生物质快速热解液化技术_姚福生
- 格式:pdf
- 大小:180.76 KB
- 文档页数:5
热解生物质制油技术热能C074 范竹茵073730摘要:热解技术已经应用到了能源转化的各个方面,它以其快速、清洁等优点引起了人们的广泛关注和研究。
其中生物质的热解为我们提供了新型的能源——生物油。
生物质在热解反应器中进行裂解等一系列的化学反应,通过控制反应的温度、速率和物料的湿度等来调节生物油的各种性质。
同时由于不同的热解反应器以及不同的原料也会使得油的热值、纯净度等一些特性受到影响。
关键词:热解、生物质、生物油、热解反应器、正文:随着全球工业的发展,煤、石油等不可再生的化石能源大量的消耗,人类面临着一场有史以来最严重的能源危机,寻找替代能源已经成为了迫在眉睫的大事。
氢能、核能、太阳能、风能、水能及生物质能等清洁能源备受人们的关注,其中热解生物质制油就是一种用可再生能源代替石油的技术。
热解又称裂解,它是利用热能切断大分子量的有机物、碳氢化合物,使之转变为含碳数更少的低分子量物质的过程,废弃生物质的热解是一个复杂的化学反应过程,包括大分子的键断裂、异构化和小分子的聚合等反应,最后生成各种较小的分子。
热解的优点在于能回收可储输的燃料,可在焚烧温度低的条件下,从有机物中直接回收燃料气和油品。
从资源化角度来看,热解是木质素纤维素转化为燃料乙醇和其他高附加化工产品工艺中的关键性环节。
由于热解温度相对较低,所以NO发生量少、气体生成量仅占焚烧法的几分之一。
热解生物油是用热化学的方法将生物质转化成液体物质,进而制备成能直接用于发电厂或车用发动机燃料,以代替柴油等石油能源产品。
热解技术日趋成熟,在反应器的设计、原料预处理、生物油的分离和后续制备、生物质的热解机理方面都有重大突破,在国内外都已形成产业化。
热解生物质产生燃料的技术在欧盟已经获得最大的资助,快速热解是有效转化生物质产生液体燃料的方法,液体燃料的产率能达到生物质重量的70%~80%,因此被认为是解决可再生燃料代替化石燃料的有效方法之一。
一.生物质热解概念生物质热化学转化通常有:热解、气化、液化和超临界流体萃取。
生物质的快速热解及热解机理研究生物质是一种可再生的能源资源,其快速热解技术在能源利用和环境保护方面具有重要意义。
本文将探讨生物质的快速热解及其热解机理研究。
快速热解是一种高温、短时间内对生物质进行加热分解的过程,通过这一过程可以得到液体燃料、气体燃料和固体炭等有用的产物。
快速热解技术在能源转化和减少碳排放方面具有重要的应用价值。
生物质的热解机理是指生物质在高温下发生化学和物理反应的过程。
热解过程中,生物质中的纤维素、半纤维素和木质素等主要成分会发生热解反应,产生液体、气体和固体产物。
热解反应主要包括干馏、裂解、气化和炭化等过程。
干馏是指在缺氧或低氧条件下,生物质中的挥发性物质被释放出来。
这些挥发性物质主要包括水、酸、醛、酮等。
干馏是生物质热解的第一步,对于液体和气体产物的生成具有重要影响。
裂解是指在高温下,生物质中的高分子化合物被断裂为低分子化合物。
裂解过程中,纤维素和半纤维素会分解为糖类、酚类和醇类等低分子化合物。
木质素则会分解为苯酚类和芳香烃类化合物。
裂解反应是生物质热解的关键步骤,对于液体和气体产物的生成具有重要影响。
气化是指生物质在高温下与气体反应生成气体的过程。
气化过程中,生物质中的碳水化合物被分解为一氧化碳和氢气等气体产物。
气化反应是生物质热解的重要环节,产生的气体可用于发电、供热和合成化学品等领域。
炭化是指生物质在高温下失去挥发性物质,生成固体炭的过程。
炭化过程中,生物质中的无机物质也会得以保留,形成矿物质残留物。
炭化反应是生物质热解的最终阶段,产生的固体炭可以用作燃料或其他工业用途。
研究生物质的快速热解及热解机理对于提高生物质能源的利用效率和减少环境污染具有重要意义。
研究人员通过实验和数值模拟等手段,探索不同反应条件下生物质热解的机理和影响因素。
研究结果表明,反应温度、反应时间、生物质种类和粒径等因素对于热解产物的种类和产率有重要影响。
在实际应用中,快速热解技术可以将农林废弃物、城市固体废弃物和能源作物等生物质资源转化为有用的能源产品。
