中央空调智能控制系统方案
- 格式:ppt
- 大小:1.53 MB
- 文档页数:22
中央空调自动化控制中央空调自动化控制文档范本1.简介1.1 目的本文档旨在提供中央空调自动化控制的详细信息,以帮助读者了解中央空调系统的自动化控制原理、功能以及操作方法。
1.2 范围本文档涵盖了中央空调自动化控制的各个方面,包括控制系统的概述、自动化控制模块的功能、参数设置、故障排查和维护等内容。
2.概述2.1 中央空调自动化控制系统概述中央空调自动化控制系统是通过一系列的传感器、控制器和执行器将中央空调系统的工作状态进行监测和控制的系统。
通过自动化控制,可以实现中央空调系统的能效优化、舒适性调节、故障诊断等功能。
2.2 中央空调自动化控制系统组成中央空调自动化控制系统包括传感器、控制器、执行器和人机界面等组件。
传感器用于实时监测环境参数,控制器根据监测到的参数进行逻辑判断和控制命令的输出,执行器则负责根据控制命令调节中央空调系统的工作状态。
3.自动化控制模块3.1 传感器模块传感器模块包括温度传感器、湿度传感器、二氧化碳传感器等。
通过这些传感器,系统可以获得室内环境参数的实时数据,用于自动化控制的决策。
3.2 控制逻辑模块控制逻辑模块根据传感器获取的数据进行逻辑判断并相应的控制命令。
例如,当室内温度超过设定值时,控制逻辑模块可以根据设定的参数调节空调的制冷功率。
3.3 执行器模块执行器模块是根据控制命令进行动作的组件,包括电动阀门、风机等。
通过执行器模块,系统可以实现对空调系统各组件的调节和控制。
4.功能说明4.1 能效优化功能中央空调自动化控制系统可以根据实时的室内环境数据,通过自动调节制冷、制热、通风等参数,以实现能效的优化,降低能耗。
4.2 舒适性调节功能中央空调自动化控制系统可以根据用户设定的舒适性需求,对空调系统进行智能调节,以提供舒适的室内环境。
4.3 故障诊断功能中央空调自动化控制系统可以通过传感器的数据和系统内部算法进行故障的诊断,及时发现并报警,以便及时维修和保养。
5.参数设置5.1 温度设定用户可以通过人机界面进行温度设定,系统将根据设定值自动调节空调系统的工作状态。
中央空调智能节能控制系统设计与实现摘要:空调能耗正成为广大暖通设计者关注和研究的重要课题,本文分析了影响空调系统能源消耗的关键因素,并从系统的选择、设备的选配及系统的运行管理等方面提出了切实可行的空调节能方案,对空调系统的设计及运行管理中的节能具有一定参考价值。
关键词:中央空调;系统;设计;节能1.中央空调系统的构成1.1冷冻机组这是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”。
1.2冷冻水循环系统由冷冻泵及冷冻水管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。
从冷冻机组流出、进入房间的冷冻水简称为“出水”,流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。
1.3冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。
冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。
该热量被冷却水吸收,使冷却水温度升高。
冷却泵将升了温的冷却水压人冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。
如此不断循环,带走了冷冻机组释放的热量。
流进冷冻机组的冷却水简称为“进水”,从冷冻机组流回冷却塔的冷却水简称为“回水”。
1.4冷却风机冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
可以看出,中央空调系统是工作过程室一个不断地进行热交换的能量转换过程。
在这里,冷冻水和冷却水循环系统是能量的主要传递者。
冷却水温度过高、过低都会影响冷冻机组使用寿命,因为温度过低影响机组润滑,但温度过高将导致制冷剂高压过高。
因此,对冷却风机的控制便是中央空调控制系统的重要组成部份。
变频控制冷却风机的转速使冷却水出水温度保持在28~30℃之间,既节能又延长冷冻机组使用寿命。
!中央空调系统的组成和控制思想中央空调与家用独立空调的温度传递方式不同:家用独立空调直接吹风到散热器上获得冷风或者热风。
一、技术部分1、中央空调集中管理系统的设计、安装施工情况(一)系统设计介绍1.1系统组成美的中央空调多联机智能管理系统(Intelligent Manager of Midea)简称IMM,它由四部分组成:IMM 软件(一套),M-INTERFACE网关设备(最多4个),多联机冷媒系统和加密狗。
IMM软件提供了用户操作的功能,安装在PC 上。
M-INTERFACE设备是基于WEB的网关,通过自身的M-net接口连接美的中央空调多联机设备。
