Business Support System,BSS)组成。
5GC是5G SA核心网的关键组成部分,包括核心用户面、核心控制面和网络管理平面。
在核心用户面上,5GC提供了一系列的业务功能,例如用户识别、安全策略、会话管理等。
核心控制面负责用户数据的传输和路由,以及网络功能的控制和协调。
网络管理平面负责网络的配置、管理和监控。
1.2 无线接入网:5G SA的无线接入网包括5G基站和传输网络两部分。
5G基站负责与用户设备之间的无线通信,通过用户设备接入射频信号进行数据传输。
传输网络负责将用户设备传输的数据进行处理和转发,以保证数据的稳定性和可靠性。
1.3 用户设备:就像其他移动通信网络,5G SA网络中的用户设备包括手机、平板电脑、物联网设备等。
用户设备通过5G基站与核心网和其他用户设备进行通信。
2. 关键技术:2.1 新空口技术:为了实现更高的数据传输速率和更低的时延,5G SA引入了新的空口技术,如高增益多天线技术(Massive MIMO)、波束成形技术(Beamforming)和多路径接收技术等。
这些技术可以增加无线信号的覆盖范围和传输效率,提高网络的容量和性能。
2.2 网络切片:5G SA支持网络切片技术,将网络资源按照不同的业务需求进行划分和分配,可以为不同的应用场景提供定制化的网络服务。
网络切片可以提高网络的灵活性和可扩展性,支持各种不同类型的应用,如增强型移动宽带、物联网和车联网等。
2.3 蜂窝协同传输:5G SA引入了蜂窝协同传输技术,可以将多个基站的传输资源进行协同利用,提高网络的能源效率和容量。
承载网络的演进分析作者:宋美芳来源:《中国新通信》 2020年第18期宋美芳河南省信息咨询设计研究有限公司随着5G时代的到来,快速发展的云网业务、垂直行业的创新应用等等都对承载网络提出了新的要求,现有承载网络的架构及业务开通模式对于创新业务支撑不足的问题将更加凸显。
承载网络应适应和引领技术发展趋势,应用新技术简化网络。
一、传统承载网现状及存在问题传统的承载网络主要是指传统城域网、DC内部网络和IPRAN网络等,目前互联网城域网是互联网业务的承载网络,主要承载业务有家庭宽带、互联网专线等。
互联网城域网一般由BNG/SR和CR组成,均为较大型的路由器设备,通常采用星形结构,BNG/SR设备直接连接CR设备。
IP RAN是承载移动网基站回传流量的网络,也用于承载大客户数据专线接入业务。
通常采用接入层、汇聚层、核心层三层架构。
现有CE网络主要作为核心网等专业的业务网元间业务承载、流量疏通以及与外部网络互通。
它们各自发展,仍然是烟囱式建网,接入方式复杂。
1.1从技术及业务实现层面看:1)每种网络设备所需技术要求不同、IP、MPLS、PW、VxLAN、二/三层VPN等。
2)城域层面网络数量及层次偏多,多个“接入+汇聚+核心”三层架构的城域网络再叠加上IP骨干网络,必将导致业务转发效率偏低,同时随着业务量的大增,流量转发成本急剧增加,并且存在网络拥塞、时延不确定的问题。
3)多张网络、多层次的网络无法灵活适应业务的高速增长,加之运营商网络建设的长流程,业务端到端打通实现困难,必然造成网络扩展的不灵活。
4)随着5G时代的到来,快速发展的云网业务、垂直行业的创新应用等等都对承载网络提出了新的要求,现有城域网络的架构及业务开通模式对于创新业务支撑不足的问题将更加凸显。
1.2从管理及维护层面看:1)不同的专业的建设及管理会导致各网络设备技术要求不一,包括硬件形态多样化、网络协议多样化,与网络发展趋势违背。
2)局址一致性问题会带来过多的绕转,大量的背靠背端口浪费,对跨网络的业务,连接成本明显增加。
TECHNOLOGY 技术应用摘要:在5G网络大规模发展阶段,SPN作为5G网络承载的核心技术,它满足了5G网络多方面的严苛的技术要求。
基于此,论文简要分析了SPN承载网的设计要求,并重点论述了SPN承载网关键技术要点以及SPN的组网策略,从SPN组网架构、SPN组网规划、业务统一承载、SPN路由优化等方面,均作了简要阐述。
