2013年河北省中考数学模拟试题及答案(二)
- 格式:doc
- 大小:531.50 KB
- 文档页数:17
2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。
第二节一元二次方程及应用年份题号考查点考查内容分值总分201719 一元二次方程的解法综合题,在新定义的背景下用直接开平方法解一元二次方程37 26(2)一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况4201614一元二次方程根的判别式利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512一元二次方程根的判别式考一元二次方程无实数根求参数的取值X围2 2201421 解一元二次方程(1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式;(2)用配方法解一元二次方程10 102013年未考查命题规律纵观某某近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.某某五年中考真题及模拟一元二次方程的解法1.(2014某某中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为: x 2+b a x =-c a,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a (b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017某某中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是(A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016某某二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是(B )A .-4或-1B .4或-1C .4或-2D .-4或2一元二次方程根的判别式及根与系数的关系4.(2015某某中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值X 围是(B )A .a<1B .a>1C .a ≤1D .a ≥15.(2016某某中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为06.(2016某某十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017某某二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6; (2)方程x 2-5x +6=0的两根为2或3; ①2*3=2×3-9=-3;②3*2=32-2×3=3.一元二次方程的应用8.(2016某某25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为(D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016某某十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017某某中考)某厂按用户的月需求量x(件)完成一种产品的生产,,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m. 解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝ ⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0, ∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13, ∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵Δ=(-13)2-4×1×47<0,∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50) =24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法 这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法: (1)当b =0,c ≠0时,x 2=-c a ,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根; (2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系: (1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016某某十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22; (2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3; (3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,1=2,x 2=0.1.方程(x -3)(x +1)=0的解是(C )A .x =3B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016某某路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为(A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=13.用公式法解方程: (1)(某某中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(某某中考)x 2-1=2(x +1).解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017某某中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是(A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016某某丰润二模)方程x 2-x +3=0根的情况是(D )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5.(2016某某博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值X 围是(C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017某某中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为________万元;,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染(A)A.17人B.16人C.15人D.10人【解析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x+1)人,每人传染x个人,则传染x(x+1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x个人+第二轮传染的x(x+1)人,列方程:1+x+x(1+x)=256,解得x1=15,x2,所以x=-17不合题意,应舍去;取x=15,故选C.【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x元,则每件盈利(50-x)元,数量增多2x件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x2-35x+300=0.解得x1=15,x2=20.∵要尽快减少库存,∴x=15不合题意,舍去,只取x=20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017某某中考)如图,为美化校园环境,某校计划在一块长为60 m,宽为40 m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m.(1)用含a的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为(A )A (1+x)2=4B .(2.5+x%)2=4C (1+x)(1+2x)=4D (1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为(C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__word个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.11 / 11。
2018年河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2+360x﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5(3)因为4册和5册的人数和为27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
九年级数学试卷一、选择题(30分) 1)A 、4±B 、4C 、2±D 、2 2、下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹3、如图所示的Rt ⊿ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )4、二次函数y=kx 2) A.K ﹤3 B.K ﹤3且K ≠0 C.K ≤3 D.K ≤3且K ≠05、已知⊙1O ,与⊙2O 的半径分别为2和3,若两圆相交.则两圆的圆心距m 满足( ) A . 5m = B .1m = C . 5m > D . 15m <<6、如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cm7、若△ABC ∽△DEF ,△DEF 与△ABC 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A.1:2B.1:4C.2:1D.4:1 8、如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE =2, 则tan ∠DBE 的值是( )A .12 B .2 C .2 D .59、菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程:03)12(22=++-+m x m x 的根,则m 的值为( )A 、-3B 、5C 、5或-3D 、-5或3CC第8题图(第6题)ABCDO10、已知二次函数2(0)y ax bx c a =++≠的图象如右图所示, 下列结论: ①0abc > ②b a c <+③20a b += ④()(1a b m am b m +>+≠的实数), 其中正确的结论有( )A 1个B .2个C . 3个D .4个二、填空题(18分) 11、在函数y =x 的取值范围是 . 12、已知三角形两边长是方程2560x x -+=的两个根,则三角形的第三边c 的取值范围是13、从1,2,3,…,19,20这二十个整数中任意取一个数,这个数是3的倍数的概率是 . 14、在半径为1的⊙O 中,弦AB 、AC 的长分别为2和3,则∠BAC 的度数为 。
河北省2013年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】∵气温由1C ︒-上升2C ︒,∴1C 2C=1C ︒︒︒-+ 故选B .【提示】根据上升2C ︒即是比原来的温度高了2C ︒,就是把原来的温度加上2C ︒即可. 【考点】有理数的加法 2.【答案】B【解析】将4230000用科学记数法表示为:64.2310⨯ 故选:B【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】科学记数法—表示较大的数 3.【答案】C【解析】A .是中心对称图形,不是轴对称图形,故此选项错误; B .是轴对称图形,不是中心对称图形,故此选项错误; C .是轴对称图形,也是中心对称图形,故此选项正确; D .是轴对称图形,不是中心对称图形,故此选项错误. 故选C .【提示】根据中心对称图形和轴对称图形定义求解即可. 【考点】中心对称图形,轴对称图形 4.【答案】D【解析】A .右边不是整式积的形式,不是因式分解,故本选项错误; B .右边不是整式积的形式,不是因式分解,故本选项错误; C .右边不是整式积的形式,不是因式分解,故本选项错误; D .符合因式分解的定义,故本选项正确; 故选D .故选B.12.【答案】A【解析】由甲同学的作业可知,CD AB =,AD BC =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD 是矩形.所以甲的作业正确;由乙同学的作业可知,CM AM =,MD MB =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD 是矩形.所以乙的作业正确;故选A .【提示】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确,先由对角线互相平分的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【考点】作图,复杂作图,矩形的判定 13.【答案】B【解析】如图,180901901BAC ︒︒︒∠=--∠=-∠,1806031203ABC ︒︒︒∠=--∠=-∠,1806021202ACB ∠=--∠=-∠,在ABC △中,180BAC ABC ACB ∠+∠+∠=,∴90112031202180︒︒︒︒-∠+-∠+-∠=,∴121503︒∠+∠=-∠,∵350︒∠=,∴1215050100︒︒︒∠+∠=-=故选B .【提示】设围成的小三角形为ABC △,分别用1∠、2∠、3∠表示出ABC △的三个内角,再利用三角形的内角和等于180︒列式整理即可得解. 【考点】三角形内角和定理 14.【答案】D 【解析】故选C.故选A .2xx x y =++180(BMN -∠【提示】根据两直线平行,同位角相等求出BMF ∠,BNF ∠,再根据翻折的性质求出BMN ∠和BNM ∠,然后利用三角形的内角和定理列式计算即可得解.【考点】平行线的性质,三角形内角和定理,翻折变换(折叠问题) 20.【答案】2【解析】∵一段抛物线:(3)(03)y x x x =--≤≤,∴图像与x 轴交点坐标为:(0,0),(3,0),∵将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ; …如此进行下去,直至得13C∴13C 的与x 轴的交点横坐标为(36,0),(39,0),且图像在x 轴上方,∴13C 的解析式为:13(36)(39)y x x =---,当37x =时,(3736)(3739)2y =--⨯-=.