光学课件 光栅
- 格式:ppt
- 大小:2.76 MB
- 文档页数:53
衍射光栅按空间周期性规律,在一定范I韦I内改变入射光波的振幅或位相的装置称为衍射光栅,简称为光栅。
光栅的这种作用也称作对入射光波的“振幅调制”和“位相调制”。
这样,在一个调制周期内出射的光波可以看成是一个“光束”,因此光栅按其调制周期把入射光波分割成多束相干光。
通常,利用与观察夫琅和费衍射相同的方法,在透镜的后焦面上或远处的屏幕上观察这多束光的干涉图形:光栅干涉图。
由于光栅在调制和分割波面时必然以某种方式限制了入射击光波的传播,所以总是伴随着衍射现彖,光栅干涉图兼有衍射图形的特性。
实际上,如果把光栅看作是一个限制光波传播的衍射光屏,那么光栅干涉图可以用夫琅和费衍射理论计算。
换言之,光栅干涉图上的复振幅分布与刚通过光栅的光分布之间有傅里叶变换的关系(可能相差一个二次位相因子)。
然而,在多数实际应用中,人们主要利用光栅干涉图的多光束干涉特点,因此我们称它为“干涉图”而不称为“衍射图”。
一、衍射光栅的分类可以从各种不同的角度对光栅分类。
㈠、二维光栅和三维删根据对入射波的调制是在二维空间还是在三维空间中实现,可以分为“二维光栅”和“三维光栅”。
二维光栅的工作表面可以是平面状的(平面光栅),也可以是凹球面等曲面形状的(凹面光栅)。
后者除了分割波面外,还有一定的聚集能力。
大多数二维光栅调制波面的周期性规律只与一个直角坐标分量有关,与另一个坐标分量无关。
换言之,它由一系列平行等距线条组成。
这类光栅有时称作“一维光栅”。
三维光栅又称“体(积)光栅”。
晶体因其原子(或晶胞)在空间的规则排列,对X射线起到三维光栅的作用。
经过适当曝光和处理的厚感光乳胶层,也构成对光学波段辐射的三维光栅。
实际上,一切二维光栅的“工作表面”都有一个不为零的厚度,应该看作是三维光栅的一种特殊情形。
在这种情形中,厚度的影响可以忽略不计。
㈡、振幅光栅和位相光栅根据光栅所调制的是入射波的振幅还是位相,可以分为“振幅光栅”和“位相光栅”。
在透明基底上制作人量透光和不透光相间的平行线条,即得到“一维振幅光栅”,细而密的金属丝网格可以看成是“二维振幅光栅”。
光栅衍射知识点总结课件光栅衍射是一种利用光栅产生衍射效应的现象,是一种重要的光学现象。
通过光栅衍射,我们可以了解到光的波动特性以及光波通过光栅的衍射规律。
在实际应用中,光栅衍射被广泛应用于光学仪器、激光技术、光谱分析等领域。
本文将对光栅衍射的知识点进行总结,包括光栅的原理与特性、光栅衍射的规律、光栅衍射的应用等内容。
一、光栅的原理与特性1. 光栅的定义光栅是一种光学元件,是由许多等间距的平行条纹组成的平面或曲面。
光栅通常是由金属、玻璃等材料制成,其间距和条纹数目是确定的,可以分为透射光栅和反射光栅两种类型。
2. 光栅的特性光栅具有几何光学特性和衍射光学特性。
在几何光学中,光栅可以用来分束、合束和分光;在衍射光学中,光栅可以产生衍射效应,使光的波动性显现出来。
3. 光栅的构造光栅由一系列等间距的透明或不透明条纹组成,这些条纹可以是平行的,也可以是曲线的。
光栅的构造决定了其对入射光的衍射效应。
4. 光栅的作用光栅可以将入射光分散成各个波长的光,从而进行光谱分析;也可以用于制备激光器、衍射仪、干涉仪等光学仪器;同时,光栅也被广泛应用于激光技术、光通信等领域。
二、光栅衍射的规律1. 光栅衍射的基本原理光栅衍射是指入射光通过光栅后产生衍射效应的现象。
当入射光照射到光栅上时,光栅上的条纹会对入射光进行衍射,产生出多个次级光源,形成衍射图样。
2. 光栅衍射的数学描述光栅衍射的数学描述可以利用菲涅尔衍射理论、惠更斯-菲涅尔原理等方法进行描述。
通过数学模型,可以求解出光栅衍射的衍射角、衍射级数、衍射图样等参数。
3. 光栅衍射的表达式光栅衍射的强度分布可以用衍射方程来描述,通常可以采用菲涅尔衍射积分或者费涅尔积分来进行数值计算。
通过衍射方程的计算,可以得到光栅衍射的强度分布图。
4. 光栅衍射的规律光栅衍射的规律包括主极大和次级极大、衍射级数、衍射角、衍射图样等规律。
这些规律可以帮助我们理解光栅衍射的特性,并且可以应用于光栅的设计和光学仪器的优化。