关键词:SPN承载网;低时延;组网规划一、SPN承载网的设计要求SPN承载网作为新型承载网络,要想实现5G网络技术的智能化运营,应满足以下要求:(一)成本低,带宽大。
5G网络技术相比以往通信技术而言吞吐量更强,一般应保持在1Gbit/s。
5G网络的基站建设密度与覆盖面更加广泛,且应为1.5倍4G基站数量,这样才能支撑5G网络技术的实际应用。
同时,还应保证SPN承载网在建设时具有突出的成本低等特征,且拥有更大的带宽能力,一般应高于10GE,以此为5G 网络技术的有效推广创造有利条件。
(二)低时延,灵活性强。
5G网络应用场景相比之下具备低时延特性,而在此背景下所建立的SPN承载网也需展现出低时延、强灵活性性质。
其中针对低时延,应将其保持在10μs,促使5G网络达到1.25Gb/s下载速度。
而灵活性上需进行混合组网连接,并且可根据流量自行调整网关下沉情况,确保5G运营网络在物联网基础上拥有良好的发展前景。
(三)智能运维,协同可靠。
5G网络在运维管理上可依靠SPN承载网实施分层管控,进而满足不同业务需求,并为工业智能化制造与医疗自动化控制提供重要保障。
尤其随着时代的进步,未来借助5G网络必然打造全新的互联格局,这就要求SPN承载网应具备网络切片服务以及智能运维能力。
二、SPN承载网关键技术要点(一)切片通道层技术。
SPN承载网主要涉及到切片通道层、切片分组层、切片传送层等三个部分,要想保证SPN承载网的建设符合5G网络运营要求,应先行将带宽保持在25G之上。
其中切片通道层采用的关键技术包括采光技术,它是利用采光模块的有效控制以太网与光层,促使SPN承载网趋于稳定发展。
算力发展对承载网络的新要求迈过农业时代、工业时代、信息时代,人类进入了以数据为关键生产要素、算力为核心生产力的数字经济时代,算力成为支撑数字经济向纵深发展的新动能,数据量的爆发式增长对数据中心的算力、对数据中心之间的承载网络提出了更高要求。
背景分析随着AR/VR、元宇宙、工业互联网等新型数字应用的发展,网络需要具备云网资源精准感知、全局实时智能调度控制、大带宽低时延高可靠传输能力,现在的ICT融合技术侧重于解决云网的自动编排,采用软件定义和虚拟化技术、实现云网资源的灵活调度和统一管理。
国家出台的“东数西算”规划主要是在数据中心布局层面进行完善,初步计划到2023年底,国家枢纽节点算力规模占比超过70%。
“东数西算”工程规划中,东部节点定位于满足实时算力需求;西部节点定位于承接全国范围需后台加工、离线分析、存储备份、平台互联网等非实时或时延不敏感算力需求。
大量高度实时性的业务则通过各区域或城市的数据中心、边缘计算模块承担。
算力服务对承载网络的需求主要体现在超大带宽、低时延、高可靠、安全性、灵活性方面。
关键技术一、大带宽“东数西算”工程规划中东部DC以服务本区域算力需求为主,西部DC以服务全国算力需求为主,西部DC预计出省带宽在70%以上。
当完成“东数西算”规划的机架数时,预计优化时延的应对措施:1、优化网络架构国内通信网络长期以来形成三层骨干网架构:核心层:以几个大区(北京、上海、广州、武汉、成都、西安、沈阳、南京等)为中心组成核心层,核心层采用全网状互联方式,实现核心层节点间直连。
骨干层:骨干层以省会城市及部分重点城市为主,分大区连接核心节点。
跨省的业务通过核心节点转接。
接入层:各个地市的业务先上联省内骨干节点,再通过骨干层和核心层进行业务的转发。
这种架构可提高网络资源的效率,在成本、资源利用效率与业务性能优化(时延、带宽等)间实现平衡。
随着互联网业务的高速增长,以及业务对时延要求越来越高,目前国内运营商普遍以骨干层节点间直连的方式,推动网络扁平化,缩短业务转接的跳数和路由长度。
全面:一文看懂5G网络(接入网+承载网+核心网)本文以无线接入网为线索,梳理一下无线侧接入网+承载网+核心网的架构,主讲无线接入网,浅析承载网和核心网,帮助大家更深入的了解5G,也帮助新手更好的入门。
在我们正式讲解之前,我想通过这张网络简图帮助大家认识一下全网的网络架构,通过对全网架构的了解,将方便对后面每一块网络细节的理解。
这张图分为左右两部分,右边为无线侧网络架构,左边为固定侧网络架构。