故答案为:2.【提示】根据图像的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值. 【考点】二次函数图像与几何变换 三、解答题 21.【答案】(1)11 (2)1x >-【解析】解:(1)∵()1a b a a b ⊕=-+,∴(2)32(23)110111⊕=---+=+=- (2)∵313x ⊕<,∴3(3)113x -+<,93113x -+<,33x -<,1x >-. 在数轴上表示如下:【提示】按照定义新运算()1a b a a b ⊕=-+,,得出3x ⊕,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.【考点】解一元一次不等式,有理数的混合运算,在数轴上表示不等式的解集 22.【答案】(1)D 错误,理由为:2010%23⨯=≠ (2)众数为5,中位数为5 (3)①第二步;②445866725.320x ⨯+⨯+⨯+⨯==,估计260名学生共植树5.32601378⨯=(颗)23.【答案】(1) (2)t 的取值范围是:47t <<.31t =y 2t =x【提示】利用一次函数图像上点的坐标特征,求出一次函数的解析式,分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围,找出点M 关于直线l 在坐标轴上的对称点E 、F ,如解答图所示.求出点E 、F 的坐标,然后分别求出ME 、MF 中点坐标,最后分别求出时间t 的值.【考点】一次函数综合题 24.【答案】(1)证明见解析 (2)点T 到OA 的距离为245(3)当BOQ ∠的度数为10︒或170︒时,AOQ △的面积最大 90,∴24度数为10︒或170︒时,AOQ △的面积最大.【提示】首先根据已知得出AOP BOP '∠=∠,进而得出AOP BOP '△≌△,利用切线的性质得出90ATO ︒∠=,再利用勾股定理求出AT 的长,进而得出TH 的长. 【考点】圆的综合题25.【答案】(1)212100Q k x k nx =++ (2)2n = (3)90x = (4)能;1%m =(4)由题意得,2142040(1%)62(1%)40(1%)10010[]m m m =--+⨯+⨯-+,即22(%)%0m m -=,解得:1%%02m m ==或(舍去)【提示】根据题目所给的信息,设212W k x k nx =+,然后根据100Q W =+,列出用Q 的解析式,将70x =,450Q =,代入求n 的值即可,把3n =代入,确定函数关系式,然后求Q 最大值时x 的值即可,根据题意列出关系式,求出当450Q =时m 的值即可.【考点】二次函数的应用26.【答案】(1)CQ BE ∥,3BQ(2)134424V =⨯⨯⨯=液3()dm 424PB BB '⨯=【提示】根据水面与水平面平行可以得到CQ 与BE 平行,利用勾股定理即可求得BQ 的长,液体正好是一个以BCQ △是底面的直棱柱,据此即可求得液体的体积,根据液体体积不变,据此即可列方程求解, 延伸:当60α︒=时,如图6所示,设FN EB ∥,GB EB '∥,过点G 作GH BB ⊥'于点H ,此时容器内液体形成两层液面,液体的形状分别是以Rt NFM △和直角梯形MBB G '为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可做出判断.【考点】四边形综合题,解直角三角形的应用。
河北省2013年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】∵气温由1C ︒-上升2C ︒,∴1C 2C=1C ︒︒︒-+故选B .【提示】根据上升2C ︒即是比原来的温度高了2C ︒,就是把原来的温度加上2C ︒即可.【考点】有理数的加法2.【答案】B【解析】将4230000用科学记数法表示为:64.2310⨯故选:B【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数3.【答案】C【解析】A .是中心对称图形,不是轴对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .是轴对称图形,也是中心对称图形,故此选项正确;D .是轴对称图形,不是中心对称图形,故此选项错误.故选C .【提示】根据中心对称图形和轴对称图形定义求解即可.【考点】中心对称图形,轴对称图形4.【答案】D【解析】A .右边不是整式积的形式,不是因式分解,故本选项错误;B .右边不是整式积的形式,不是因式分解,故本选项错误;C .右边不是整式积的形式,不是因式分解,故本选项错误;D .符合因式分解的定义,故本选项正确;故选D .故选B.12.【答案】A 【解析】由甲同学的作业可知,CD AB =,AD BC =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以甲的作业正确;由乙同学的作业可知,CM AM =,MD MB =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以乙的作业正确;故选A .【提示】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确,先由对角线互相平分的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【考点】作图,复杂作图,矩形的判定13.【答案】B【解析】如图,180901901BAC ︒︒︒∠=--∠=-∠,1806031203ABC ︒︒︒∠=--∠=-∠,1806021202ACB ∠=--∠=-∠o o o ,在ABC △中,180BAC ABC ACB ∠+∠+∠=o ,∴90112031202180︒︒︒︒-∠+-∠+-∠=,∴121503︒∠+∠=-∠,∵350︒∠=,∴1215050100︒︒︒∠+∠=-=故选B .【提示】设围成的小三角形为ABC △,分别用1∠、2∠、3∠表示出ABC △的三个内角,再利用三角形的内角和等于180︒列式整理即可得解.【考点】三角形内角和定理14.【答案】D【解析】故选C.故选A.【提示】根据两直线平行,同位角相等求出BMF ∠,BNF ∠,再根据翻折的性质求出BMN ∠和BNM ∠,然后利用三角形的内角和定理列式计算即可得解.【考点】平行线的性质,三角形内角和定理,翻折变换(折叠问题)20.【答案】2【解析】∵一段抛物线:(3)(03)y x x x =--≤≤,∴图像与x 轴交点坐标为:(0,0),(3,0),∵将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;…如此进行下去,直至得13C∴13C 的与x 轴的交点横坐标为(36,0),(39,0),且图像在x 轴上方,∴13C 的解析式为:13(36)(39)y x x =---,当37x =时,(3736)(3739)2y =--⨯-=.故答案为:2.【提示】根据图像的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【考点】二次函数图像与几何变换三、解答题21.【答案】(1)11(2)1x >-【解析】解:(1)∵()1a b a a b ⊕=-+,∴(2)32(23)110111⊕=---+=+=-(2)∵313x ⊕<,∴3(3)113x -+<,93113x -+<,33x -<,1x >-.在数轴上表示如下:【提示】按照定义新运算()1a b a a b ⊕=-+,,得出3x ⊕,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.【考点】解一元一次不等式,有理数的混合运算,在数轴上表示不等式的解集22.【答案】(1)D 错误,理由为:2010%23⨯=≠(2)众数为5,中位数为5(3)①第二步;②44586672 5.320x ⨯+⨯+⨯+⨯==,估计260名学生共植树5.32601378⨯=(颗)23.【答案】(1)(2)t 的取值范围是:47t <<. 31t =y 2t =x【提示】利用一次函数图像上点的坐标特征,求出一次函数的解析式,分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围,找出点M 关于直线l 在坐标轴上的对称点E 、F ,如解答图所示.求出点E 、F 的坐标,然后分别求出ME 、MF 中点坐标,最后分别求出时间t 的值.【考点】一次函数综合题24.【答案】(1)证明见解析(2)点T 到OA 的距离为245(3)当BOQ ∠的度数为10︒或170︒时,AOQ △的面积最大数为10︒或170︒时,AOQ △的面积最大.【提示】首先根据已知得出AOP BOP '∠=∠,进而得出AOP BOP '△≌△,利用切线的性质得出90ATO ︒∠=,再利用勾股定理求出AT 的长,进而得出TH 的长.【考点】圆的综合题25.【答案】(1)212100Q k x k nx =++(2)2n =(3)90x =(4)能;1%m = (4)由题意得,2142040(1%)62(1%)40(1%)10010[]m m m =--+⨯+⨯-+,即22(%)%0m m -=,解得:1%%02m m ==或(舍去)【提示】根据题目所给的信息,设212W k x k nx =+,然后根据100Q W =+,列出用Q 的解析式,将70x =,450Q =,代入求n 的值即可,把3n =代入,确定函数关系式,然后求Q 最大值时x 的值即可,根据题意列出关系式,求出当450Q =时m 的值即可. 【考点】二次函数的应用26.【答案】(1)CQ BE ∥,3BQ == (2)134424V =⨯⨯⨯=液3()dm【提示】根据水面与水平面平行可以得到CQ 与BE 平行,利用勾股定理即可求得BQ 的长,液体正好是一个以BCQ △是底面的直棱柱,据此即可求得液体的体积,根据液体体积不变,据此即可列方程求解, 延伸:当60α︒=时,如图6所示,设FN EB ∥,GB EB '∥,过点G 作GH BB ⊥'于点H ,此时容器内液体形成两层液面,液体的形状分别是以Rt NFM △和直角梯形MBB G '为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可做出判断. 【考点】四边形综合题,解直角三角形的应用数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前河北省2013年初中毕业生升学文化课考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.气温由1-℃上升2℃后是 ( ) A .1-℃ B .1℃ C .2℃ D .3℃2.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 ( )A .70.42310⨯ B .64.2310⨯ C .542.310⨯ D .442310⨯3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )ABCD4.下列等式从左到右的变形,属于因式分解的是 ( )A .()a x y ax ay -=-B .2221()1x x x x ++++=C .2()()1343x x x x ++++=D .3())11(x x x x x +-=-5.若1x =,则|4|x -=( )A .3B .3-C .5D .5- 6.下列运算中,正确的是( )A3=± B2C .0(20)-=D .2122-=7.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路m x 依题意,下面所列方程正确的是 ( )A .12010010x x =- B .12010010x x =+ C .12010010x x=-D .12010010x x=+ 8.如图1,一艘海轮位于灯塔P 的南偏东70方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40的N 处,则N 处与灯塔P 的距离为 ( )A .40海里B .60海里C .70海里D .80海里9.如图2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A .2B .3C .6D .3x +10.反比例函数my x=的图象如图3所示,以下结论: ①常数1m <-;②在每个象限内,y 随x 的增大而增大;③若,()1A h -,()2,B k 在图象上,则h k <; ④若,()P x y 在图象上,则,()P x y '--也在图象上其中正确的是 ( )A .①②B .②③C .③④D .①④11.如图4,菱形ABCD 中,点M ,N 在AC 上,ME AD ⊥,NF AB ⊥.若2NF NM ==,3ME =,则AN = ( )A .3B .4C .5D .6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.如已知:线段AB ,BC ,90ABC ∠=︒.求作:矩形ABCD . 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若350∠=︒,则12∠+∠= ( ) A .90︒ B .100︒ C .130︒ D .180︒14.如图7,AB 是O 的直径,弦CD AB ⊥,30C ∠=︒,23CD =.则S =阴影 ( ) A .πB .2π CD .2π315.如图8—1,M 是铁丝AD 的中点,将该铁丝首尾相接折成ABC △,且 30B ∠=︒,100C ∠=︒,如图8—2.则下列说法正确的是 ( ) A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远16.如图9,梯形ABCD 中,AB DC ∥,DE AB ⊥,CF AB ⊥,且 5AE EF FB ===,12DE =动点P 从点A 出发,沿折线AD DC CB --以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,EPF y S =△,则y 与t 的函数图象大致是( )ABCD第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是 .18.若1x y +=,且0x ≠,则2()2xy y x yx x x+++÷的值为 . 19.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将BMN △沿MN 翻折,得FMN △,若MF AD ∥,FN DC ∥,则B ∠=.20.如图12,一段抛物线:()(303)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180得3C ,交x 轴于点3A ;……如此进行下去,直至得13C .若()37,P m 在第13段抛物线13C 上,则m = .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)定义新运算:对于任意实数a ,b ,都有)1(a b a a b ⊕+=-,等式右边是通常的加 法、减法及乘法运算,比如:252(25)+1⊕=⨯-2(3)1=⨯-+61=-+ 5=-.