气体和溶液
- 格式:doc
- 大小:236.00 KB
- 文档页数:7
气体和溶液知识点总结高中一、气体1. 气体的物理性质气体的物理性质有压力、体积、温度和量的性质。
气体具有压力是因为气体分子在容器壁上产生的冲击力。
气体的体积可以通过容器的形状和大小来改变。
气体温度的升高会导致气体的分子速度增加,压力也会增加。
气体的量则是通过摩尔来表示的,可以用摩尔的数量来确定气体的量。
2. 气体的状态方程气体的状态方程可以表示为PV=nRT,其中P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的温度。
通过这个方程可以计算气体在不同条件下的压力、体积、温度和摩尔数。
3. 理想气体和实际气体的差异理想气体是指在所有温度和压力下都按照理想气体状态方程的行为的气体,而实际气体则是存在分子间相互作用和分子大小的影响,因此它的行为与理想气体不完全相同。
理想气体的状态方程适用于低压和高温,而在高压和低温下实际气体的行为就会与理想气体有所差异。
4. 气体的分子速率气体的分子速率是指气体分子在单位时间内的平均速度。
根据麦克斯韦-玻尔兹曼分布律,气体分子的速率是满足正态分布的。
速率较快的分子将产生更大的冲击力,导致较高的压力。
5. 气体的扩散和离子率气体在压力差下会自发地向低压处移动,这种现象称为气体的扩散。
而气体在水中的溶解度是由溶解度量化的,它受温度、压力等因素的影响。
6. 气体的溶解度和溶解度计算气体在水中的溶解度与温度、压力和气体的种类有关。
溶解度可以通过亨利定律计算,亨利定律表示气体溶解度与气体分压成正比。
7. 气体的化学性质气体的化学性质包括燃烧性、与金属、非金属和卤素的反应性等。
不同的气体在化学反应中会表现出不同的性质,如氧气具有很强的氧化性,而氢气则具有很强的还原性。
8. 气体的应用气体在生活和工业中有着广泛的应用,如氧气用于焊接和制氧,氮气用于保护食物,氢气用于石油加工等。
二、溶液1. 溶液的组成和分类溶液是由溶质和溶剂组成的,溶质是指被溶解的物质,而溶剂则是指将溶质溶解的物质。
化学反应中的气体与溶液的性质与计算知识点总结化学反应是研究物质之间相互转化的过程,其中气体和溶液是常见的反应状态。
本文将从气体和溶液的性质以及计算知识点方面进行总结。
一、气体的性质1. 压力(P):气体分子对容器壁施加的力所引起的单位面积上的压力,单位为帕斯卡(Pa)或等效单位。
2. 体积(V):气体占据的空间,通常以升(L)为单位。
3. 温度(T):衡量气体分子平均动能的物理量,常用摄氏度(℃)或开尔文(K)表示。
4. 摩尔数(n):单位体积气体所含的物质的量,常用摩尔(mol)表示。
5. 气体状态方程:描述气体体积、压力、摩尔数和温度之间关系的方程式。
a. 理想气体状态方程:PV = nRT,其中R为气体常数。
b. 简化气体状态方程:以特定情况下气体满足的条件为基础,例如低温、高压或温度接近绝对零度。
6. 气体扩散和离子速率:气体的运动以及气体分子间的碰撞导致气体的扩散。
离子速率则与溶液中离子的浓度和电荷密度相关。
二、溶液的性质1. 浓度(C):溶液中溶质的质量或物质的量与溶液总体积的比值。
a. 质量浓度:溶质质量与溶液总体积的比值,单位常为克/升(g/L)。
b. 摩尔浓度:溶质物质的量与溶液总体积的比值,单位为摩尔/升(mol/L)。
2. 溶解度:溶质在溶剂中的最大溶解量,可根据溶解度曲线寻找。
3. 饱和溶液:达到溶解度极限的溶液,无法再溶解更多溶质。
4. 溶液的温度和压力对溶解度的影响:溶解度常随温度的升高而增加,溶解度与压力的关系则与溶质的性质和溶剂有关。
5. 溶液的沉淀和溶解反应:当两种溶液混合时,沉淀反应会导致溶质从溶液中析出,而溶解反应则会使溶质从沉淀中溶解到溶液中。
