《模式识别(第三版)》勘误表
- 格式:doc
- 大小:498.00 KB
- 文档页数:4
第一章 绪论1.什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的___信息__。
2.模式识别的定义?让计算机来判断事物。
3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。
利用贝叶斯公式得到后验概率。
根据后验概率大小进行决策分析。
2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====mj Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===Mj j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。
勘误表一、P10页中 4.MS-DOS命令内容的复制、粘贴(1)用鼠标指向图1.1.12所示改为用鼠标指向图1.1.14所示……二、P11页实验32.键盘及输入法的设置(3)改为:将“中文(简体)-智能ABC”的键设置中的“切换至中文(简体)-智能ABC”按键顺序更改为ctrl+shift+1,并设置成“光标跟随”和“词频调整”。
三、实验4 word进阶提高——样式的应用改为:一、实验目的(1)学会word样式的修改及新样式的创建。
(2)学会合并邮件。
(3)学会自动生成目录。
(4)掌握项目符号的使用和脚注的使用。
二、实验内容时间:预计20min打开文档“A4_1.DOC”,按以下要求进行操作。
1.应用样式(1)将文档中第一行样式设置为“文章标题”,第二行样式设置为“标题注释”。
(2)将文章正文的第一段套用KSDOT3.DOT模板中的“正文段落4”样式。
2.修改样式(1)以正文为基准样式,将“正文段落01”样式修改为:字体为新宋体,字号为小三,字形为加粗,字体颜色为深蓝色,行间距为固定值20磅,自动更新对当前样式的改动,并应用于正文第二段。
(2)以正文为基准样式,将“正文段落02”样式修改为:字体为隶书,字号为四号、字行为加粗倾斜、字体颜色为蓝色,行间距为固定值21磅,段前、段后0.5行,自动更新对当前样式的改动,并应用于正文第三段。
3.新建样式(1)以正文为基准样式,新建“重点段落01”样式:字体为方正舒体,字号为小三,字形为加粗,行间距为固定值14磅,段前、段后0.5行,并应用于正文第四段。
(2)以正文为基准样式,新建“重点段落02”样式:字体为方正姚体,字号为小三,字形为加粗,行间距为固定值20磅,段前、段后0.5行,并应用于正文第五段。
4.创建模板保存文档,并将当前文档命名为A4_1A.DOT.三、技能进阶1题内容保持不变,另新增1题,内容如下:时间预计10min2.打开A4_3.DOC,按以下要求进行操作。
1、PCA和LDA的区别?PCA是一种无监督的映射方法,LDA是一种有监督的映射方法。
PCA只是将整组数据映射到最方便表示这组数据的坐标轴上,映射时没有利用任何数据内部的分类信息。
因此,虽然做了PCA后,整组数据在表示上更加方便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输入映射到了另外一个坐标轴上,有了这样一个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很大的运算量),它的目标是使得类别内的点距离越近越好,类别间的点越远越好。
2、最大似然估计和贝叶斯方法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最大似然估计?最大似然估计把待估的参数看做是确定性的量,只是其取值未知。
利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知)。
贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。
对样本进行观测的过程,把先验概率密度转化为后验概率密度,利用样本的信息修正了对参数的初始估计值。
当训练样本数量趋于无穷的时候,贝叶斯方法将接近最大似然估计。
如果有非常多的训练样本,使得p(x|X)形成一个非常显著的尖峰,而先验概率p(x)又是均匀分布,此时两者的本质是相同的。
3、为什么模拟退火能够逃脱局部极小值?在解空间内随机搜索,遇到较优解就接受,遇到较差解就按一定的概率决定是否接受,这个概率随时间的变化而降低。
实际上模拟退火算法也是贪心算法,只不过它在这个基础上增加了随机因素。
这个随机因素就是:以一定的概率来接受一个比单前解要差的解。
通过这个随机因素使得算法有可能跳出这个局部最优解。
4、最小错误率和最小贝叶斯风险之间的关系?基于最小风险的贝叶斯决策就是基于最小错误率的贝叶斯决策,换言之,可以把基于最小错误率决策看做是基于最小风险决策的一个特例,基于最小风险决策本质上就是对基于最小错误率公式的加权处理。
1 .设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
答:定义谓词: MAN(X):X是人, LIKE(X,Y):X喜欢Y ((X)(MAN(X)∧LIKE(X, 梅花))∧((Y)(MAN(Y)∧LIKE(Y,菊花))∧((Z)(MAN(Z)∧(LIKE(Z,梅花)∧LIKE(Z,菊花))(2)他每天下午都去打篮球。
答:定义谓词:TIME(X):X是下午PLAY(X,Y):X去打Y(X)TIME(X) PLAY(他,篮球)(3)并不是每一个人都喜欢吃臭豆腐。
定义谓词:MAN(X):X是人LIKE(X,Y):X喜欢吃Y┐((X)MAN(X) LIKE(X,CHOUDOUFU))2 .请对下列命题分别写出它的语义网络:(1)钱老师从 6 月至 8 月给会计班讲《市场经济学》课程。
(2)张三是大发电脑公司的经理,他 35 岁,住在飞天胡同 68 号。
(3)甲队与乙队进行蓝球比赛,最后以 89 : 102 的比分结束。
3. 框架表示法一般来讲,教师的工作态度是认真的,但行为举止有些随便,自动化系教师一般来讲性格内向,喜欢操作计算机。
方园是自动化系教师,他性格内向,但工作不刻苦。
试用框架写出上述知识,并求出方圆的兴趣和举止?答:框架名:<教师>继承:<职业>态度:认真举止:随便框架名:<自动化系教师>继承:<教师>性格:内向兴趣:操作计算机框架名:<方园> 继承:<自动化系教师>性格:内向态度:不刻苦兴趣:操作计算机举止:随便4. 剧本表示法作为一个电影观众,请你编写一个去电影院看电影的剧本。