无线侧:手机或者集团客户通过基站接入到无线接入网,在接入网侧可以通过RT N或者IP R A N或者PT N解决方案来解决,将信号传递给BS C/R N C。
在将信号传递给核心网,其中核心网内部的网元通过IP承载网来承载。
固网侧:家客和集客通过接入网接入,接入网主要是GP O N,包括ON T、OD N、OL T。
信号从接入网出来后进入城域网,城域网又可以分为接入层、汇聚层和核心层。
B R A S为城域网的入口,主要作用是认证、鉴定、计费。
信号从城域网走出来后到达骨干网,在骨干网处,又可以分为接入层和核心层。
其中,移动叫CM N E T、电信叫169、联通叫163。
固网侧和无线侧之间可以通过光纤进行传递,远距离传递主要是有波分产品来承担,波分产品主要是通过WD M+S D H的升级版来实现对大量信号的承载,OT N是一种信号封装协议,通过这种信号封装可以更好的在波分系统中传递。
最后信号要通过防火墙到达IN T E R N E T,防火墙主要就是一个N A T,来实现一个地址的转换。
这就是整个网络的架构。
看完宏观的架构,让我们深入进每个部分,去深入解读一下吧。
什么是无线接入网?首先大家看一下这个简化版的移动通信架构图:无线接入网,也就是通常所说的RAN(Radio Access Network)。
简单地讲,就是把所有的手机终端,都接入到通信网络中的网络。
大家耳熟能详的基站(Ba s e S t a t i o n),就是属于无线接入网(RA N)。
目录IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。
推进组是聚合中国产学研用力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
引言5G承载网络总体架构5G承载转发面架构与技术方案5G承载协同管控架构和关键技术5G同步网架构和关键技术我国5G承载产业发展趋势分析总结和展望主要贡献单位P1P2P4P21P25P29P34P35I M T -2020(5G )推进组5G承载网络架构和技术方案白皮书I M T-2020(5G)推进组5G承载网络架构和技术方案白皮书2I M T-2020(5G)推进组5G承载网络架构和技术方案白皮书引言随着3GPP 5G非独立(NSA)和独立(SA)组网标准的正式冻结,我国运营商同步启动规划和设计5G试点和预商用方案,5G迈向商用的步伐逐步加快。
相对4G网络,5G在业务特性、接入网、核心网等多个方面将发生显著变化,其中在业务特性方面,增强型移动宽带(eMBB)、超可靠低时延通信(uRLLC)、大规模机器类通信(mMTC)等典型业务场景将分阶段逐步引入;在无线接入网方面,将重塑网元功能、互联接口及组网结构;在核心网方面将趋向采用云化分布式部署架构,核心网信令网元将主要在省干和大区中心机房部署,数据面网元根据不同业务性能差异拟采用分层部署方案,随着物联网(IOT)等垂直行业的业务发展,5G控制平面也将呈现大区部署趋势。
5G新型特性变化为承载技术的新一轮快速发展提供了契机。
根据IMT-2020(5G)推进组5G承载工作组2018年6月发布的《5G承载需求分析》白皮书, 5G对承载网络主要带来三大性能需求和六类组网功能需求,也即在关键性能方面,“更大带宽、超低时延和高精度同步”等性能指标需求非常突出,在组网及功能方面,呈现出“多层级承载网络、灵活化连接调度、层次化网络切片、智能化协同管控、4G/5G混合承载以及低成本高速组网”等六大组网需求,如何满足和实现这些承载需求至关重要。
新一代网络架构研究随着互联网技术的不断革新,网络架构也在不断升级和改进。
新一代网络架构被视为是未来互联网发展的重要趋势,在网络安全、性能优化、可扩展性等方面都有着重要的应用价值。
一、新一代网络架构的概念和特点新一代网络架构是指基于互联网技术的新型网络体系结构,它具有以下特点:1. 去中心化:新一代网络架构中,数据的存储和处理不再局限于中心服务器,而是由多个节点共同完成。
去中心化的网络架构可以提高网络的稳定性和安全性。
