全国大学生数学建模竞赛题目A
- 格式:doc
- 大小:94.00 KB
- 文档页数:5
2024年数学建模a 题一、单选题1.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .103.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.2525 5 D.511.已知双曲线C 的渐近线方程为230x y ±=,且C 经过点(6,22-,则C的标准方程为( )A. 221188x y -=B. 22194x y -= C. 221818y x -= D. 22149y x -=二、选择题:在每小题给出的选项中,有多项符合题目要求。
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
优秀论文选编A题之一(全国一等奖)奥运会临时超市网点设计广西师范大学,吴宗显、单俊辉、谭春亮;指导教师:数学建模组摘要:本文首先根据问卷调查数据计算观众出行、用餐和购物等方面的分布,分析各种分布的特点。
然后,根据观众出行、用餐分布,场馆分布情况和最短距离原则,测算出测算20个商区的人流量及其分布。
最后,根据商圈分析中零售引力法则(即里利法则)、哈夫概率模型、饱和理论,建立设计MS网点大小规模类型的数学模型。
在约定大规模MS网点的面积为1个单位的基础上,经过计算求解,得到小规模MS网点的面积为0.6个单位,并得出20个MS网点的设计方案,具体设计方案是:A区有2个大规模MS网点,分别设在A6小区和A1小区,其余8个小区均为小规模MS网点;B区有2个大规模MS网点,分别设在B6小区和B3小区,其余4个小区均为小规模MS网点;C区有1个大规模MS网点,设在C4小区,其余3个小区均为小规模MS网点。
奥运会临时超市网点设计一、问题的分析与基本假设(一)问题的分析题目要求完成如下工作:1、根据附录中给出的问卷调查数据,找出了观众在出行、用餐和购物等方面所反映的规律2、在一天内每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径前提下。
依据1的结果,测算图2中20个商区的人流量分布。
3、按照满足奥运会期间的购物需求、分布基本均衡和商业上赢利的要求,根据流量分布规律,在有两种大小不同规模的MS类型供选择情况下,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数)。
(二)基本假设1、假定A区(国家体育场)容量为10万人,B区(国家体育馆)容量为6万人,C区(国家游泳中心)容量为4万人。
三个场馆的每个看台容量均为1万人,出口对准一个商区,各商区面积相同。
2、无论乘坐何种交通工具的观众所持的票号是随机的。
二、问卷调查数据的统计与分布规律我们把附录中三次调查的数据综合起来并进行的统计和分析得出的观众在出行、用餐和购物等方面的规律如下:1、整个人群的各种行为的分布规律(1)用不同的交通方式的人数及其分别所占总人数的比例除私车方式偏少一些(仅有9.0377%)外,其余方式分布都比较均匀,均为16%-20%,这说明场馆周围布局的交通车站是比较合理的。
2023国赛数学建模a题一、选择题(每题4分,共20分)下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = 1/xD. y = x^3已知直线l 过点P(1, 2),且与直线y = 3x 平行,则直线l 的方程是()A. y = 3x - 1B. y = 3x + 1C. y = 3x - 5D. y = 3x + 5下列等式中正确的是()A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = -cotαD. sin(π - α) = -sinα设随机变量X 服从正态分布N(2, σ^2),若P(X < 4) = 0.9,则P(0 < X < 2) = ()A. 0.4B. 0.3C. 0.2D. 0.1在△ABC中,若 A = 60°,b = 1,S△ABC = √3,则 a = ()A. 1B. 2C. √3D. √2二、填空题(每题4分,共16分)函数y = √(x - 1) 的定义域是_______。
若直线x + y + k = 0 与圆x^2 + y^2 = 1 相切,则k = _______。
已知等差数列{an} 的前n 项和为Sn,若a1 = 1,S3 = 9,则a2 + a4 = _______。
若x, y 满足约束条件{ x + y ≤ 1, x - y ≥ -1, y ≥ 0 },则z = 2x + y 的最大值为_______。
三、解答题(共64分)10.(12分)求函数y = 2sin(2x - π/6) 的单调递增区间。
11.(12分)在△ABC中,已知a = 5,b = 8,cosC = 11/16,求sinA 的值。
12.(12分)已知函数f(x) = x^3 + ax^2 + bx + c 在x = 1 与x = -1 时取得极值。
(1)求a,b 的值;(2)若对于任意x ∈ [-2, 2],都有f(x) < c^2 成立,求 c 的取值范围。
长江水质的评价和预测摘要文章在已有数据的基础上,建立了水质依靠流量、流速和降解系数的数学模型,找出了污染源的所在地。
建立一元线性回归模型,对后十年污水治理做出了预测。
利用Matlab,C语言程序进行求解。
得出了有关结论。
针对问题一,根据03、04年长江流域水质报告表,对长江近两年多的水质情况做出定量的综合评价。
对每一个地区在近两年的28个月中的水质情况进行统计,找出该地区污染的种类及该种类污染出现的频率。
以此为依据分析各地区水质的污染状况。
针对问题二,根据主要污染物在各个观测点的观测数据,建立了水质依靠流量、流速和降解系数的数学模型。
对长江干流沿岸各个地段的排污量进行统计,找出了主要污染源所在地区:长江中游湖北宜昌至湖南岳阳段。
针对问题三,根据各个年份废水排放量总量,采用一元线性回归模型找出废水排放量总量与年份之间的关系。