(1)求(23)⊕-的值(2)若3x ⊕的值小于13,求x 的取值范围,并在图13所示的数轴上表示出来.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20 名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图14—1)和条形图(如图14—2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由; (2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图15,()0,1A ,()3,2M ,()4,4N .动点P 从点A 出发,沿y 轴以每秒1个单位 长的速度向上移动,且过点P 的直线l y x b +:=-也随之移动,设移动时间为t 秒.(1)当3t =时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴...上.24.(本小题满分11分)如图16,OAB △中,10OA OB ==, 80AOB ∠=︒,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(BOP ∠是锐角),将OP 绕点O 逆时针旋转80︒得OP '. 求证:AP BP '=;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当AOQ △的面积最大时,直接写出BOQ ∠的度数.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q W =+100,而W 的大小与运输次数n 及平均速度(km/h)x 有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ; (2)当70x =,450Q =时,求n 的值; (3)若3n =,要使Q 最大,确定x 的值; (4)设2n =,40x =,能否在n 增加)%(0m m >,同时x 减少%m 的情况下,而Q 的值仍为420,若能,求出m 的值;若不能,请说明理由.参考公式:抛物线2()0y ax bx c a ++≠=的顶点坐标是24(,)24b ac b a a--26.(本小题满分14分)一透明的敞口正方体容器ABCD A B C D ''''-装有 一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(CBE α∠=,如图17—1所示).探究 如图17-1,液面刚好过棱CD ,并与棱BB ' 交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ 与BE 的位置关系是 ,BQ 的长是 dm ;(2)求液体的体积:(参考算法:直棱柱体积BCQ V S AB =⨯液底面积高) (3)求α的度数.(注:3sin49cos414︒︒==,3tan374︒=)拓展 在图17—1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体 溢出,图17—3或图17—4是其正面示意图.若液面与棱C C '或CB 交于点P ,设PC x =,BQ y =.分别就图17—3和图17—4求y 与x 的函数关系式,并写出相应的α的范围.[温馨提示:下页还有题!]延伸 在图17—4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形 隔板(厚度忽略不计),得到图17—5,隔板高1dm NM =,BM CM =,NM BC ⊥.继续向右缓慢旋转,当60α=︒时,通过计算,判断溢出容器的液体能否达到34dm .。
,.2013年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(~6小题,每小题2分;7~16小题,每小题3分,共42分.)1. 气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A .0.423×107B .4.23×106C .42.3×105D .423×104 3.下列图形中,既是轴对称图形又是中心对称图形的是4.下列等式从左到右的变形,属于因式分解的是A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1)5.若x =1,则||x -4=A .3B .-3C .5D .-5 6.下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=127.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10 B .120x =100x +10 C .120x -10=100x D .120x +10=100x8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为 A .40海里 B .60海里 C .70海里D .80海里9.如图2,淇淇和嘉嘉做数学游戏:,.假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y = A .2 B .3 C .6 D .x +310.反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ; ④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是A .①②B .②③C .③④D .①④ 11.如图4,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB . 若NF = NM = 2,ME = 3,则AN = A .3 B .4 C .5 D .612.如已知:线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 = A .90° B .100° C .130° D .180° 14.如图7,AB 是⊙O 的直径,弦CD ⊥AB ,∠C = 30°,CD = 23.则S 阴影=A .πB .2πC . 23 3 D .23π15.如图8-1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B = 30°,∠C = 100°,如图8-2. 则下列说法正确的是 A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远16.如图9,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE = EF = FB = 5,DE = 12动点P 从点A 出发,沿折线AD -DC -CB 以每秒1个单位 长的速度运动到点B 停止.设运动时间为t 秒,y = S △EPF , 则y 与t 的函数图象大致是二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块 随机投掷在水平桌面上,则A 与桌面接触的概率是________.18.若x +y =1,且,则x ≠0,则(x +2xy +y 2x ) ÷x +yx 的值为_____________.19.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC , 则∠B = °. 20.如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2⨯(2-5)+1=2⨯(-3)+1=-6+1=-5(1)求(-2)⊕3的值(2)若3⊕x的值小于13,求x的取值范围,并在图13所示的数轴上表示出来.22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图14-1)和条形图(如图14-2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(本小题满分11分)⌒分别交OA,OB于点如图16,△OAB中,OA = OB = 10,∠AOB = 80°,以点O为圆心,6为半径的优弧MNM,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP = BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧MN⌒上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q = W + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.(1)用含x和n的式子表示Q;(2)当x = 70,Q = 450时,求n的值;(3)若n = 3,要使Q最大,确定x的值;(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)次数n 2 1速度x40 60指数Q421026.(本小题满分14分)一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).探究如图17-1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液= 底面积S BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.[温馨提示:下页还有题!]延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.。
河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
河北省2013年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】∵气温由1C ︒-上升2C ︒,∴1C 2C=1C ︒︒︒-+故选B .【提示】根据上升2C ︒即是比原来的温度高了2C ︒,就是把原来的温度加上2C ︒即可.【考点】有理数的加法2.【答案】B【解析】将4230000用科学记数法表示为:64.2310⨯故选:B【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数3.【答案】C【解析】A .是中心对称图形,不是轴对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .是轴对称图形,也是中心对称图形,故此选项正确;D .是轴对称图形,不是中心对称图形,故此选项错误.故选C .【提示】根据中心对称图形和轴对称图形定义求解即可.【考点】中心对称图形,轴对称图形4.【答案】D【解析】A .右边不是整式积的形式,不是因式分解,故本选项错误;B .右边不是整式积的形式,不是因式分解,故本选项错误;C .右边不是整式积的形式,不是因式分解,故本选项错误;D .符合因式分解的定义,故本选项正确;故选D .故选B.12.【答案】A 【解析】由甲同学的作业可知,CD AB =,AD BC =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以甲的作业正确;由乙同学的作业可知,CM AM =,MD MB =,∴四边形ABCD 是平行四边形,又∵90ABC ︒∠=,∴ABCD Y 是矩形.所以乙的作业正确;故选A .【提示】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确,先由对角线互相平分的四边形是平行四边形得出四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【考点】作图,复杂作图,矩形的判定13.【答案】B【解析】如图,180901901BAC ︒︒︒∠=--∠=-∠,1806031203ABC ︒︒︒∠=--∠=-∠,1806021202ACB ∠=--∠=-∠o o o ,在ABC △中,180BAC ABC ACB ∠+∠+∠=o ,∴90112031202180︒︒︒︒-∠+-∠+-∠=,∴121503︒∠+∠=-∠,∵350︒∠=,∴1215050100︒︒︒∠+∠=-=故选B .【提示】设围成的小三角形为ABC △,分别用1∠、2∠、3∠表示出ABC △的三个内角,再利用三角形的内角和等于180︒列式整理即可得解.【考点】三角形内角和定理14.【答案】D【解析】故选C.故选A.【提示】根据两直线平行,同位角相等求出BMF ∠,BNF ∠,再根据翻折的性质求出BMN ∠和BNM ∠,然后利用三角形的内角和定理列式计算即可得解.【考点】平行线的性质,三角形内角和定理,翻折变换(折叠问题)20.【答案】2【解析】∵一段抛物线:(3)(03)y x x x =--≤≤,∴图像与x 轴交点坐标为:(0,0),(3,0),∵将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;…如此进行下去,直至得13C∴13C 的与x 轴的交点横坐标为(36,0),(39,0),且图像在x 轴上方,∴13C 的解析式为:13(36)(39)y x x =---,当37x =时,(3736)(3739)2y =--⨯-=.故答案为:2.【提示】根据图像的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【考点】二次函数图像与几何变换三、解答题21.【答案】(1)11(2)1x >-【解析】解:(1)∵()1a b a a b ⊕=-+,∴(2)32(23)110111⊕=---+=+=-(2)∵313x ⊕<,∴3(3)113x -+<,93113x -+<,33x -<,1x >-.在数轴上表示如下:【提示】按照定义新运算()1a b a a b ⊕=-+,,得出3x ⊕,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.【考点】解一元一次不等式,有理数的混合运算,在数轴上表示不等式的解集22.【答案】(1)D 错误,理由为:2010%23⨯=≠(2)众数为5,中位数为5(3)①第二步;②44586672 5.320x ⨯+⨯+⨯+⨯==,估计260名学生共植树5.32601378⨯=(颗)【答案】()(2)t 的取值范围是:47t <<.(3)当1t =时,落在y 轴上,当2t =时,落在x 轴上.【提示】利用一次函数图像上点的坐标特征,求出一次函数的解析式,分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围,找出点M 关于直线l 在坐标轴上的对称点E 、F ,如解答图所示.求出点E 、F 的坐标,然后分别求出ME 、MF 中点坐标,最后分别求出时间t 的值.【考点】一次函数综合题24.【答案】(1)证明见解析(2)点T 到OA 的距离为245(3)当BOQ ∠的度数为10︒或170︒时,AOQ △的面积最大数为10︒或170︒时,AOQ △的面积最大.【提示】首先根据已知得出AOP BOP '∠=∠,进而得出AOP BOP '△≌△,利用切线的性质得出90ATO ︒∠=,再利用勾股定理求出AT 的长,进而得出TH 的长.【考点】圆的综合题25.【答案】(1)212100Q k x k nx =++(2)2n =(3)90x =(4)能;1%2m = 【解析】解:(1)设212W k x k nx =+,则212100Q k x k nx =++,由表中数据,得2122124204024010010060160100k k k k ⎧=+⨯+⎪⎨=+⨯+⎪⎩,(4)由题意得,2142040(1%)62(1%)40(1%)10010[]m m m =--+⨯+⨯-+,即22(%)%0m m -=,解得:1%%02m m ==或(舍去)【提示】根据题目所给的信息,设212W k x k nx =+,然后根据100Q W =+,列出用Q 的解析式,将70x =,450Q =,代入求n 的值即可,把3n =代入,确定函数关系式,然后求Q 最大值时x 的值即可,根据题意列出关系式,求出当450Q =时m 的值即可.【考点】二次函数的应用26.【答案】(1)CQ BE ∥,3BQ(2)1344242V =⨯⨯⨯=液3()dm【提示】根据水面与水平面平行可以得到CQ 与BE 平行,利用勾股定理即可求得BQ 的长,液体正好是一个以BCQ △是底面的直棱柱,据此即可求得液体的体积,根据液体体积不变,据此即可列方程求解, 延伸:当60α︒=时,如图6所示,设FN EB ∥,GB EB '∥,过点G 作GH BB ⊥'于点H ,此时容器内液体形成两层液面,液体的形状分别是以Rt NFM △和直角梯形MBB G '为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可做出判断.【考点】四边形综合题,解直角三角形的应用。