2. 分布式计算:分布式计算是新一代网络架构的核心,它能够在多个节点上同时完成计算任务,从而提高计算效率和可靠性。
3. 边缘计算:新一代网络架构中,边缘计算被广泛应用。
边缘计算将计算和存储功能放置在离终端设备更近的位置,从而能够更快地完成数据处理。
4. 软件定义:新一代网络架构采用软件定义的网络技术,网络设备不再是固定的硬件设备,而是由软件定义的网络功能虚拟化实现,从而可以更加灵活地配置网络。
二、新一代网络架构的应用新一代网络架构在众多领域都有广泛的应用,以下是几个典型应用场景:1. 5G网络:新一代网络架构是5G网络的核心技术之一。
5G网络采用分布式计算、边缘计算和虚拟化技术,可以提供更高的带宽、更低的延迟和更好的安全性能。
2. 物联网:物联网是新一代网络架构的另一个典型应用场景。
物联网将海量设备连接到互联网上,采用去中心化网络架构能够提高网络的稳定性和安全性。
3. 云计算:云计算是新一代网络架构的重要应用领域。
云计算采用分布式计算、虚拟化技术和软件定义网络技术,能够以较低的成本提供高效的计算服务。
4. 区块链:区块链是新一代网络架构的代表性应用之一。
区块链采用分布式计算和去中心化网络架构,可以实现去信任、不可篡改的数据交换。
三、新一代网络架构的发展趋势新一代网络架构是未来互联网发展的重要趋势,它将在未来几年得到进一步的发展和应用。
以下是几个新一代网络架构的发展趋势:1. 5G网络的商用化:5G网络是新一代网络架构的重要应用场景之一。
浅谈以太环网在塘沽承载网中的应用作者:Ang Yang(昂阳) Li Lin(李林) Wang Li-li(王莉莉)作者单位:中国联合网络通信有限公司天津市塘沽区分公司,天津市塘沽区300450摘要:以太环网作为一种新型网络在塘沽城域网中进行试商用,主要对以太环网如何应用,网络构架需要进行如何规划等方面展开分析讨论,同时对于前期已经投入使用的RPR环网进行简单介绍。
关键词:以太环网,RPR,以太网,城域网作者简介:昂阳(1979),男,汉,天津,学士,中国联合网络通信有限公司天津市塘沽区分公司,网络维护工程师,李林(1980),男,汉,四川,学士,中国联合网络通信有限公司天津市塘沽区分公司,网络维护工程师王莉莉(1975)女,汉,四川,学士,中国联合网络通信有限公司天津市塘沽区分公司,网络维护工程师正文:一、以太环网产生背景随着互联网蓬勃的发展,互联网技术也在迅速更新,互联网业务种类也在不断地增加,用户量也变的越来越庞大了,这些对互联网运营商组建的承载网要求越来越高。
骨干网层面多业务承载的讨论尘埃落定,各大运营商采用了单独建网或者单/多业务网承载方案解决了多业务在骨干网层面的承载问题。
城域网作为骨干网络的延伸,是业务的接入和汇聚的平台,是下一代网络落地的关键点,是运营商业务收入的主要来源,因此城域网的多业务承载将成为下一阶段各运营商网络优化和改造工作的重点。
当前城域网按照组网的设备可分为以高速路由器为主的路由型城域网和以高速三层交换机为主的交换型城域网两类。
现网中普遍存在问题有以下四点:(1)二层交换网络大,网络结构复杂,层次过多,QOS支持能力较弱,网络故障恢复慢,不能满足将来的业务在QoS和可靠性方面的要求。
(2)带宽的增长永远无法满足用户需求和业务的要求。
(3)旁挂式BRAs带来的网络可靠性低、效率低、端口浪费、制约带宽等种种问题。
(4)树型结构的网络拓扑使网络整体缺乏链路保护,致使网络安全性不高。
为了解决现在城域网的问题,必须对现有城域网络进行合理的规划和优化,制定合适多业务承载能力的下一代IP城域网,电信级以太环网。
下面我们将结合塘沽的10G以太环网的试商用进行以太环网在电信运营商网络中的构架以及应用方面的分析与讨论。
二、以太环网的构架1、以太环网技术的提出电信级以太网又称运营商级以太网(CE,CarrierEthernet),最早由城域以太网论坛(MEF)在2005年年初提出。