在自动拓扑模式下,一个M-INTERFACE网关设备可以最多连接4个冷媒系统(最多接入256台内机和16台外机);在手动拓扑模式下,一个M-INTERFACE网关设备可以最多连接16个冷媒系统(最多接入256台内机和64台外机)。
IMM软件通过网络和M-INTERFACE网关通信,实现对空调设备的控制和管理。
1.2系统结构图IMM系统结构如下图所示:冷媒系统接入到M-INTERFACE网关的M-net端口上。
M-INTERFACE网关和安装有IMM软件的PC通过网络相连,PC或者类似终端(Pad,Laptop)可以访问M -INTERFACE的WEB功能。
IMM软件实现了对空调设备的监控。
1.3可接入机型1).不需要电量划分功能的工程:可以自由的接入多联机V4+ 或者非V4+的机型。
2).需要电量划分功能的工程:推荐接入美的多联机V4+系列外机和V4+系列内机,并且M-net接口通讯线均需要从外机侧接线。
3).V4+ 和非V4+机型的外机不能接入同一端口。
2.功能功能介绍用户通过操作WEB页面和IMM软件达到对空调系统的控制和管理。
WEB页面和I MM软件为用户提供了不同的功能。
WEB功能WEB系统提供了“设备监控”,“系统映射”,“设置”,“设备信息”,“软件升级”,“通讯诊断”和“帮助”等功能。
设备监控提供空调室内机和室外机运行的详细信息以及对空调室内机进行控制。
自控系统介绍一、概述随着科技的不断发展和进步,现代化的建筑物迅速崛起及发展,已成为国民经济迅速增长的必然条件。
而现代化建筑物的大型化、智能化和多功能化,必然导致建筑物内机电设备种类繁多,技术性能复杂,维修服务保养项目的不断增加,管理工作已非人工所能应付.因此,采用自动化监控系统技术及计算机管理已成为现代建筑最重要的管理手段。
它可以大量的节省人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。
建筑自动化监控系统(Building Automation System,简称BAS),实质上是一套中央监控系统(Central Control Monitoring System, 简称CCMS),有时称为综合中央管理系统.现阶段已广泛应用于各类建筑领域,以提供对各类建筑物内设备进行高效率管理与控制的有效途径。
BA系统的主要功能是:对机电设备实现以最优控制为中心的过程控制自动化;以运行状态监视和计算为中心的设备管理自动化;以安全状态监视和灾害控制为中心的安全管理自动化;以节能运行为中心的能量管理自动化.机房集中监控系统是智能建筑系统中最重要的子系统之一,这可以从以下几方面看出:智能建筑设备控制中机房设备相对比例较大,控制流程和技术较复杂,涉及自动控制、通信、计算机、图形及显示技术等。
机房集中监控系统,它不仅涉及对大厦的电、风、水等设备进行控制,而且与大厦的IT(信息技术)应用了有紧密的联系。
机房集中监控系统技术发展十分迅速,控制网络技术的突破性进展给楼宇控制领域带来巨大的影响。
机房集中监控系统是智能化工程中投资较大的部分。
1、系统的必要性随着计算机技术的发展和普及,计算机系统数量与日俱增,其配套的环境设备也日益增多,计算机房已成为各大单位的重要组成部分。
机房的环境设备(供配电、 UPS、暖通设备、等)必须时时刻刻为计算机系统提供正常的运行环境。
一旦机房设备出现故障,就会影响到计算机系统的运行,对数据传输、存储及系统运行的可靠性构成威胁,如事故严重又不能及时处理,就可能损坏硬件设备,造成严重后果。
中央空调解决方案第1篇中央空调解决方案一、项目背景随着我国经济的持续发展和城市化进程的加快,大型公共建筑及商业综合体对中央空调系统的需求日益增长。
为满足绿色、节能、舒适的室内环境要求,特制定本中央空调解决方案,旨在提供高效、环保、人性化的中央空调系统。
二、项目目标1. 满足建筑物室内空气质量、温湿度、舒适度等需求;2. 实现节能减排,降低运营成本;3. 提高中央空调系统的可靠性和智能化水平;4. 符合国家相关法律法规及行业标准。
三、方案设计1. 系统选型(1)冷水机组:选用高效节能的螺杆式或离心式冷水机组,满足建筑物制冷需求。
(2)热泵机组:选用空气源或地源热泵机组,实现冬季供暖、夏季制冷的需求。
(3)风冷热泵机组:适用于独立小型建筑或室外安装空间受限的场所。
(4)新风系统:选用节能、高效的新风处理设备,确保室内空气质量。
2. 系统设计(1)冷热源设计:根据建筑物负荷特性,合理选型冷水机组、热泵机组等设备,实现能源梯级利用。
(2)水系统设计:采用二次泵变流量系统,实现系统运行节能。
(3)风系统设计:根据室内环境需求,合理设计送风、回风、排风系统。
(4)自控系统设计:采用智能化控制系统,实现系统运行优化、故障诊断及远程监控。