三、计算知识点1. 摩尔质量计算:将相对原子质量或相对分子质量与摩尔数关联起来,计算物质的质量。
质量(g)= 摩尔质量(g/mol)×物质的摩尔数(mol)2. 摩尔比例:根据化学方程式中的摩尔系数,可以确定反应物和生成物之间的摩尔比例关系。
化学反应中的气体和溶液知识点总结化学反应是物质间发生变化的过程,其中气体和溶液是常见的反应方式。
本文将围绕化学反应中的气体和溶液两个方面进行知识点总结,帮助读者更好地理解这些概念。
一、气体的特性和性质气体是一种无定形的物质形态,具有以下特性和性质:1. 可压缩性:气体的分子间距离较大,分子运动剧烈,因此气体具有可压缩性。
2. 可扩散性:气体分子具有高速运动,可以自由地在容器内扩散和混合。
3. 可溶性:气体可以溶解于液体或固体中,其溶解度受温度和压力的影响。
4. 气压和温度:根据理想气体状态方程P×V = n×R×T,气体压强和温度成正比,压强的单位是帕斯卡(Pa),温度的单位是开尔文(K)。
二、溶液的组成和性质溶液是由溶质和溶剂组成的混合物,其中溶质是被溶解的物质,溶剂是用于溶解溶质的物质。
溶液具有以下组成和性质:1. 溶解度:溶解度是指单位溶剂中能溶解的最大溶质量,常用质量分数或摩尔分数表示。
2. 饱和溶液:当在一定温度下,无法再溶解更多溶质时,称为饱和溶液。
3. 浓度:溶液的浓度可以通过质量浓度、摩尔浓度或体积浓度等方式表示。
4. 溶解过程:溶质分子与溶剂分子之间的相互作用力决定了溶解过程的进行与否。
5. 离子溶液:当溶质是离子时,溶液中的离子数量与电解质的浓度成正比。
三、气体反应常见类型1. 常规气体反应:包括氧化反应、还原反应、酸碱中和反应等。
例如:2H2 + O2 → 2H2O2. 气体的摩尔关系:根据化学计量关系,在气体反应中可以根据反应物的物质的摩尔比例推导出产物的物质摩尔比例。
例如:2H2 + O2 → 2H2O,2摩尔氢气与1摩尔氧气反应生成2摩尔水。
3. 气体溶解平衡:气体溶解于溶液中时,会达到一个平衡状态,溶解度受温度和压力的影响。
四、溶液反应常见类型1. 酸碱反应:酸和碱在溶液中反应生成盐和水的化学反应。
例如:HCl + NaOH → NaCl + H2O2. 沉淀反应:两种溶液混合时,产生的沉淀物是由两种阳离子和阴离子结合形成的固体颗粒。
第一章 气体和溶液学习要求1. 了解分散系的分类及主要特征。
2. 掌握理想气体状态方程和气体分压定律。
3. 掌握稀溶液的通性及其应用。
4. 掌握胶体的基本概念、结构及其性质等。
5. 了解高分子溶液、乳状液的基本概念和特征。
1.1 气体1.1.1 理想气体状态方程气体是物质存在的一种形态,没有固定的形状和体积,能自发地充满任何容器。
气体的基本特征是它的扩散性和可压缩性。
一定温度下的气体常用其压力或体积进行计量。
在压力不太高(小于101.325 kPa)、温度不太低(大于0 ℃)的情况下,气体分子本身的体积和分子之间的作用力可以忽略,气体的体积、压力和温度之间具有以下关系式:V=RT p n (1-1)式中p 为气体的压力,SI 单位为 Pa ;V 为气体的体积,SI 单位为m 3;n 为物质的量,SI 单位为mol ;T 为气体的热力学温度,SI 单位为K ;R 为摩尔气体常数。
式(1-1)称为理想气体状态方程。
在标准状况(p = 101.325 Pa ,T = 273.15 K)下,1 mol 气体的体积为 22.414 m 3,代入式(1-1)可以确定R 的数值及单位:333V 101.32510 Pa 22.41410 m R T1 mol 27315 Kp n .-⨯⨯⨯==⨯3118.314 Pa m mol K --=⋅⋅⋅11= 8.314 J mol K --⋅⋅ (31 Pa m = 1 J ⋅)例1-1 某氮气钢瓶容积为40.0 L ,25 ℃时,压力为250 kPa ,计算钢瓶中氮气的质量。