其具备以下两方面的特征:(1)、电信级以太网主要以网络能够支持的以太网业务类型和业务所能够达到的性能为衡量标准,并不专指某种网络技术(2)、电信级以太网要求具体的技术满足五大属性,这些属性本身即具有鲜明的面向业务的特征,如能够提供标准化的业务、在业务带宽和业务规模上均具有可扩展性,提供业务的可靠性、QoS保证和电信级的网络管理。
2、不同厂家之间的以太环网构架区别根据以太环的特点和技术要求,各个厂家都开发出了自己的解决方案.a)华为华为3COM的推出的以太环网技术是RRPP(RapidRigProtectioProtocol ,快速环网保护协议)。
RRPP技术是一种专门应用于以太网环的链路层协议,它在以太网环中能够防止数据环路引起的广播风暴,当以太网环上链路或设备故障时,能迅速切换到备份链路,保证业务快速恢复。
与STP 协议相比,RRPP协议具有算法简单、拓扑收敛速度快和收敛时间与环网上节点数无关等显著优势,基于RRPP的以太环网解决方案可对数据,语音,视频等业务做出快速的保护倒换,协同高中低端交换机推出整体的环网解决方案,为不同的应用场景提供不同的解决方案。
b)中兴中兴公司则推出了电信级以太网解决方案中兴智能以太网技术ZESR(ZTE Ethernet Smart Ring )。
ZESR技术允许网络管理员创建以太网环,其方式类似于光纤分布式数据接口(FDDI)或SONET/SDH环。
ZESR可以在不到50毫秒时间内,从任何链路或节点故障中恢复过来。
ZESR协议在实现上借鉴了802.1w的一些基本思想,如MAC地址学习与更新的功能。
ZESR具有链路无关性,只要是以太网链路,就可以轻松部署ZESR环网。
中兴ZXR10高端交换机上支持ZESR功能,其主要特点为:保护倒换时间≤50MS,成本较低,扩展性好,能保持上层业务的完整性,支持原有以太网QOS平滑过渡,带宽利用率较高,能与VRRP、OSPF、BGP等多种三层协议共存,也可与STP、RSTP等二层协议共存。
ZESR可通过任何支持802.1Q的设备隧道传送协议帧数据。
ZESR也可以通过第二层多协议标记交换(MPLS)隧道传送协议帧数据,从而实现与MPLS的共存。
c)北电北电则提供了基于高速以太环网的用户接入和汇聚解决方案OESS。
OESS采用环形拓扑结构,对组播业务(如BTV等)的支持具有许多优势,包括组播数据流复制有效性、链路保护倒换特性等等。
OESS还可以为组播应用保护与预留专用的网络带宽。
在环形结构下区别利用环内正反向带宽,从而可以在最有效地保证组播应用的同时最大限度地实现环路带宽的高效利用。
d)烽火烽火网络提出的MSR(多业务环)是一个双向对称二纤环,至少由两个节点组成。
每个节点可以上下一个或多个独立的支路(如以太网、千兆以太网、DVB、POS/或ATM端口),也能够发送和接收3层(IPv4/IPv6)转发数据包(类似路由器)、控制信令分组和网络管理分组。
它既可支持以太网、千兆以太网、数字视频广播(DVB)、ATM、POS(PacketoverSONET/SDH)等业务支路,也可以像路由器一样支持数据包的转发。
MSR集传输和数据交换于一体,并且支持业务的点到点、组播和广播应用,原理上相当于一个多业务分插复用设备组成的环。
MSR架构在RPRMAC层之上,继承了RPR诸如空间复用、分布式带宽管理与拥塞控制功能、COS级的业务质量,多业务支持,电信级的保护倒换以及自动拓扑发现等等诸多的优秀特性。
各厂家的实现技术细节虽然不同,但最终都统一在以太环网的几大基本属性下,同时部分厂家也加入了一些自身的创新因素。
3、电信运营商对电信城域网络优化建设的要求与实现(1)、可靠性方面要求原有城域网优化改造的指导思想,BRAS以下为二层汇聚网络,目前组网方式很多,主要是以SDH为基础的多业务传输平台(MSTP)和星型以太网两种方式为主。
星型以太网:网络响应时间、保护机制以及对组播应用的支持方面还存在很大不足,难以支持包括IPTV等业务在内的多业务承载。
网络故障恢复速度慢。
SDH以太网:虽然解决了50毫秒的故障切换问题,但大容量端口成本高,其结构特性决定其只能作为以语音为主,数据为辅的网络应用。