2013年河北省初中毕业升学考试试卷数学本试卷含参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2013•河北)气温由﹣1℃上升2℃后是()A.﹣1℃B.1℃C.2℃D.3℃考点:有理数的加法.分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.解答:解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.点评:此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.2.(2分)(2013•河北)截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107B.4.23×106C.42.3×105D.423×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将4 230 000用科学记数法表示为:4.23×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2013•河北)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形和轴对称图形定义求解即可.解答:解:A、是中心对称图形,不是轴对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)(2013•河北)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选D.点评:本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.5.(2分)(2013•河北)若x=1,则|x﹣4|=()A.3B.﹣3 C.5D.﹣5考点:绝对值.分析:把x的值代入,然后根据绝对值的性质解答.解答:解:∵x=1,∴|x﹣4|=|1﹣4|=|﹣3|=3.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2分)(2013•河北)下列运算中,正确的是()A.=±3 B.=2 C.(﹣2)0=0 D.2﹣1=考点:负整数指数幂;算术平方根;立方根;零指数幂.分析:根据算术平方根的定义,立方根的定义,任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数对各选项分析判断后利用排除法求解.解答:解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.点评:本题考查了任何不等于零的数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,算术平方根、立方根的定义,是基础题,熟记概念与性质是解题的关键.7.(3分)(2013•河北)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.解答:解:设甲队每天修路xm,依题意得:=,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.(3分)(2013•河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里考点:等腰三角形的判定与性质;方向角;平行线的性质.专题:应用题.分析:根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.解答:解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选D.点评:本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.9.(3分)(2013•河北)如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+3考点:整式的加减.专题:图表型.分析:先用抽到牌的点数x乘以2再加上6,然后再除以2,最后减去x,列出式子,再根据整式的加减运算法则进行计算即可.解答:解:根据题意得:(x×2+6)÷2﹣x=x+3﹣x=3;故选B.点评:此题考查了整式的加减,解题的关键是根据题意列出式子,再根据整式加减的运算法则进行计算.10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④考点:反比例函数的性质.分析:根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.解答:解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选C点评:本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM 相似.12.(3分)(2013•河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:作图—复杂作图;矩形的判定.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.13.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°考点:三角形内角和定理.分析:设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.解答:解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选B.点评:本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.14.(3分)(2013•河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π考点:扇形面积的计算;垂径定理;圆周角定理.分析:根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.解答:解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×﹣×1×=.故选D.点评:本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.15.(3分)(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远考点:三角形三边关系.专题:压轴题.分析:根据钝角三角形中钝角所对的边最长可得AB>AC,取BC的中点E,求出AB+BE>AC+CE,再根据三角形的任意两边之和大于第三边得到AB<AD,从而判定AD的中点M在BE上.解答:解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC >AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.点评:本题考查了三角形的三边关系,作辅助线把△ABC的周长分成两个部分是解题的关键,本题需要注意判断AB的长度小于AD的一半,这也是容易忽视而导致求解不完整的地方.16.(3分)(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB ,且AE=EF=FB=5,DE=12动点P 从点A出发,沿折线AD﹣DC ﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.解答:解:在Rt△ADE中,AD==13,在Rt △CFB中,BC==13,①点P在AD上运动:过点P作PM⊥AB于点M,则PM=APsin∠A=t,此时y=EF×PM=t,为一次函数;②点P在DC上运动,y=EF×DE=30;③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BPsin∠B=(AD+CD+BC﹣t)=,则y=EF×PN=,为一次函数.综上可得选项A的图象符合.故选A.点评:本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•河北)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.考点:概率公式.分析:由共有6个面,A与桌面接触的有3个面,直接利用概率公式求解即可求得答案.解答:解:∵共有6个面,A与桌面接触的有3个面,∴A与桌面接触的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为1.考点:分式的化简求值.分析:先把括号里面的式子进行因式分解,再把除法转化成乘法,再进行约分,然后把x+y的值代入即可.解答:解:(x+)÷=×==x+y,把x+y=1代入上式得:原式=1;故答案为:1.点评:此题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.考点:平行线的性质;三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.解答:解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.点评:本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.考点:二次函数图象与几何变换.专题:压轴题.分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.解答:解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的与x轴的交点横坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.点评:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.考点:解一元一次不等式;有理数的混合运算;在数轴上表示不等式的解集.专题:新定义.分析:(1)按照定义新运算a⊕b=a(a﹣b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a﹣b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解答:解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.专题:计算题.分析:(1)条形统计图中D的人数错误,应为20×10%;(2)根据条形统计图及扇形统计图得出众数与中位数即可;(3)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解答:解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3,估计260名学生共植树5.3×260=1378(颗).点评:此题考查了条形统计图,扇形统计图,加权平均数,以及用样本估计总体,弄清题意是解本题的关键.23.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.考点:一次函数综合题.专题:探究型.分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.解答:解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.点评:本题是动线型问题,考查了坐标平面内一次函数的图象与性质.难点在于第(3)问,首先注意在x轴、y 轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.考点:圆的综合题.分析:(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.解答:(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT与相切,∴∠A TO=90°,∴A T===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ﹣∠AOB=90°﹣80°=10°,综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.点评:此题主要考查了圆的综合应用以及切线的判定与性质以及全等三角形的判定与性质等知识,根据数形结合进行分类讨论得出是解题关键.25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.次数n 2 1速度x 40 60指数Q 420 100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)考点:二次函数的应用.专题:压轴题.分析:(1)根据题目所给的信息,设W=k1x2+k2nx,然后根据Q=W+100,列出用Q的解析式;(2)将x=70,Q=450,代入求n的值即可;(3)把n=3代入,确定函数关系式,然后求Q最大值时x的值即可;(4)根据题意列出关系式,求出当Q=420时m的值即可.