解:根据式(1-1)333311V 25010Pa 4010m RT8.314Pa m mol K 298.15Kp n ---⨯⨯⨯==⋅⋅⋅⨯4.0mol =N 2的摩尔质量为28.0 g · mol -1,钢瓶中N 2的质量为:4.0 mol × 28.0 g · mol -1 = 112 g 。
气体和溶液【1-1】在0℃和100kPa 下,某气体的密度是1.96g·L -1。
试求它在85千帕和25℃时的密度。
解:根据公式p M=ρRT 得111222P T P T ρρ=, 所以21121285.0 1.96273.15===1.53100298.15P T PT ρρ⨯⨯⨯g·L -1 【1-2】 在一个250 mL 容器中装入一未知气体至压力为101.3 kPa ,此气体试样的质量为0.164 g ,实验温度为25℃,求该气体的相对分子质量。
解:-1101.30.250=n 8.314n=0.0102mol 0.1640.0102=16.1g mol 298.15⨯⨯÷⋅,, 【1-3】收集反应中放出的某种气体并进行分析,发现C 和H 的质量分数分别为0.80和0.20。
并测得在0℃和101.3 kPa 下,500 mL 此气体质量为0.6695 g 。
试求该气态化合物的最简式、相对分子质量和分子式。
解:(1)(0.80(12.01):(0.20(1.008) = 1:3.0,最简式为CH 3(2)-1101.30.500=n 8.314n=0.0223mol 0.66950.023=30.0g mol 273.15⨯⨯÷⋅,, (3)C 2H 6【1-4】将0℃和98.0 kPa 下的2.00 mL N 2和60℃ 53.0 kPa 下的50.00 mL O 2在0℃混合于一个50.0 mL 容器中,问此混合物的总压力是多少? 解:112298.0 2.00(N ) 3.92kPa 50.0p V p V ⨯===122153.0273(O )43.5kPa 333p T p T ⨯===3.9243.547.4kPap =+=混合【1-5】现有一气体,在35℃和101.3 kPa 的水面上捕集,体积为500 mL 。
如果在同样条件下将它压缩成250 mL ,干燥气体的最后分压是多少?解:查教科书第4页表1-1,得35℃时水的饱和蒸气压为5.63 kPa , 101.3 5.630.500=n 8.314n=0.01867mol 308.15-⨯⨯(), P 0.250=0.018678.314P=191.3kPa 308.15⨯⨯,【1-6】CHCl 3在40℃时蒸气压为49.3 kPa ,于此温度和101.3 kPa 压力下,有4.00 L 空气缓缓通过CHCl 3(即每一个气泡都为CHCl 3蒸气所饱和),求:(1)空气和CHCl 3混合气体的体积是多少?(2)被空气带走的CHCl 3质量是多少?解:(1)49.3:(101.3 - 49.3) = V:4.00, V = 3.79 (L),4.00 + 3.79 = 7.79 (L)(2)49.37.79=n 8.314n=0.1475mol 0.1475119.2=17.6g 313.15⨯⨯⨯,, 【1-7】在15℃和100 kPa 压力下,将3.45 g Zn 和过量酸作用,于水面上收集得1.20 L 氢气。
求Zn 中杂质的质量分数(假定这些杂质和酸不起作用)。