生物质快速热解液化工艺研究进展隋倩倩;杨忠连;汪娟;刘少敏;王君;陈明强【期刊名称】《化学与生物工程》【年(卷),期】2012(29)3【摘要】对近期国内外快速热解液化工艺研究进展进行了回顾.分别对生物质原料、反应器类型、生物质炭与灰分的分离、热解产物收集以及生物油产品特性等方面的研究进行了论述和分析,指出了生物质快速热解液化的研究方向.%The recent research progress of fast pyrolysis liquefaction process was reviewed. The advance on biomass raw material, reactor type, separation of biomass char and ash, pyrolysis product collection and bio-oil properties were statedand analyzed, respectively. The research trend of fast pyrolysis liquefaction was put forward.【总页数】5页(P1-5)【作者】隋倩倩;杨忠连;汪娟;刘少敏;王君;陈明强【作者单位】安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001【正文语种】中文【中图分类】TQ91;TK6【相关文献】1.生物质快速热解制取生物油的研究进展 [J], 刘状;廖传华;李亚丽2.生物质催化快速热解制备芳烃的研究进展 [J], 李剑;华德润;卢新宁;刘红波;谢永荣3.供氢剂作用下生物质快速热解的研究进展 [J], 陆强;郭浩强;叶小宁;王昕;周民星4.生物质流化床快速热解多流体模拟的研究进展 [J], 朱玉琴;张馨予;王欣;钟汉斌;许锋;管雅倩5.生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展 [J], 蒋丽群;郑安庆;王小波;赵增立;李海滨因版权原因,仅展示原文概要,查看原文内容请购买。
快速热解液化技术
快速热解液化技术是一种将生物质原料在高温、高压、无氧等条件下,快速加热使其物理、化学变化,最终得到液态或半液态产品的技术。
该技术主要采用常压、超高加热速率、超短产物停留时间及适中的裂解温度,使生物质中的有机高聚物分子在隔绝空气的条件下迅速断裂为短链分子,生成含有大量可冷凝有机分子的蒸汽,蒸汽被迅速冷凝后,得到液体燃料、少量不可凝气体和焦炭。
其中,液体燃料被称为生物油,是一种绿色燃料,基本不含硫、氮和金属成分。
与传统燃烧方式相比,快速热解液化技术可大幅提高生物质能源的利用效率和降低污染排放,被认为是可持续发展的重要方向之一。
同时,该技术工艺简单,成本低,装置容易小型化,产品便于运输、储存。
然而,快速热解液化技术也存在一些挑战和限制。
例如,生物质原料的成分和性质对热解液化过程有很大影响,不同的生物质原料可能需要不同的工艺条件和催化剂。
此外,热解液化过程中产生的气体和焦炭等副产物需要进一步处理和利用,以避免对环境造成负面影响。
总的来说,快速热解液化技术是一种具有潜力的生物质能源转化技术,但需要在工艺优化、催化剂开发、副产物利用等方面进一步研究和改进。
生物质液化技术的研究进展摘要能源问题是全球的重大问题,为了解决能源紧张问题给社会经济生活带来的影响,替代能源逐步成为人们研究和关注的问题。
生物质能是一种有效的替代能源,可以缓解能源的紧张问题。
我国生物质能资源比较丰富,对生物质能的利用,把生物质能转化为液体燃料是个新的开发和研究方向。
本文主要介绍生物质快速热裂解液化技术存在的主要工艺流程,分析比较各工艺的特点及存在的主要问题,得出最具有潜力生物质液化技术为循环流化床工艺技术,其处理量可以达到较高的规模,是目前利用最多、液体产率最高的工艺。
关键词:生物质;液化;热解;引言能源是经济发展和社会文明的物质基础,随着国民经济的持续发展导致对能源需求的高速增长,大量化石燃料燃烧利用过程中所排放的SO2、NOx等污染物使生态环境受到严重污染;另外,由于石油危机的数次爆发以及石油价格的不稳定,也促使代用液体燃料的开发应用提上了日程。
相比于煤炭等化石燃料,生物质能因其自身具有可再生性、低污染性以及高产量性等优点越来越受到人们的重视。
生物质热解液化是将难处理的固体生物质废弃物转化为液体生物油,以便于运输、贮存、燃烧和改性,这样能更好地利用生物质原料,并减少直接燃烧这些物质引起的环境污染。
因此,生物质快速热裂解液化技术己被认为是最具发展潜力的生物质能技术之一。
国际能源署(IEA)己组织加拿大、芬兰、意大利、瑞典、英国和美国等十余个研究小组进行相关技术的研究,开发出了许多各具特色的热解液化工艺,并拥有各自的技术优势[1~4]。
我国在这方面的研究起步较晚,近年来,沈阳农业大学、中国科学院广州能源研究所、清华大学热能工程系、浙江大学热能工程研究所、东北林业大学机电工程学院等单位在这方面开展了一定的研究[5,6],但是基本上仍处于实验室阶段,设计容量很小,且基础理论研究不够全面,与国外发达技术差距很大。