答:(1) 开场条件(a) 顾客想看电影(b) 顾客在足够的钱(2) 角色顾客,售票员,检票员,放映员(3) 道具钱,电影票(4) 场景场景1 购票1. 顾客来到售票处2. 售票员把票给顾客3. 顾客把钱给售票员4. 顾客走向电影院门场景2 检票1. 顾客把电影票给检票员2. 检票员检票3. 检票员把电影票还给顾客4. 顾客进入电影院场景3 等待1. 顾客找到自己的座位2. 顾客坐在自己座位一等待电影开始场景4 观看电影1. 放映员播放电影2. 顾客观看电影场景5 离开(a) 放映员结束电影放映(b) 顾客离开电影院(5) 结果(a) 顾客观看了电影(b) 顾客花了钱5. 状态空间表示法三个传教士和三个野人来到河边,有一条船可供一人或两人乘渡,在渡河过程中,任一岸的野人数若大于传教士人数,野人就会吃掉传教士。
Corrections and Clarifications Digital Image Processing3rd EditionGonzalez and WoodsPrentice Hall© 2008December 5, 2013CORRECTIONS05 December, 2013The bottom, leftmost pixel in the Marker Image, F, should be white.The caption in Fig. 9.32(a) should read: Reconstruction-by-dilation of marker image.05 December, 201305 December, 2013CLARIFICATIONSPageClarifications59, last sentence, 2ndparagraph. It is assumed also that the physical dimensions of the chips are the same.117, 2nd paragraph of Ex 3.3.Figure 3.12(c) was generated with a transformation function of the form shown in Fig. 3.11(b), but with the value of the constant part of the curve set to 0 instead of the high value shown in Fig. 3.11(b) .661, Fig. 9.31(c). Although the image appears as a uniform black rectangle (all 0s), there are 1-valued points along its boundary that are difficult to see at the image scale shown and also because the background (page) iswhite (i.e., 1-valued). See the 3rd sentence in the first paragraph of page 661.694, Fig. 10.2(a). The image in Fig. 10.2(a) should have the dot shown.In some printings of the book the dot is barely visible, while in others it shows perfectly, as in the image shown on the right. Also, small, random printing imperfections that sometimes show in white or gray can be confusing, and should beignored. [Note: If you'reusing a low resolution monitor you may need to magnify this document in order to see the dot.]697, Fig. 10.4(d) The image in Fig. 10.4(d) should have the single dotshown. The image is black (0) elsewhere. In some printings of the book the dot is barely visible, while in others it shows perfectly, as in the image shown on the right. Also, small, random printing imperfections that sometimes show in white or gray can be confusing, and should be ignored. The correct image consists of a single white dot on a uniform black background.872, Fig. 12.9(d). The image in Fig. 10.9(d) should have the single whitedot shown. The image is black (0) elsewhere. In some printings of the book the dot is barely visible, while in others it shows perfectly, as in the image shown on the right. Also, small random printing imperfections that sometimes show in white or gray can be confusing, and should be ignored. The correct imageconsists of a single white dot on a uniform black background.05 December, 2013Pg 655, Fig, 9.25 Edit figure to look like the one on the right.773, Fig. 10.55.Note that the pixel identified by the arrow in the top left of the figure is missing in the figure in the book.。