解:查教科书第4页表1-1,得35℃时水的饱和蒸气压为1.71 kPa ,100 1.71 1.20=n 8.314n=0.0492mol 0.049265.39=3.22g 288.15-⨯⨯⨯(),, (3.45 - 3.22)÷3.45 = 0.067【1-8】定性地画出一定量的理想气体在下列情况下的有关图形:(1)在等温下,pV 随V 变化;(2)在等容下,p 随T 变化;(3)在等压下,T 随V 变化;(4)在等温下,p 随V 变化;(5)在等温下,p 随1V变化; (6)pV/T 随p 变化。
解:(1) pV=nRT=c ;(3)T=pnRV=cV ;(4) pV=nRT=c【1-9】在57℃,让空气通过水,用排水取气法在100kPa 下,把气体收集在一个带活塞的瓶中。
此时,湿空气体积为1.00 L 。
已知在57℃,p (H 2O)=17 kPa ;在10℃,p (H 2O)=1.2 kPa ,问:(1)温度不变,若压力降为50kPa ,该气体体积为多少?(2)温度不变,若压力增为200kPa ,该气体体积为多少?(3)压力不变,若温度升高到100℃,该气体体积为多少?(4)压力不变,若温度降为10℃,该气体体积为多少?解:(1)53311242 1.0010Pa 1.00dm 2.00dm 2L 5.0010PapV V p ⨯⨯====⨯ (2)57℃,p (H 2O )=17kPa ,P 2(空气)V 2=P 1(空气)V 1,332(10017)kPa 1.00dm 0.45dm 0.45L (20017)kPaV -⨯===- (3)331122 1.00dm 373K 1.13dm 1.13L 330KV T V T ⨯⨯==== (4)332211221()()(10017)kPa 1.00dm 283K ,0.72dm 0.72L (100 1.2)kPa 330Kp V p V V T T -⨯⨯====-⨯空气空气 【1-10】已知在标准状态下1体积的水可吸收560体积的氨气,此氨水的密度为0.90 g/mL ,求此氨溶液的质量分数和物质的量浓度。
解:设水(A )的体积为1L ,则被吸收的氨气(B )的体积为560L ,那么: 氨气的物质的量:mol 25mol L 4.22L 5601B =⋅=-n 氨气的质量: g 425m ol g 17m ol 251B =⋅⨯=-m氨溶液的质量: g 1425425g g 1000B A =+=+m氨溶液的体积: 1.58L m L 3.1583m Lg 90.0g 14251B A B A ≈=⋅==-++ρm V 氨的质量分数: 298.0g1425g 425B A B B ===+m m x 氨的量的浓度: 1B A B B L mol 8.1558L .1mol 25-+⋅===V n c 【1-11】经化学分析测得尼古丁中碳、氢、氮的质量分数依次为0.7403, 0.0870,0.1727。
今将1.21 g 尼古丁溶于24.5 g 水中,测得溶液的凝固点为 -0.568(C 。
求尼古丁的最简式、相对分子质量和分子式。
解:5.24/21.11086.1)568.0(03M ⨯⨯=--,求得:162=M 0.7400.0870.1727(C):(H):(N)::0.06167:0.087:0.012335:7:112114n n n ===尼古丁的最简式:N H C 75,式量:811471512=+⨯+⨯='M ,281/162/=='M M ,所以尼古丁的分子式为21410N H C ;结构式如上所示。
【1-12】为了防止水在仪器内冻结,在里面加入甘油,如需使其冰点下降至-2.00℃,则在每100克水中应加入多少克甘油(甘油的分子式为C 3H 8O 3)?解:设100g 水中加入的甘油质量为m g ,甘油的相对分子质量92=M 。
