电化学研究-1
- 格式:ppt
- 大小:761.50 KB
- 文档页数:96
第六章电化学一、教学基本要求:1、掌握电解质溶液的导电机理及导电性能的表示方法和测定法,导体、原电池和电解池、正负极、阴阳极等基本概念;了解离子迁移数的概念、意义及常用测定方法。
2、掌握电导、电导率及摩尔电导率的概念及它们与离子浓度的关系、离子独立运动定律以及有关计算和应用,电导测定的应用。
3、掌握德拜-休克尔极限公式及其使用,熟悉电解质溶液的平均活度、平均活度系数、平均浓度和离子强度的定义及计算方法,强电解质溶液理论的大意、离子氛的概念。
4、熟悉可逆电池(原电池)的表示方法,会根据化学反应设计原电池,并能根据电池符号写出电极反应和电池反应。
5、熟悉可逆电池电动势和电极电位的测定原理;电极-溶液界面电势差及用盐桥消除液体接界电势的原理。
了解标准电极电位的意义、测定方法及其重要的应用。
6、掌握电池电动势和电极电位的Nerst方程,计算所给电池的电极电势和电池电动势及重要应用。
7、掌握电化学与热力学之间的关系;能够利用电化学手段计算热力学函数的变化值,也能用热力学数据计算电极电位。
8、熟悉电解过程的有关基本概念和基本原理;电极产生极化的原因。
膜电位的概念和意义。
了解浓差电池的基本概念。
9、了解电化学在生物学中的应用。
二、基本概念和重要公式(一)、电化学基本概念1、导体导体是指能够导电的一类物体。
根据物体导电机制的不同,导体又分为电子导体和离子导体两种。
电子导体也称第一类导体,通过自由电子的定向迁移来实现其导电目的。
电子导体的特点是导电过程中本身不发生变化,且温度升高,导电能力降低。
离子导体也称第二类导体,依靠正、负离子的定向迁移来实现其导电目的。
离子导体的特点是导电过程中有化学反应发生,且温度升高,导电能力增强。
2、原电池和电解池实现化学能和电能之间相互转化的装置称为电化学装置,或简称电池。
其中,将电能转化为化学能的装置称为电解池;将化学能转化为电能的装置叫原电池。
发生氧化反应放出电子的电极称为阳极,而发生还原反应获得电子的电极称为阴极。
实验一碳钢在碳酸铵溶液中的极化曲线【目的要求】1. 掌握准稳态恒电位法测定金属极化曲线的基本原理和测试方法。
2. 了解极化曲线的意义和应用。
3. 掌握电化学分析仪的使用方法。
【实验原理】1. 极化现象与极化曲线为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一。
我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的。
但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大。
由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示。
图2-19-1 极化曲线AB:活性溶解区;B:临界钝化点;B-C:过渡钝化区;C-D:稳定钝化区;D-E:超(过)钝化区(1)AB段为活性溶解区,此时金属进行正常的阳极溶解,阳极电流随着电势的正移而不断增大。
(2)BC段为过渡钝化区(负坡度区)。
随着电极电势变正达到B点之后,此时金属开始发生钝化,随着电势的正移,金属溶解速率不断降低,并过渡到钝化状态。
对应于B点的电极电势称为临界钝化电势ψ钝化,对应的电流密度叫临界钝化电流密度i钝化。
(3)CD段为稳定钝化区,在此区域内金属的溶解速率降低到最小值,并且基本上不随电势的变化而改变,此时的电流密度称为钝态金属的稳定溶解电流密度。
(4)DE段为超钝化区。
此时阳极电流又重新随电势的正移而增大,电流增大的原因可能是高价金属离子的产生,也可能是O2的析出,还可能是两者同时出现。
金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M→M n++n e此过程只有在电极电势正于其热力学平衡电势时才能发生。
阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。