〔2〕求高斯滤波器的拉普拉斯变换,再求 与图像的卷积,然后再进展过零判别。
这两种方法再数学上是等价的。
LOG滤波方法
图7-10 二维LOG滤波器
LOG滤波方法
(a) 原图
(b) 阈值为0检测结果
(c) 阈值为0.01检测结果
图7-11 采用LOG的边缘检测
Sobel
Robert Canny
LOG
Prewitt
G
f x
2
f y
2 2
arctanfy
f x
• 其中f 为滤波后的图像。
• (3) 对梯度进展“非极大抑制〞。 • 梯度的方向可以定义为属于4个区之一,各
个区用不同的临近像素来进展比较,以决 议部分极大值。这4个区及其相应的比较方 向如以下图所示。
432
1x1
234
• 例如,假设中心像素的梯度方向属于第4 区,那么把的梯度值与它左上和右下相 邻像素的梯度值比较,看的梯度值能否 是部分极大值。假设不是,就把像素的 灰度设为0,这个过程称为“非极大抑制 〞。
LOG滤波方法
一维LOG边缘检测
LOG滤波Байду номын сангаас法
该算法的主要思绪和步骤是: 〔1〕滤波:首先对图像 f (x, y) 进展平滑滤波
G (x,y)212 ex2 p 12 ((x2y2))
将到一G个(x平, y滑) 与的图f 像(x,,y)即图: 像进展卷积,可以得
g (x ,y ) f(x ,y ) G (x ,y ) 〔6.28〕
• 链接边缘的详细步骤如下:
• 1 对图像2进展扫描,当遇到一个非零灰度的像素P时, 跟踪以P为开场点的轮廓线,直到轮廓的终点Q。
• 2 调查图像1中与图像2中Q点位置对应的点Q’的8临 近区域。假设Q’点的8临近区域中有非零像素R’存 在,那么将其包括到图像2中,作为R点。