解答:解:(1)设W=k1x2+k2nx,则Q=k1x2+k2nx+100,由表中数据,得,解得:,∴Q=﹣x2+6nx+100;(2)将x=70,Q=450代入Q得,450=﹣702+6×70n+100,解得:n=2;(3)当n=3时,Q=﹣x2+18x+100=﹣(x﹣90)2+910,∵﹣<0,∴函数图象开口向下,有最大值,则当x=90时,Q有最大值,即要使Q最大,x=90;(4)由题意得,420=﹣[40(1﹣m%)]2+6×2(1+m%)×40(1﹣m%)+100,即2(m%)2﹣m%=0,解得:m%=或m%=0(舍去),∴m=50.点评:本题考查了二次函数的应用,难度较大,解答本题的关键是根据题目中所给的信息,读懂题意列出函数关系式,要求同学们掌握求二次函数最值的方法,此题较麻烦,考查学生利用数学知识解决实际问题的能力.26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.考点:四边形综合题;解直角三角形的应用.专题:压轴题.分析:(1)根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ的长;(2)液体正好是一个以△BCQ是底面的直棱柱,据此即可求得液体的体积;(3)根据液体体积不变,据此即可列方程求解;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H,此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可作出判断.解答:解:(1)CQ∥BE,BQ==3;(2)V液=×3×4×4=24(dm3);(3)在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.当容器向左旋转时,如图3,0°≤α≤37°,∵液体体积不变,∴(x+y)×4×4=24,∴y=﹣x+3.当容器向右旋转时,如图4.同理可得:y=;当液面恰好到达容器口沿,即点Q与点B′重合时,如图5,由BB′=4,且PB•BB′×4=24,得PB=3,∴由tan∠PB′B=,得∠PB′B=37°.∴α=∠B′PB=53°.此时37°≤α≤53°;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2,∠GB′B=30°,∴HB′=2.∴MG=BH=4﹣2<MN.此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S△NFM+S MBB′G=××1+(4﹣2+4)×2=8﹣.∴V溢出=24﹣4(8﹣)=﹣8>4(dm3).∴溢出液体可以达到4dm3.点评:本题考查了四边形的体积计算以及三视图的认识,正确理解棱柱的体积的计算是关键.参与本试卷答题和审题的老师有:sd2011;zhjh;caicl;lantin;星期八;HJJ;sks;gbl210;HLing;未来;sjzx;zcx(排名不分先后)菁优网2014年1月9日。
1. 服装店同时销售两种商品, 销售价都是100元, 结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了 B. 总体上是赔了C. 总体上不赔不赚 D. 没法判断是赚了还是赔了2. 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为3. 如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC的度数为()A.150B.200C.300D.4504. 与直线y =-2x+1 平行且经过点(-1,2)的直线解析式为。
5. 不等式组2123x ax b-<->⎧⎨⎩的解集为-1<x<1, 那么(a+1)(b-1)= .6. 乐乐玩具商店今年3月份售出某种玩具3600个,5月份售出该玩具4900个,设每个月平均增长率为x ,根据题意,列出关于x 的方程为 .7. 如图,DE是⊿ABC的中位线,DE=2cm,AB+AC=12cm, 则梯形DBCE 的周长为 cm.8. 将正方形与直角三角形纸片按如右图所示方式叠放在一起,已知正方形的边长为 20cm ,点O为正方形的中心,AB=5cm,则CD的长为。
9.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为 A .22cm B .2cm C .22cm D .21cm 10.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .11如图4AB O 是⊙的直径,弦303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为,则弦CD 的长为( ) A .3cm B . 23cm C .3cm 2D .9cm12.a b ,是方程220100x x +-=的两个实数根,则22a a b ++的值为( ) A .2008B .2009C .2010D .201113、已知二次函数y = x 2的图象向右平移3个单位后,得到的二次函数解析式是A.2)3x (y -=B. 2)3x (y +=C. 3x y 2-=D. 3x y 2+= 14、如图,已知⊙O 的半径为5,弦AB=8,M 是AB 上任意一点,则线段OM的长可以是A .1.5B .2.5C .4.5D .5.5第9题15、如图,圆锥底面直径为6cm ,母线长为12cm ,则其侧面展开为扇形的圆心AOB第9题图图4CABOE D12cm6cm OAMB角为16如图,半圆的直径10AB=,点C在半圆上,6BC=.(1)求弦AC的长;(2)若P为AB的中点,PE AB⊥交AC于点E,求PE的长.17将一张矩形纸片沿对角线剪开,得到两张纸片,再将这两张三角形纸片摆放成如图所示的形式,使点B、F、C、D在同一条直线上。
河北省2013年中考数学模拟试卷一、选择题(本大题共l2个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(2分)(2013•河北模拟)函数y=的自变量x的取值范围在数轴上可表示为()B4.(2分)(2013•河北模拟)小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1 00个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说5.(2分)(2013•河北模拟)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为()6.(2分)(2013•河北模拟)已a,b为实数,ab=1,M=,N=,则M,7.(2分)(2013•河北模拟)为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的8.(2分)(2013•河北模拟)如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()cm cm9.(2分)(2013•河北模拟)如图所示,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△EBD和△ABD落在同一平面内),则A、E两点间的距离为()10.(2分)(2013•河北模拟))如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是()+1=c11.(2分)(2013•河北模拟)如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()12.(2分)(2013•河北模拟)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如:取n=26,则:若n=15,则第15次“F”运算的结果是二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.(3分)(2013•河北模拟)分解因式:xy2﹣x=x(y﹣1)(y+1).14.(3分)(2013•河北模拟)若a、b互为相反数,则3a+3b﹣2的值为﹣2.15.(3分)(2013•河北模拟)已知一个正多边形的每个外角都等于60°,那么它的边数是6.16.(3分)(2013•河北模拟)从﹣1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.17.(3分)(2013•河北模拟)如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.18.(3分)(2013•河北模拟)如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=,则AC的长度是240cm.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(8分)(2013•河北模拟)计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°20.(8分)(2013•河北模拟)如图,CD是⊙O的直径,BE切⊙O于点B,DC的延长线交直线BE于点A,点F在⊙O上,CD=4cm,AC=2cm.(1)求∠A,∠CFB的度数;(2)求BD的长.21.(9分)(2013•河北模拟)某中学开展阳光体育活动,举办了跳绳、踢毽子、立定跳远、摸高、单足跳、健身操六项比赛(每个同学限报一项).学生参赛情况如两个统计图所示:认真观察上面两个统计图后,回答下列问题:(1)请补充完成条形统计图;(2)本次参加比赛的总人数是300;扇形统计图中“立定跳远”所在扇形的圆心角度数是108°;(3)若仅用扇形统计图,能否求出本次参加比赛的总人数?为什么?(4)摸高与健身操两项比赛的获奖人数分别是6人和3人,哪一个获奖的概率高?请通过计算说明理由.22.(9分)(2013•河北模拟)若反比例函数y=与一次函数y=kx+b的图象都经过一点A(a,2),另有一点B(2,0)在一次函数y=kx+b的图象上.(1)写出点A的坐标;(2)求一次函数y=kx+b的解析式;(3)过点A作x轴的平行线,过点O作AB的平行线,两线交于点P,求点P的坐标.可得,得:;23.(10分)(2013•河北模拟)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为16;(2)如图2,当a=4,b=2时,四边形ABFD的面积为16;(3)如图3,当a=4,b=3时,四边形ABFD的面积为16;探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;综合应用:(5)农民赵大伯有一块正方形的土地(如图5),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD 的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.24.(10分)(2013•河北模拟)(1)如图1,△ABC中,AB>AC,AD平分∠BAC交BC 于点D,在AB上截取AE=AC,过点E作EF∥BC交AD于点F.求证:①△ADE≌△ADC;②四边形CDEF是菱形;(2)如图2,△ABC中,AB>AC,AD平分△ABC的外角∠EAC交BC的延长线于点D,在AB的反向延长线上截取AE=AC,过点E作EF∥BC交AD的反向延长线于点F.四边形CDEF还是菱形吗?如果是,请给出证明;如果不是,请说明理由;(3)在(2)的条件下,四边形CDEF能是正方形吗?如果能,直接写出此时△ABC中∠BAC 与∠B的关系;如果不能,请直接回答问题,不必说明理由.EAD=∠CAE=×25.(12分)(2013•河北模拟)音乐喷泉的某一个喷水口,喷出的一束水流形状是抛物线,在这束水流所在平面建立平面直角坐标系,以水面与此面的相交线为x轴,以喷水管所在的铅垂线为y轴,喷出的水流抛物线的解析式为:y=﹣x2+bx+2.但控制进水速度,可改变喷出的水流达到的最大高度,及落在水面的落点距喷水管的水平距离.(1)喷出的水流抛物线与抛物线y=ax2的形状相同,则a=﹣1;(2)落在水面的落点距喷水管的水平距离为2个单位长时,求水流抛物线的解析式;(3)求出(2)中的抛物线的顶点坐标和对称轴;(4)对于水流抛物线y=﹣x2+bx+2.当b=b1时,落在水面的落点坐标为M(m,0),当b=b2时,落在水面的落点坐标为N(n,0),点M与点N都在x轴的正半轴,且点M在点N的右边,试比较b1与b2的大小.﹣+x==﹣=26.(12分)(2013•河北模拟)在平面直角坐标中,Rt△OAB的两顶点A,B分别在y轴,x轴的正半轴上,点O是原点.其中点A(0,3),B(4,0),OC是Rt△OAB的高,点P 以每秒1个单位长的速度在线段OB上由点O向点B运动(与端点不重合),过点P作PD⊥AP 交AB于点D,设运动时间为t秒.(1)若△AOE的面积为,求点E的坐标;(2)求证:△AOE∽△PBD;(3)△PBD能否是等腰三角形?若能,求出此时t的值;若不能,请说明理由;(4)当t=3时,直接写出此时的值.,仿照AP=3;由(则有:的面积为,所以,),即,,即t=,t=时,。
2013年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1 ℃上升2 ℃后是( ) A.-1 ℃ B.1 ℃C.2 ℃D.3 ℃2.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为( ) A.0.423×107B.4.23×106C.42.3×105D.423×1043.下列图形中,既是轴对称图形又是中心对称图形的是( )4.下列等式从左到右的变形,属于因式分解的是( ) A.a(x-y)=ax-ay B.x 2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x 2+4x+3 D.x 3-x=x(x+1)(x-1)5.若x=1,则|x-4|=( ) A.3B.-3C.5D.-56.下列运算中,正确的是( ) A.√9=±3B.√-83=2 C .(-2)0=0D.2-1=127.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路x m.依题意,下面所列方程正确的是( ) A.120x =100x -10 B.120x =100x+10 C.120x -10=100xD.120x+10=100x8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为() A.40海里 B.60海里C.70海里D.80海里9.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+3的图象如图所示,以下结论:10.反比例函数y=mx①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P'(-x,-y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④11.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.612.如已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对13.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°14.如图,AB是☉O的直径,弦CD⊥AB,∠C=30°,CD=2√3,则S阴影=()A.