以太环网作为一种城域以太网技术,解决了传统数据网保护能力弱、故障恢复时间长等问题,理论上可以提供50ms的快速保护特性,同时兼容传统的以太网协议,是城域宽带接入网优化改造的一种重要的技术选择和解决方案。
(2)、服务质量方面要求早期的以太网在局域网内主要承载数据业务,数据业务的特点是对时延不敏感,TCP的重传机制又可以容忍以太网上少量数据包的丢失,因此不需要差异化的服务质量保证。
但对于电信级以太网技术,由于其需要承载综合业务,这种不区分流量类型的Besteffort服务难以保证业务的质量。
运营级以太网交换机通过Diff-Serv(区分业务体系结构)实现QoS,其具体实现过程包括流分类、映射、拥塞控制和队列调度。
(3)、安全性方面要求传统以太网的安全问题已经通过VLAN技术划分虚拟网段得到解决。
但随着互联网的发展,近年来网络经常遭受蠕虫等网络病毒以及黑客的攻击,全网瘫痪的案例时有发生,合法用户的有效带宽、用户的信息安全难以得到保证。
因此在建设电信级以太网时,必须考虑如何保证网络的安全性。
比较常见的以太网安全解决方案是通过ACL(访问控制列表)或者过滤数据库来过滤非法数据;端口镜像技术可以将任一端口的输入输出流量复制到指定端口输出,帮助网络管理者监控网络的数据内容;一些高端的网络设备具有强大的应用感知和网络级自动免疫能力,能够一定程度地自动感知并过滤不安全的数据流。
4、以太环网技术的演变随着MPLS VPN、NGN、IPTV等新业务的不断成熟和规模商用,城域网也由单一的宽带Internet访问业务向能够接入并可靠承载数据、分组语音/视频和流媒体等的多业务综合IP 城域网发展。
新的IP城域网的设计规划需要综合考虑宽带用户接入、各类多媒体业务承载对网络的严格要求,综合使用QinQ、MPLS、组播、TE等新技术保障多业务的综合承载和传输。
三层到边缘是目前以太城域网的一种常见形式。
业务节点分布式布署,MPLS推进到ME网络边缘,业务的布署尽量靠近用户,网络保护通过IGP/LDP快速收敛以及TE FRR等技术实现,这种方式可以骨干网和城域网采用统一的IP/MPLS技术实现,并且通过可管理的L3转发(各种路由协议以及可靠性机制)防止了二层网络不可控制的缺点,网络技术都为标准技术,互通性/扩展性好,而且管理简单,布署方便。
什么是三层到边缘呢?城域网由一个或多个ME区域组成,每个ME区域包括NPE,BRAS,一个或多个UPE环网或者多个UPE组成的树型网。
城域网CORE作为整个城域网的核心设备,往上连接国家骨干网或者省干设备,往下连接ME区域的NPE设备,CORE之间可以采用Full Mesh或者半网状相连,接口至少是10G POS/GE互连。
NPE是ME区域的核心设备,上连城域网的CORE,下连ME区域的UPE环或树,旁挂ME区域的BRAS。
UPE作为单个ME区域中的PE设备,负责接入DSLAM、以太网交换机、MSAN以及VPN CE设备;多个UPE设备和NPE组成一个UPE环;和NPE相连接口是2.5G/10G接口,下行和DSLAM是GE接口。
BRAS作为某个或者多个ME区域的家庭用户PPPOE业务认证设备;BRAS下行和NPE以10G端口相连,上行以10G端口直接连接CORE设备。
方案采用三层到边缘的策略,VoD业务通过DHCP获取IP地址,UPE通过DHCP relay终结DHCP用户,V oIP和HSI业务采用PPPoE的方式接入,这两种业务透传到已有的BRAS上。
三、RPR环网架构RPR(弹性分组环)技术是在双环结构上的二层MAC层协议,对分组数据业务及IP数据业务提供业务接入和透明传输。
它通过两种方式存在,即基于SDH的嵌入式RPR和纯粹的RPR。
RPR技术具有下列特点:1、物理层无关性和支持大环网(逻辑环):RPR可在一系列物理层上工作,如SDH/SONET、GE/10GE、DWDM,理论上支持环上存在多达250个网元节点;2、与SDH相当的50ms快速保护倒换:具有二层RPR保护;3、与以太网同样优秀的广播业务支持;4、空间复用技术:RPR在目的地址上将包从环路上剥离,实现包Add/Drop;5、具有统计复用和流量管理能力:RPR传输以数据业务为主时,带宽利用率可提高2-8倍。