根据稀溶液的依数性,凝固点下降:b K T ⋅=∆f ,则有:10092/1086.1)2(03m ⨯⨯=--,求得g 89.9=m 【1-13】在下列溶液中:(a )0.10mol/L 乙醇,(b )0.05mol/L CaCl 2,(c )0.06mol/L KBr ,(d )0.06mol/LNa 2SO 4(1)何者沸点最高?(2)何者凝固点最低?(3)何者蒸气压最高?解:根据电解质理论,溶解中电离出的离子越多,其蒸气压下降越多,相应的沸点上升最高,凝固点下降最多。
因此分别计算四种溶液中微粒的数量:(a )0.1 mol 乙醇 (b )1mol 氯化钙可以电离出2mol 氯离子和一摩尔氯离子,共:0.05×3=0.15mol(c )0.12mol (d )0.18mol 。
因此沸点最高和凝固点最低的是(d ),蒸气压最高的是(a ),因为乙醇沸点只有76℃,更容易蒸发,溶液上将含有更多的蒸气。
【1-14】医学临床上用葡萄糖等渗液的冰点为-0.543(C ,试求此葡萄糖溶液的质量分数和血浆的渗透压(血液体的温度为37℃)。
解:根据凝固点下降求等渗液中葡萄糖的质量摩尔浓度b :b K T ⋅=∆f11f kg mol 292.0molkg K 86.1K 543.0--⋅=⋅⋅=∆=K T b 设等渗液体积是1.00L ,稀溶液的1L mol 292.0-⋅=≈b c葡萄糖的相对分子质量:1mol g 180-⋅=M葡萄糖的质量:g 56.52m ol g 180L 00.1L m ol 292.011=⋅⨯⨯⋅=⨯⨯=--M V c m B等渗液的总质量:1052.56g g 56.52g 1000B A =+=+m 葡萄糖的质量分数:0499.01052.56g52.56g B A B ===+m m x B 血浆的渗透压:kPa753K 310)K m ol L kPa (315.8L m ol 292.0111=⨯⋅⋅⋅⨯⋅==∏---cRT【1-15】下面是海水中含量较高的一些离子的浓度(单位为mol/kg ):Cl -Na + Mg 2+ SO 42- Ca 2+ K + HCO 3- 0.566 0.486 0.055 0.029 0.011 0.011 0.002今在25℃欲用反渗透法使海水淡化,试求所需的最小压力。
解:海水是各种离子的稀溶液,其b c ≈,根据稀溶液的依数性,总溶质微粒的数量为:1L mol 16.1002.0011.0011.0029.0055.0486.0566.0-⋅=++++++=c在25℃欲用反渗透法使海水淡化所需压力为:kPa 2874K 298)K m ol L kPa (315.8L m ol 16.1111=⨯⋅⋅⋅⨯⋅==∏---cRT【1-16】20℃时将0.515g 血红素溶于适量水中,配成50.00mL 溶液,测得此溶液的渗透压为375Pa ,求:(1)溶液的浓度c ;(2)血红素的相对分子质量;(3)此溶液的沸点升高值和凝固点降低值;(4)用(3)的计算结果来说明能否用沸点升高和凝固点降低的方法来测定血红素的相对分子质量。
解:(1)溶液的浓度:1411L mol 1054.1293KK mol L 8.315kPa 0.375kPa ----⋅⨯=⨯⋅⋅⋅=∏=RT c (2)血红素的相对分子质量M :由于VM m c /=,故 14314mol g 1069.6L 100.50L mol 1054.1g 515.0----⋅⨯=⨯⨯⋅⨯==cV m M (3)此溶液的沸点升高值T ∆:K 1088.71054.1512.054b --⨯=⨯⨯=⋅=∆b K T此溶液的凝固点降低值T ∆:K 1086.21054.186.144f --⨯=⨯⨯=⋅=∆b K T(4)从理论上来说,根据稀溶液的依数性定律,是可以通过T ∆来测定血红素的相对分子质量的,但从(3)的结果可知,血红素溶液的沸点升高值和凝固点下降值T ∆都非常小,测得其准确值很困难,相对误差很大, 实际上是不能用于测定血红素的相对分子质量的。