πB.2πC.2√3 D.23π315.如图,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远16.如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12,动点P从点A出发,沿折线AD—DC—CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.18.若x+y=1,且x≠0,则(x+2xy+y2x )÷x+yx的值为.19.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.20.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.图1图2回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(本小题满分11分)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧MN⏜分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP',求证:AP=BP';(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;⏜上,当△AOQ的面积最大时,直接写出∠BOQ的度数.(3)设点Q在优弧MN25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x 的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.次数n21速度x4060指数Q420100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a ,4ac-b24a)26.(本小题满分14分)一透明的敞口正方体容器ABCD-A'B'C'D'装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).图1探究如图1,液面刚好过棱CD,并与棱BB'交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:图2(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C'C或CB交于点P,设PC=x,BQ=y.分别就图3和图4,求y与x 的函数关系式,并写出相应的α的范围.图3图4延伸在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.图5备用图答案全解全析:1.B 气温由-1 ℃上升2 ℃后的温度为-1+2=1 ℃,故选B.2.B 4 230 000是一个7位整数,所以4 230 000用科学记数法可表示为4.23×1 000 000=4.23×106,故选B.评析科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10, n为整数.其方法是(1)确定a,a是只有一位整数的数;(2)确定n,当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).3.C A选项图不是轴对称图形,是中心对称图形;B选项图是轴对称图形,不是中心对称图形;C选项图既是轴对称图形,又是中心对称图形;D选项图是轴对称图形,不是中心对称图形.故选C.4.D A项:a(x-y)=ax-ay右边不是整式积的形式,错误;B项:x2+2x+1=x(x+2)+1只是把多项式前两项提取公因式,错误;C项:(x+1)(x+3)=x2+4x+3是整式的乘法,错误;D项:x3-x=x(x+1)(x-1)右边是整式积的形式,正确.故选D.5.A 当x=1时,|x-4|=|1-4|=|-3|=3,故选A.6.D A 项:√9=3,错误; B 项:√-83=-2,错误; C 项:(-2)0=1,错误; D 项:2-1=12,正确.故选D.评析 本题主要考查了实数中零指数幂、负指数幂、算术平方根及立方根的运算,解决本题的关键就是熟悉相关概念及简单的运算法则,难度较小.7.A 因为甲队比乙队每天多修10 m,所以乙队每天修路(x-10)m.根据“甲队修路120 m 与乙队修路100 m 所用天数相同”,可列方程120x=100x -10,故选A.8.D 由题意得 MN=40×2=80海里,∠M=70°,∠MPN=180°-40°-70°=70°, ∴∠M=∠MPN=70°,∴MN=NP,∴N 处与灯塔P 的距离为80海里,故选D.评析 本题考查了方位角和等腰三角形的判定的有关知识.利用平行线的有关知识得到角度的关系,从而得到线段的关系是解决问题的常用方法和思路. 9.B 淇淇猜中的结果应为y=2x+62-x=3,故选B.10.C ∵反比例函数图象位于第一、三象限,∴m>0,①错误;∵反比例函数图象位于第一、三象限,∴在每个象限内,y 随x 的增大而减小,②错误;∵点A(-1,h),B(2,k)是此双曲线上的点,∴h<k,③正确;∵点P(x,y)在图象上,则xy=m,把点P'(-x,-y)的坐标代入反比例函数的解析式中等式成立,④正确.故选C. 11.B 过点M 作MG⊥AB,垂足为G, ∵四边形ABCD 为菱形,∴AC 平分∠DAB, ∵ME⊥AD,MG⊥AB,∴MG=ME=3. ∵NF⊥AB,MG⊥AB,∴NF∥MG,∴△ANF∽△AMG,∴AN AM =NFMG,即ANAN+2=23,解得AN=4.故选B.12.A 由甲的做法可知AD=BC,AB=CD,∴四边形ABCD 为平行四边形.∵∠ABC = 90°,∴四边形ABCD 为矩形,甲的作图正确;由乙的做法可知AM=CM, 又∵∠ABC = 90°,∴MB=AM=CM.∵MD=MB,∴AM=MB =CM =MD, ∴四边形ABCD 为矩形,乙的作图正确.故选A.13.B 如图,一个正方形和两个等边三角形所夹图形为△ABC,由三角形外角和定理可知∠DAB+∠EBC+∠FCA=360°,即∠1+90°+∠3+60°+∠2+60°=360°. ∵∠3 = 50°,∴∠1+∠2 =100°,故选B.14.D 设AB 与CD 的交点为E,∵AB 是☉O 的直径,弦CD⊥AB,∴CE=DE=12CD.∵CD=2√3,∴CE=DE=√3. ∵∠C =30°,∴∠AOD=60°,∴OD=DE sin60°=2,∴OE=AE=1,∴△AEC≌△OED,∴S 阴影=S 扇形AOD =60·π·22360=23π,故选D.15.C 由三角形三边关系可知AC+BC>AB,所以AD 的中点M 不可能在AB 上,故选项A 错误;若点M 在BC 的中点处,且M 是铁丝AD 的中点,所以AC=AB,∠B=∠C,与题意矛盾,故选项B 错误;因为AC<AB,所以点M 在BC 上,且距点B 较近,距点C 较远,C 正确,D 错误.故选C. 16.A ∵AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12,∴AD=BC=13.当点P 在线段AD 上运动时,过点P 作PG⊥AB 于点G,∵DE⊥AB,∴APAD =PGDE ,即t13=PG12,解得PG=12t13,∴y=12EF·PG=30t13为一次函数;当点P 在线段DC 上运动时,△EFP 的面积保持不变;当P 点在线段CB 上运动时,过点P 作PH⊥AB 于点H,∵CF⊥AB,∴BP BC =PHCF ,即31-t 13=PH 12,解得PH=12(31-t )13,∴y=12EF·PH=30(31-t )13为一次函数.故选A.17.答案 12解析 由题意可知正方体小木块有六个面,其中含有点A 的面有三个.将木块随机投掷在水平桌面上,则与桌面接触的面有六种情况,出现点A 与桌面接触的有三种情况,故概率等于36=12.18.答案 1解析 根据分式的运算法则得(x +2xy+y 2x)÷x+y x=x 2+2xy+y 2x·x x+y=(x+y )2x+y=x+y,若x+y=1,则原式=x+y=1. 19.答案 95解析 ∵MF∥AD,∴∠A=∠BMF=100°,由翻折的性质得∠BMN=12∠BMF=50°.同理,∠BNM=12∠BNF=35°.由三角形内角和定理得∠B+∠BMN+∠BNM=180°,则∠B =180°-50°-35°=95°. 20.答案 2解析 将抛物线旋转可发现C 1、C 3、C 5…的形状相同,开口方向相同.A 1坐标为(3,0),A 2坐标为(6,0),A 3坐标为(9,0)……以此类推,A 13坐标为(39,0).由于抛物线C 13与C 1的形状相同,开口方向相同,所以点P(37,m)是由抛物线C 1上的点(1,m)经过多次旋转得到的.把(1,m)代入y=-x(x-3),解得m=2.21.解析 (1)(-2)⊕3=-2×(-2-3)+1 =-2×(-5)+1 =10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13.∴9-3x+1<13,-3x<3,∴x>-1. 数轴表示如图所示.22.解析(1)D有错.理由:10%×20=2≠3.(2)众数为5棵.中位数为5棵.(3)①第二步.=5.3.②x=4×4+5×8+6×6+7×220估计这260名学生共植树5.3×260=1 378(棵).23.解析(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t,当t=3时,b=4.∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8,8=1+t,∴t=7.∴4<t<7.(3)t=1时,对称点落在y轴上;t=2时,对称点落在x轴上.评析此题并没有考查常见的动点问题,而是将动点问题和一次函数结合在一起,应用动点的移动带来一次函数截距的变化.把一次函数图象的形成和几何的动点运动过程相结合,化静为动是解决本题的关键所在.24.解析(1)证明:∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP'=∠POP'+∠BOP=80°+∠BOP,∴∠AOP=∠BOP'.又∵OA=OB,OP=OP',∴△AOP≌△BOP',∴AP=BP'.(2)连结OT,过T作TH⊥OA于点H,∵AT 与MN⏜相切,∴∠ATO=90°. ∴AT=√OA 2-OT 2=√102-62=8.∵12×OA×TH=12×AT×OT,即12×10×TH=12×8×6,∴TH=245,即点T 到OA 的距离为245.(3)10°,170°.[注:当OQ⊥OA 时,△AOQ 面积最大,且左右两半弧上各存在一点] 25.解析 (1)设W=k 1x 2+k 2nx,∴Q=k 1x 2+k 2nx+100, 由表中数据,得{420=402k 1+2×40k 2+100,100=602k 1+1×60k 2+100,解得{k 1=-110,k 2=6.∴Q=-110x 2+6nx+100.(2)由题意,得450=-110×702+6×70n+100,∴n=2.(3)当n=3时,Q=-110x 2+18x+100. 由a=-110<0可知,要使Q 最大,则x=-182×(-110)=90.(4)由题意,得420=-110[40(1-m%)]2+6×2(1+m%)×40(1-m%)+100,即2(m%)2-m%=0, 解得m%=12,或m%=0(舍去).∴m=50. 26.解析 探究 (1)CQ∥BE;3. (2)V 液=12×3×4×4=24(dm 3).(3)在Rt△BCQ 中,tan∠BCQ=34,∴α=∠BCQ=37°.拓展当容器向左旋转时,如图1,0°≤α≤37°.图1(x+y)×4×4=24.∴y=-x+3.∵液体体积不变,∴12.当容器向右旋转时,如图2,同理得y=124-x图2×PB×BB'×4=24,得当液面恰好到达容器口沿,即点Q与点B'重合时,如图3,由BB'=4,且12PB=3.图3,得∠PB'B=37°,∴α=∠B'PB=53°,此时37°≤α≤53°.∴由tan∠PB'B=34[注:本问的范围中,“≤”为“<”不影响得分]延伸当α=60°时,如图4所示,设FN∥EB,GB'∥EB.过点G作GH⊥BB'于点H.在Rt△B'GH中,GH=MB=2,∠GB'B=30°,∴HB'=2√3.∴MG=BH=4-2√3<MN.图4此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM 和直角梯形MBB'G 为底面的直棱柱.∵S △NFM +S 梯形MBB'G =12×√33×1+12(4-2√3+4)×2=8-11√36,∴V 溢出=24-4(8-11√36)=223√3-8>4(dm 3).∴溢出液体可以达到4 dm 3.评析 本题属于几何知识综合题目,主要考查了几何体的三视图、体积计算公式、直角梯形的性质、锐角三角函数及函数的确定等知识.本题的难点在于当α=60°时,容器内液体形成两层液面容易被学生忽略.。
2013年河北省初中毕业生中考模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的相反数是A.3B.3-C.1 3D.13-2.下列根式中不是最简二次根式的是A.10B.8C.6D.23.若分式33xx-+的值为零,则x的值是A.3 B.3-C.3±D.04.如图所示的物体的左视图(从左面看得到的视图)是A.B.C.D.5.下表是我国部分城市气象台对四月某一天最高温度的预报,当天预报最高温度数据的城市北京上海杭州苏州武汉重庆广州汕头珠海深圳最高温度(℃)26 25 29 29 31 32 28 27 28 29A.28 B.28.5 C.29 D.29.5 第4题图第 1 页共10页第 2 页 共10页6.两个相似三角形的面积比是9∶16,则这两个三角形的相似比是A .9∶16B .3∶4C .9∶4D .3∶167.若⊙O 1与⊙O 2相切,且O 1O 2=5,⊙O 1的半径r 1=2,则⊙O 2的半径r 2是A .3B .5C .7D .3 或7 8.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =3,则tan ∠DBE 的值是 A .12B .2C .52D .559.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是10.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm ,则这个圆锥漏斗的侧面积是A .30cm 2B .30πcm 2C .60πcm 2D .120cm 211.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设∠1=x °,∠2=y °,则可得到方程组为 A.50180x y x y =-⎧⎨+=⎩, B.50180x y x y =+⎧⎨+=⎩, C.5090x y x y =-⎧⎨+=⎩, D.5090x y x y =+⎧⎨+=⎩,12.如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则 ∠DAO +∠DCO 的大小是( )A .70°B .110°C .140°D .150°1 21 21 21 2A B C D B ACO第10题图第11题图DBCOA第12题图第8题图DAB C第 3 页 共10页卷II (非选择题,共96分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.6个小题;每小题3分,共18分.