3. 节能措施(1)采用高效节能设备,降低系统运行能耗;(2)利用变频技术,实现风机、水泵等设备的节能运行;(3)采用热回收技术,提高能源利用率;(4)利用可再生能源,如地热能、太阳能等。
四、实施与验收1. 施工前进行技术交底,明确施工要求及质量标准;2. 施工过程中,严格遵循国家相关法律法规和行业标准;3. 施工结束后,组织相关人员进行验收,确保系统正常运行;4. 对验收不合格的项目进行整改,直至满足设计要求。
五、运行与维护1. 定期对系统进行巡检,确保设备运行正常;2. 定期对系统进行维护保养,延长设备使用寿命;3. 及时处理系统故障,保证系统稳定运行;4. 对运行数据进行监测和分析,优化系统运行策略。
某商场中央空调自动控制系统改造方案1.1.原空调自动控制系统分析1.1.1现场实际空调自动控制系统施工情况a、现场部分电动阀门及执行器已经安装,由于缺少施工图,所以现场没有施工连接控制线及电源线;b、部分水泵变频器已经安装,由于缺少控制原理图,所以现场还是以固定频率运行。
c、11个子回路超声波流量计已经安装,但是未进行系统平衡分析及二次调节。
d、未安装远程监控系统及故障报警系统。
1.1.2目前物业对空调的日常维护情况a、风系统没有定时进行过滤网清洗及翅片清洗。
b、水系统过滤器没有定期清洗。
c、空调日常运行依靠人工巡查操作,空调运行管理以人为干预为主,对人员数量及技术要求很高。
d、“一刀切”的粗放管理模式无法实现对功能区的差异化温度要求。
e、无法实现空调各区域的实时控制,造成冷热不均匀。
1.2.拟对商场空调自动控制系统进行改造,改造主体内容如下:(1)完成未完成的空调自动控制系统的深化设计,电动阀及设备供电控制部分的施工。
(2)完成智能控制平台的搭建。
(3)完成空调水系统的平衡及调试。
(4)完成操作人员的培训及维护制度的建立。
1.3.改造后,系统将具备以下功能:1.3.1集成化的智能控制平台改进后采用了,西门子工业级组态软件WINCC,精美高效的系统流程图和空调组态画面。
增加重要设备远程手机客户端监视和短信报警功能,便于运维人员及时相应。
在B座一楼物业工程部总控制室增加一台工程机,用于商场空调的整体监控。
1.3.2实现冷热源系统设备的自动控制和管理实现冷热源系统一键开关机操作,设备故障切换和等时运行功能,按末端负荷变化调节水泵变频和压差旁通阀开度。
按管理者的需求,自动形成各种设备运行参数报表,或随时变更设备运行参数(如启停时间、控制参数等)。
1.3.3区域电动阀和新风机组自动控制对商业街共11个分区电动阀实现远程控制,调节末端新风空调机冷热水流量,优化管路水力平衡,降低系统能耗。
1.3.4降低后期使用时建筑的营运成本只需在中央操作站安排一名操作管理人员,即可承担对冷热源系统和新风空调设备的监控管理任务,从而可大大减少有关的管理人员及其日常开支。
智能化中央空调节能控制系统设计摘要:随着经济和社会的发展,中央空调在商业和民用建筑中的应用越来越广泛,中央空调是现代建筑中不可缺少的能耗运行系统。
中央空调系统在给人们提供舒适的生活和工作环境的同时,又消耗掉了大量的能源。
本文作者根据多年工作的经验,针对智能化中央空调控制设计方面做了分析,探讨和总结。
关键词:智能化;中央空调;节能控制;设计一前言随着设备功率和数量的增加,其能耗也不断增大。
据统计,我国建筑物能耗约占能源总消耗量的30%。
在有中央空调的建筑物中,中央空调的能耗约占总能耗的70%,而且呈逐年增长的趋势,因此,研究中央空调系统节能技术意义重大,除了强调使用功能完善外,还应重视节能因素,降低投资、运行费用。
二中央空调节能理论分析中央空调系统有制冷主机、冷却泵、冷冻泵、冷却塔风机、风机盘管等构成。
构成示意图如图1图一其中制冷主机通过压缩机让制冷剂迅速冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7℃左右),是中央空调冷源提供的场所;冷冻水泵负责把冷冻水加压到空调系统末端系统;冷却水通过冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组;冷却风机带动空气加速运动,通过空气带走冷却水的热量的同时加快蒸发,让水温降低。
温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。
在该系统中制冷主机往往具备自动调节出水温度的自动控制系统,这样只要合理调节冷冻水泵、冷却水泵、冷却塔风机的运行频率、运行台数就可以达到高效节能的目的,其理论分析如下、根据流体力学原理, 在相似工况下运行时的参数存在以下关系:(1)其中: Q1、H1、N1、n1: 分别为转速改变前的流量、扬程、功率、转速;Q2、H2、N2、n2: 分别为转速改变后的流量、扬程、功率、转速。
根据上面公式可以看出,当电机转速下降时,流量按线性关系变化,而电功率按立方关系方式变化,那么根据上面的公式分析,如果我们能根据负载情况实时改变电机的转速即可达到节能的目的。