根据水文年支流和干流的相关数据和各年长江总流量和废水排放量,得出长江总流量中废水排放量的比例,利用matlab对1995-2004年长江总流量中废水排放量的比例拟合(不考虑1998年特大洪水),对未来十年废水排放量占长江总流量比例进行预测。
从预测结果中,发现污水百分比呈逐年上升的趋势(从2005年的3.27%到2014年的6.24%),由此说明长江污水的处理迫在眉睫。
针对第四问,依照过去10年的Ⅳ类、Ⅴ类水和Ⅵ水的统计数据,通过数据拟合构建了一元线性回归模型、预测的未来十年Ⅳ类、Ⅴ类水和Ⅵ水占长江总水量的百分比。
引入流量的概念,得到长江的总水量HS。
由治理污水的标准建立分段函数。
从而求出未来十年每年需要处理的污水量。
针对第五问,提出了解决长江水质污染问题的从四方面着手的方案:沿江工厂的整治,民众意识的唤醒,上游植被的保护,以及法律的硬性要求。
一问题重述2004年10月“保护长江万里行”考察团,对长江沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面。
为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”,并发出了“拿什么拯救癌变长江”的呼唤。
2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土<0~10 厘M深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1> 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2> 通过数据分析,说明重金属污染的主要原因。
(3> 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4> 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2011 高教社杯全国大学生数学建模竞赛题目规范”)式格文(请先阅读“全国大学生数学建模竞赛论A题城市表层土壤重金属污染分析,人类活动对城市环境质量的影响随着城市经济的快速发展和城市人口的不断增加开料日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资成为人们关展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益注的焦点。
地区按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿记为 1 类区、2 类区、⋯⋯、5 类区,不同的区域环境受人类活动影响的程度等,分别不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距 1 公里左右的网格子区域,按照每平方公里 1 个采样点对表层土(0~10 厘米深度)进行取样、的所含编号,并用GPS 记录采样点的位置。
应用专门仪器测试分析,获得了每个样本多种化学元素的浓度数据。
另一方面,按照 2 公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1 列出了采样点的位置、海拔高度及其所属功能区等信息,附件 2 列出了8 种主要重金属元素在采样点处的浓度,附件 3 列出了8 种主要重金属元素的背景值。
:现要求你们通过数学建模来完成以下任务(1) 给出8 种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收?集什么信息?有了这些信息,如何建立模型解决问题题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2022年全国大学生数学建模竞赛A题(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。
,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025某103kg/m3的海域。
若海水静止,分别计算海面风速为12m/和24m/时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2在问题1的假设下,计算海面风速为36m/时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
问题3由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。
全国大学生数学建模竞赛题目A
D题会议筹备
某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。
由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。
为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。
筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。
根据这届会议代表回执整理出来的有关住房的信息见附表2。
从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。
附表2,3都可以作为预订宾馆客房的参考。
需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。
会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。
由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。
现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。
请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。
附表1 10家备选宾馆的有关数据。