本文综述国内外生物质快速热解液化技术的研究进展,介绍生物质液化工艺技术的研究现状以及生物质热解液化过程影响因素的研究进展,为可再生能源研究提供参考。
几篇生物质能源的文章——可能论坛已有,我没有搜索小议生物质热解液化技术1 引言能源是社会经济发展和人类赖以生存的基础,当前社会的主要能源是化石能源,属不可再生资源,同时,化石能源迅速消耗造成生态环境不断恶化,特别是温室气体排放导致全球气候变化,人类社会的可持续发展已经受到严重威胁。
从能源发展和环境保护角度来看,寻找一种新型可再生的清洁能源已迫在眉睫[1].生物质能是以化学能形式储存的太阳能,具有分布广泛、可再生无污染等特点,其高效转换和清洁利用受到广泛的重视。
但是从自然界直接获得的生物质能量密度低,直接利用有很多缺点,如:燃烧效率低,因此要寻求更为有效的方式来利用。
生物质的利用技术主要包括生物转化技术和热化学转化技术,热化学转化包括直接燃烧、气化和热解液化技术,其中热解液化技术将生物质转化成液体生物油加以利用,是开发利用生物质能有效途径之一。
该技术所得油品基本上不含硫、氮和金属成分,是一种绿色燃料,生产过程在常压中温下进行,工艺简单,装置容易小型化,液体产品便于运输和存储。
因此,在生物质转化的高新技术中,生物质热解液化技术受到广泛重视[2-6].2 生物质热解液化技术概述生物质热解指生物质在隔绝氧气或有少量氧气的条件下,采用高加热速率(102~104℃/s)、短产物停留时间(0.2~3 s)及适中的裂解温度(350~650℃),使生物质中的有机高聚物分子迅速断裂为短链分子,最终生成木炭、生物油和不可冷凝气体的过程。
一般,低温低速热解产物以木炭为主;高温快速热解产物以不可冷凝的燃气为主;中温闪速热解产物中生物油含量较高,热解温度在350~650℃,生物油为棕黑色黏性液体,热值达20~22 MJ/kg,产率可达到60%~80%.为了最大限度获得液体产品,应控制反应条件,使焦炭和产物气降至最低限度[7,8].生物质快速热解技术将低品位的生物质(热值的大约12~15 MJ/kg)转化成易储存、易运输、能量密度高的燃料油。
生物质快速热解液化新技术作者:郝许峰孙绍晖赵科等来源:《当代化工》2015年第10期摘要:介绍了催化热解、混合热解、临氢热解三种生物质快速热解液化新技术。
分析了成功的催化热解过程需要满足的准则,介绍了一些催化热解的催化剂。
报道了生物质与煤共热解液化的部分结果。
对美国天然气技术研究院近期开发的临氢热解(或加氢热解)技术进行了详细报道,列出了主要的技术指标。
要使这些新技术走向工业化,还有大量的工程技术问题要解决。
关键词:生物质;快速热解;催化热解;混合热解;临氢热解中图分类号:TQ 028 文献标识码: A 文章编号: 1671-0460(2015)10-2345-04New Fast Pyrolysis Liquefaction Technologies of BiomassHAO Xv-feng1, SUN Shao-hui2, ZHAO Ke2, SUN Pei-qin2(1. Zhengzhou Science&Technology Information Institute, H e’nan Zhengzhou 450007,China;2. School of Chemical Engineering and Energy, Zhengzhou University,He’nan Zhengzhou 450001, China)Abstract: Three kinds of new fast pyrolysis liquefaction technologies including catalytic pyrolysis, mixed pyrolysis and hydrogenation pyrolysis were introduced. The requisite conditions for successful catalytic pyrolysis were analyzed; the catalysts for the catalytic pyrolysis were introduced. Partial results of the copyrolysis liquefaction of biomass and coal were reported. Recent development of the