把答案写在题中横线上)13.分解因式am an bm bn +++= .14.平面直角坐标系中,点A (2,3)关于x 轴的对称点坐标为 . 15.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是 . 16.已知13x x +=,则代数式221x x+的值为_________.17.如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 18.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2011厘米后停下,则这只蚂蚁停在 点.三、解答题(本大题共8个小题;共78分) 19.本题8分C ADE B G第15题图第16题图第18题图第 4 页 共10页解方程:31223=--x xx -20.本题8分如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC .(1)利用直尺与圆规先作∠ACB 的平分线,交AD 与F 点,再作线段AB 的垂直平分线,交AB 于点E ,最后连结EF .(2)若线段BD 的长为6,求线段EF 的长.21.本题8分不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),ABC其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.22.本题10分第 5 页共10页第 6 页 共10页已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点A (3,2) (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)点M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.23.本题10分第 7 页 共10页已知正方形ABCD 的边长为4,E 是CD 上一个动点,以CE 为一条直角边作等腰直角三角形CEF ,连结BF 、BD 、FD .(1)BD 与CF 的位置关系是 .(2)①如图1,当CE =4(即点E 与点D 重合)时,△BDF 的面积为 .②如图2,当CE =2(即点E 为CD 的中点)时,△BDF 的面积为 . ③如图3,当CE =3时,△BDF 的面积为 .(3)如图4,根据上述计算的结果,当E 是CD 上任意一点时,请提出你对△BDF 面积与正方形ABCD 的面积之间关系的猜想,并证明你的猜想.24.本题10分图4图1 图2 图3探究一:如图1,正△ABC中,E为AB边上任一点,△CDE为正三角形,连结AD,猜想AD与BC的位置关系,并说明理由.探究二:如图2,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE 为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.25.本题12分A DB CE图1A DB C E图2第8 页共10页如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:12BC AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.26.本题12分第9 页共10页如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是,b=,c=;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.第10 页共10页第 11 页 共10页数学试题参考答案及评分说明一、选择题(每小题2分,共24分)1.A 2.B 3.A 4D . 5.B 6.B 7.D 8.B 9.C 10.C 11.D 12.D 二、填空题(每小题3分,共18分)13.(a+b)(m+n) 14.(2,-3) 15.0.7 16.7 17.3 18.D三、解答题19.解:方程两边同乘以2(x -1),得3-2x =6x -6……………………………3分解得x =89,………………………………………………………………5分经检验:x =89是原分式方程的解…………………………………………7分∴原分式方程的解是x =89…………………………………………………8分20.(1)作图略………………………………………………………………4分(2) CF ACB ∠Q 平分,∴∠ACF=∠BCF . ············································ 5分又∵ DC AC =,∴ CF 是△ACD 的中线,∴ 点F 是AD 的中点.………………………………………………6分 ∵ 点E 是AB 的垂直平分线与AB 的交点∴点E 是AB 的中点,………………………………………………7分 ∴ EF 是△ABD 的中位线 ∴EF=21BD=3…………………………………………………………8分 21.解:(1)袋中黄球的个数为1个;…………………………………………2分 (2)列表或树状图略…………………………………………………………6分所以两次摸到不同颜色球的概率为:105126P ==. ……………………8分 22.解:解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==,∴263k a ==, ················································································· 2分∴反比例函数的表达式为:6y x = ·························································· 3分正比例函数的表达式为23y x = ··························································· 4分(2)观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值. ···································································································· 6分第 12 页 共10页(3)BM DM =理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形 ·························· 7分 即O C ·OB=12∵3OC = ∴4OB = ································································ 8分 即4n =∴632m n == ∴3333222MB MD ==-=, ······························································· 9分∴MB MD = ·················································································· 10分23.(1)平行 ································································································ 3分(2)①8;②8;③8; ············································································ 6分(3)△BDF 面积等于正方形ABCD 面积的一半∵BD ∥CF , ∴△BDF 和△BDC 等低等高∴ABCD BDC BDF S S S 正方形21==∆∆………………………………………………10分24.解(1)AD BC ∥…………………………………………………………1分 ABC Q △与DEC △为正三角形AC BC DC EC ∴==, 122360+=+=o∠∠∠∠13∴=∠∠…………………………………………………………2分 在ADC △与BEC △中13DC EC AC BC =⎧⎪=⎨⎪=⎩∠∠ ADC BEC ∴△≌△………………………………………………3分60DAC B ∴==o ∠∠DAC ACB ∴=∠∠…………………………………………………4分AD BC ∴∥…………………………………………………………5分 (2)AD BC ∥ABC Q △与DEC △为等腰三角形,且∠BAC =∠EDC ABC DEC Q △∽△A DBCE (8-2)12 3 A DBC E (8-3)2 3 1第 13 页 共10页DC EC DC ACAC BC EC BC ∴=⇒=ACB DCE =∠∠ 即1223+=+∠∠∠∠ 13∴=∠∠……………………………………………………7分 ADC BEC ∴△∽△……………………………………………………8分 DAC B ∴=∠∠ 又AB AC = ABC ACB ∴=∠∠ DAC ACB ∴=∠∠AD BC ∴∥………………………………………………………………10分 25.解:(1)OA OC A ACO =∴∠=∠Q ,, 又22COB A COB PCB ∠=∠∠=∠Q ,,A ACO PCB ∴∠=∠=∠.…………………………2分 又AB Q 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥,…………3分 而OC 是O ⊙的半径,∴PC 是O ⊙的切线.………………………………………………4分 (2)AC PC A P =∴∠=∠Q ,, A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠Q ,,∴∠AOB=∠CBO ……………………………………………………6分∴BC=OC ∴BC=21AB ……………………………………………………7分 (3)连接MA MB ,,……………………………………………………………………8分Q 点M 是弧AB 的中点,∴⌒AM =⌒BM, ACM BCM ∴∠=∠, ∵ACM ABM ∠=∠,BCM ABM ∴∠=∠,…………………………9分又∵BMN BMC ∠=∠, MBN MCB ∴△∽△,BM MN MC BM∴=, ∴BM 2=M N ·MC ,…………………………………10分 又AB Q 是O ⊙的直径,⌒AM =⌒BM, 90AMB AM BM ∴∠==°,.422AB BM =∴=Q ,…………………………………………………………11分∴ M N ·MC = BM 2=(22)2=8……………………………………………………12分26.解:(1)(0,-3),b =-94,c =-3.…………………………………………3分(2)由(1),得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0).…4分∴OB=4,又∵OC=3,∴BC=5.由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5,∵PB=5t,∴HB=4t,HP=3t.………………………………………………5分∴OH=OB-HB=4-4t.由y=34tx-3与x轴交于点Q,得Q(4t,0).∴OQ=4t.……………………………………………………………………6分①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.……………………………………7分②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.……………………………………8分综合①,②得QH=|4-8t|;(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.①当H在Q、B之间时,QH=4-8t,若△QHP∽△COQ,则QH∶CO=HP∶OQ,得483t-=34tt,∴t=732.……………………………………………………………………9分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=484tt-,即t2+2t-1=0.∴t11,t21(舍去).………………………………………10分②当H在O、Q之间时,QH=8t-4.若△QHP∽△COQ,则QH∶CO=HP∶OQ,得843t-=34tt,∴t=2532.…………………………………………………………………………11分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=844tt-,即t2-2t+1=0.∴t1=t2=1(舍去).………………………………………………………………12分综上所述,存在t的值,t11,t2=732,t3=2532.第14 页共10页。