hydrogenation pyrolysis technology developed by the United States Research Institute of Natural Gas technology and its main technical indexes were introduced. It’s point out that there are many engineering technical problems that need be resolved before these technologies can be industrialized.Key words: Biomass; Fast pyrolysis; Catalytic pyrolysis; Mixed pyrolysis;Hydrogenation pyrolysis人类大量使用石油、煤炭、天然气化石能源造成了严重的能源危机和环境污染问题,使用可再生能源是解决上述问题的必然选择。
生物质液化技术的研究进展摘要:生物质液化包括生物化学法生产燃料乙醇和热化学法生产生物油,热化学法又可分为快速热解液化和加压液化。
着重介绍了目前达到工业示范规模的各种快速热解液化工艺,如旋转锥反应器、携带床反应器、循环流化床反应器、涡旋反应器、真空热解磨反应器等,以及处于实验室阶段的等离子体液化工艺,讨论了各工艺的特点及存在的主要问题,指出循环流化床工艺具有很高的加热和传热速率,且处理量可以达到较高的规模,是目前利用最多、液体产率最高的工艺。
生物质液化生产液体燃料在我国有着广阔的前景,建议加强纤维素生物酶法糖化发酵生产燃料乙醇工艺的开发以及热化学法生物油精制新工艺的开发,从而降低生产成本,提高与化石燃料的竞争力。
关键词:生物质;液化;热解;燃料我国一次能源消费量仅次于美国成为世界第二大能源消费国,然而2000年进口原油已达7000万t。
液体燃料的不足已严重威胁到我国的能源与经济安全,为此我国提出了大力开发新能源和可再生能源,优化能源结构的战略发展规划[1-2]。
生物质是惟一可以转化为液体燃料的可再生能源,将生物质转化为液体燃料不仅能够弥补化石燃料的不足,而且有助于保护生态环境。
生物质包括各种速生的能源植物、农业废弃物、林业废弃物、水生植物以及各种有机垃圾等。
我国生物质资源丰富,理论年产量为50亿t左右[3],发展生物质液化替代化石燃料有巨大的资源潜力。
生物质能源化技术主要包括气化、直接燃烧发电、固化成型及液化等。
目前,前3种技术已经达到比较成熟的商业化阶段,而生物质的液化还处于研究、开发及示范阶段[4]。
从产物来分,生物质液化可分为制取液体燃料(乙醇和生物油等)和制取化学品。
由于制取化学品需要较为复杂的产品分离与提纯过程,技术要求高,且成本高,目前国内外还处于实验室研究阶段,有许多文献对热转化及催化转化精制化学品的反应条件、催化剂、反应机理及精制方法等进行了详细报道[4-8],笔者将主要介绍生物质液化制取液体燃料的技术与研究进展。
生物质热解液化的工艺流程
一、原料准备阶段
1.原料收集和处理
(1)收集生物质原料,如木材、秸秆等
(2)进行原料的清洁、切割和破碎处理
2.原料预处理
(1)对原料进行预处理,如干燥和粉碎
(2)确保原料的适宜性和均匀性
二、热解反应阶段
1.热解反应器装载
(1)将预处理好的生物质原料装载到热解反应器中
(2)控制装载量和反应器的填充度
2.热解反应
(1)提供适当的热源,使原料在高温环境下进行热解
(2)控制热解反应的温度、时间和压力
3.产物收集
(1)收集热解反应产生的气体、液体和固体产物
(2)进行产物的分离和收集
三、液化处理阶段
1.液化反应
(1)将热解产物进行液化反应
(2)添加催化剂和溶剂,进行液相反应
2.产物分离
(1)对液化产物进行分离和提纯
(2)分离出目标产品和副产物
3.产品处理
(1)对目标产品进行后续处理,如脱水、脱色等
(2)获得符合要求的终端产品
四、废物处理阶段
1.废气处理
(1)对热解和液化过程产生的废气进行处理
(2)进行除尘、脱硫等废气处理操作
2.废液处理
(1)(1)对热解和液化过程产生的废液进行处理
(2)(2)进行沉淀、过滤等废液处理操作
3.固体废弃物处理
(1)对热解和液化过程产生的固体废弃物进行处理
(2)进行分类、处理和处置
五、能源利用阶段
1.产品利用
(1)将终端产品进行利用,如燃料、化工原料等
(2)实现产品的能源价值和经济价值
2.能源回收
(1)对热解和液化过程中产生的废热进行回收
(2)进行余热利用和热能回收。