2013年河北省中考数学模拟(二)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2的绝对值是A .2B .-2C .21 D .-212.下面四个立体图形中,主视图是三角形的是3. 如果33-=-b a ,那么代数式b a 35+-的值是A .0B .2C .5D .84.下列运算正确的是 A .222)(b a b a -=-B .632)(a a -=-C .422x x x =+D .622623a a a =⋅5.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为A .37B .35C .33.5D .326.如图1,在□ABCD 中,CE ⊥AB ,E 为垂足.如果∠A=125°, 则∠BCE 的度数为A EDA .B .D .A.55°B.35°C.25°D.30°7.因式分解2x2-8的结果是A.(2x+4)(x-4)B.(x+2)(x-2)C.2 (x+2)(x-2)D.2(x+4)(x-4)8.如图2,根据流程图中的程序,当输出数值y为1时,输入数值x为A.-8 B.8C.-8或8 D.-49.如图3,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为A.120°B.135°C.150°D.180°10. 如图4,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(-1,5)、B(9,3),请你根据图象写出使y1≥y2成立的x的取值范围A.-1≤x≤9 B.-1≤x<9C.-1<x≤9 D.x≤-1或x≥911.如图5,已知△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则与△PBC的面积相等的长方形是12. 如图6-1,直径AC、BD将圆O四等分,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,若圆O的半径为1,设运动时间为x(s),∠APB= y°,y与x之间的函数关系如图6-2所示,则点M的横坐标应为A.2 B.2πC.2π+1 D.2π-1图2图5A B C DACDEFGHO12图6-2图6-12013年河北省中考数学模拟(二)数 学 试 卷卷Ⅱ(非选择题,共90分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.已知a =2b ,则bba +=________. 14.如图7,小明用不干胶纸剪了一个标准的大写英文字母“A ”,若∠1=72°,则 ∠α=___ __°.15.如图8,点P在双曲线(0)kyk x=≠上,点P ′(1,2)与点关于y 轴对称, 则此双曲线的函数表达式为.16. 菱形OACB 在平面直角坐标系中的位置如图9所示,点C 的坐标是 (6,0),点A 的纵坐标是1,则点B 的坐标为________.17.如图10-1,在△ABC 中,∠ACB =90°,DE ⊥AC ,DF ⊥BC , AD =3,DB =4,将图10-1中△ADE 绕点D 顺时针旋转90°可以得到图10-2,则图10-1中△ADE 和△BDF 面积之和为_______.18.如图11-1,是我们平时使用的等臂圆规,即CA =CB .若n 个相同规格的 等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变 化如下:∠A 1C 1A 2=160°,∠A 2C 2A 3=80°,∠A 3C 3A 4=40°,∠A 4C 4A 5=20°, …. ,根据上述规律请你写出∠A n+1A n C n =_______________°.(用含n2),图7图10-1 图10-2图11-1图11-212345n n+1三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤)19.(本小题满分8分)计算:10)31(45sin 28π)14.3(-+︒-+-.20.(本小题满分8分)如图12所示的8×8网格中,每个小正方形边长均为1,以这些小正方形的顶点为顶点的三角形称为格点三角形.(1)在图12中以线段AB 为一边,点P 为顶点且面积为6的格点三角形共有 个; (2)请你选择(1)中的一个点P 为位似中心,在图12中画出格点△A ′B ′P ,使△ABP 与△A ′B ′P 的位似比为2:1; (3)求tan ∠PB ′A ′的值.图12“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:(1)求这次调查的总人数,并补全图13-1;(2)求图13-2中表示家长“赞成”的圆心角的度数;(3)针对随机调查的情况,刘凯决定从初三一班表示赞成的4位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.图13-1 图13-222. (本小题满分8分)某校为外国留学生举办“唱汉语歌曲”比赛,设优秀奖、鼓励奖共12名,其中优秀奖不少于6名.学校购买“脸谱”和“中国结”作为奖品,优秀奖和鼓励奖分别奖励“脸谱”和“中国结”各一个,费用信息如图14所示.(1)请求出一个“脸谱”和一个“中国结”各多少元?(2)若购买奖品费用不超过500元,则本次活动优秀奖和鼓励奖名额应如何设置?23.(本小题满分9分)如图15,在Rt △ABC 中,︒=∠90ACB ,CP 平分∠ACB ,CP 与AB 交于点D ,且 P A =PB . (1)请你过点P 分别向AC 、BC 作垂线,垂足分别为点E 、F ,并判断四边形PECF 的形状;(2)求证:△P AB 为等腰直角三角形;(3)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长; (4)试探索当边AC 、BC 的长度变化时,BCCDAC CD +的值是否发生变化,若不变,请直接写出这个不变的值,若变化,试说明理由.AB C 图15PDABC备用图PD24.(本小题满分9分)如图16-1,在一次航海模型船训练中,A 1B 1和A 2B 2是水面上相邻的两条赛道(看成两条互相平行的线段).甲船在赛道A 1B 1上从A 1处出发,到达B 1后,以同样的速度返回A 1处,然后重复上述过程;乙船在赛道A 2B 2上以2m/s 的速度从B 2处出发,到达A 2后以相同的速度回到B 2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两船同时出发,设离开池边B 1B 2的距离为y (m ),运动时间为t (s ),甲船运动时,y (m )与t (s )的函数图象如图16-2所示.(1)赛道的长度是_________m ,甲船的速度是________m/s ;(2)分别求出甲船在0≤t ≤30和30<t ≤60时,y 关于t 的函数关系式;(3)求出乙船由B 2到达A 2的时间,并在图16-2中画出乙船在3 分钟内的函数图象; (4)请你根据(3)中所画的图象直接判断,若从甲、乙两船同时开始出发到3分钟为止,甲、乙共相遇了几次?A1A 2B 2B 125. (本小题满分10分)【问题】如图17-1,在正方形ABCD 内有一点P ,P A =5,PB =2,PC =1,求∠BPC 的度数.【分析】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC 绕点B 逆时针旋转90°,得到了△BP ′A (如图17-2),然后连结PP ′. 【解决问题】请你通过计算求出图17-2中∠BPC 的度数;【类比研究】 如图17-3,若在正六边形ABCDEF 内有一点P ,且P A =132,PB =4,PC =2.(1)∠BPC 的度数为 ; (2)直接写出正六边形ABCDEF 的边长为 .DDP D图1图2 图325题图26.(本小题满分12分)如图18-1所示,已知二次函数c ax ax y +-=62与x 轴分别交于点A (2,0)、B (4,0),与y 轴交于点C (0,-8t )(t >0).(1)求a 、c 的值及抛物线顶点D 的坐标(用含t 的代数式表示);(2)如图18-1,连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点O ′恰好落在该抛物线的对称轴上,求实数t 的值;(3)如图18-2,在正方形EFGH 中,点E 、F 的坐标分别是(4,-4)、(4,-3),边HG 位于边EF 的右侧.若点P 是边EF 或边FG 上的任意一点(不与E 、F 、G 重合),请你说明以P A 、PB 、PC 、PD 的长度为边长不能构成平行四边形;(4)将(3)中的正方形EFGH 水平移动,若点P 是正方形边FG 或EH 上任意一点,在水平移动过程中,是否存在点P ,使以P A 、PB 、PC 、PD 的长度为边长构成平行四边形,其中P A 、PB 为对边.若存在,请直接写出t 的值;若不存在,请说明理由.图18-22013年河北省中考模拟(二)数 学 试 卷 参 考 答 案一、选择题二、填空题13.3 ;14. 72°;15. y =x2- ;16.(3,-1);17. 6;18. 90-1280-n三、解答题:19.解:原式=123++ ……………………4分 =4+ …………………8分20.解:(1)18; …………………2分(2)如图1或图2所示:(点P 在AB 下方亦可,画出一个即可得分)…………………6分(2)tan ∠PB′A′=21或22.(求出一个值并与所画的图形相符合即可得分)………8分 21.解:(1)学生人数是200人,家长人数是80÷20%=400人,所以调查的总人数是600人; …………………2分 补全的统计图如图3所示: …………………3分图2A ′B ′P图1A ′B ′ P(2)表示家长“赞成”的圆心角的度数为40040×360=36° . ……………5分 (3)设小亮、小丁的家长分别用A 、B 表示,另外两个家长用C 、D 表示,列树状图如下:第一次选择第二次选择∴一共有12种等可能的结果,同时选中小亮和小丁家长有2种情况, ∴P (小亮和小丁家长同时被选中)=61. …………………8分 22.(1)解:设一个“脸谱”为x 元,一个“中国结”为y 元,根据题意,得⎩⎨⎧=+=+10021252y x y x…………………2分 解得 ⎩⎨⎧==2550y x .答:一个“脸谱”为50元,一个“中国结”为25元. …………………4分 (2)设本次活动优秀奖为m 名,则鼓励奖为(12-m )名.列不等式为: 50m + 25(12-m )≤500解得:m ≤8. …………………6分 又因为优秀奖不少于6名,即m ≥6,所以6 ≤m ≤8,且m 为整数, 所以m =6时,12-m =6;m =7时,12-m =5;m =8时,12-m =4;答:优秀奖为6名,鼓励奖为6名;或优秀奖为7名,鼓励奖为5名;或优秀奖为8图3ABCDB C D A C D A B D A B C(√) (×) (×) (√) (×) (×) (×) (×) (×) (×) (×) (×)名,鼓励奖为4名. …………………8分 23.(1)过点P 分别作PE ⊥AC 、PF ⊥CB ,垂足分别为E 、F (如图4) …………1分∵∠ACB =90°又由作图可知PE ⊥AC 、PF ⊥CB ,∴四边形PECF 是矩形, 又∵点P 在∠ACB 的角平分线上,且PE ⊥AC 、PF ⊥CB ,∴PE =PF , ∴四边形PECF 是正方形. …………2分(2)证明:在Rt △AEP 和Rt △BFP 中,∵PE =PF ,P A=PB ,∠AEP =∠BFP = 90°, ∴Rt △AEP ≌Rt △BFP . ∴∠APE =∠BPF .∵∠EPF = 90°,从而∠APB = 90°. 又因为P A=PB ,∴△P AB 是等腰直角三角形. …………5分 (3)如图4,在Rt △P AB 中,∠APB =90°,P A=PB ,P A=m ,∴AB =2P A =m 2 . …………6分 由(2)中的证明过程可知,Rt △AEP ≌Rt △BFP ,可得AE =BF ,CE =CF ,∴ CA +CB =CE +EA +CB =CE +CF =2CE ,又PC=n , 所以,在正方形PECF 中,CE =22PC=22n . ∴ CA +CB =2CE =n 2.所以△ABC 的周长为:AB +BC +CA =m 2+n 2. …………7分(4)不变,2=+BCCDAC CD . …………9分 【参考证明:如图4,∵∠1=∠2=∠3=∠4=45°,且∠ADC =∠PDB ,∴△ADC ∽△PDB ,故PBACBD CD =,即PB BD AC CD = , ……① 同理可得,△CDB ∽△ADP ,得到 PABDBC CD =, ……② 又P A=PB ,则①+②得:PA AD PB BD BC CD AC CD +=+=PA AD BD +=PAAB=2. 所以,这个值仍不变为2.】AB C 图4PDFE1 23424.解:(1)90,3; ……………………2分 (2)当0≤t ≤30时,y =90-3t , ……………………4分当30<t ≤60时, y =3t -90 . ……………………6分 (3)因为赛道的长度为90米,乙的速度为2米/秒,所以乙船由B 2到达A 2的时间为45秒; ……………………7分 乙船在3分钟内的函数图象如图5所示:……………………8分(4)从上图可知甲、乙共相遇5次. ……………………9分 25.解:【解决问题】根据【分析】中的思路,得到如图6所示的图形, 根据旋转的性质可得PB =P ′B , PC =P ′A , 又因为BC =AB , ∴△PBC ≌△P ′BA ,∴∠PBC =∠P ′BA ,∠BPC =∠BP ′A , PB = P ′B =2, ∴∠P ′BP =90°,所以△P ′BP 为等腰直角三角形,则有P ′P =2,∠BP ′P =45°. ……………………2分 又因为PC =P ′A =1,P ′P =2,P A =5,满足P ′A 2+ P ′P 2= P A 2,由勾股定理的逆定理可知∠AP ′P =90°, ……………4分 因此∠BPC =∠BP ′A =45°+90°=135°. ……………………6分 【类比研究】(1)120°; ……………………8分(2) ……………………10分【参考提示:(1)仿照【分析】中的思路,将△BPC 绕点B 逆时针旋转120°,得到了△BP ′A ,然后连结PP ′.如图7所示,根据旋转的性质可得:△PBC ≌△P ′BA ,△BPP ′为等腰三角形,PB = P ′B =4,PC =P ′A =2,∠BPC=∠BP ′A ,DP 图6∵∠ABC =120°,∴∠PBP ′=120°,∠BP ′P =30°, ∴求得PP ′=34,在△APP ′中,∵P A =132,PP ′=34,P ′A =2, 满足P ′A 2+ P ′P 2= P A 2,所以∠AP ′P =90°. ∠BPC =∠BP ′A =30°+90°=120°.(2)延长A P ′ 做BG ⊥AP ′于点G ,如图8所示, 在Rt △P ′BG 中,P ′B =4,∠BP ′G =60°,所以P′G =2,BG =32,则AG = P′G +P′A =2+2=4, 故在Rt △ABG 中,根据勾股定理得AB=26.解:(1)把点A 、C 的坐标(2,0)、(0,-8t )代人抛物线y =ax 2-6ax +c 得,⎩⎨⎧-==+-t c c a a 80124,解得 ⎩⎨⎧-=-=t c ta 8,……………………2分 该抛物线为y =t -x 2+6tx -8t=t -(x -3)2 + t .∴顶点D 坐标为(3,t ) ……………………3分(2)如图9,设抛物线对称轴与x 轴交点为M ,则AM =1由题意得:O ′A =OA =2. ∴O ′A=2AM ,∴∠O ′AM =60°. ∴∠O ′AC =∠OAC =60°∴在Rt △OAC 中: ∴OC =323=⋅AO , 即328-=-t .∴43=t . …………………6分(3)①如图10所示,设点P 是边EF 上的任意一点 (不与点E 、F 重合),连接PM .∵点E (4,-4)、F (4,-3)与点B (4,0点C 在y 轴上,∴PB <4,PC ≥4,∴PC >PB . 又PD >PM >PB ,P A >PM >PB , ∴PB ≠P A ,PB ≠PC ,PB ≠PD .图8P ′ A B CPDE FG图7 P ′AB CPDEF图9 图10∴此时线段P A 、PB 、PC 、PD 不能构成平行四边形. …………………8分 ②设P 是边FG 上的任意一点(不与点F 、G 重合), ∵点F 的坐标是(4,-3),点G 的坐标是(5,-3). ∴FB =3,GB =3≤PB∵PC >4,∴PC >PB . ∴PB ≠P A ,PB ≠PC .∴此时线段P A 、PB 、PC 、PD 不能构成平行四边形. …………………9分 (4)t =723±或71或1. …………………12分 【以下答案仅供教师参考:因为已知P A 、PB 为平行四边形对边,∴必有P A =PB .①假设点P 为FG 与对称轴交点时,存在一个正数t ,使得线段P A 、PB 、PC 、PD 能构成一个平行四边形.如图11所示,只有当PC =PD 时,线段P A 、PB 、PC 、PD 能构成一个平行四边形. ∵点C 的坐标是(0,-8t ),点D 的坐标是(3, t ), 又点P 的坐标是(3,-3), ∴PC 2=32+(-3+8t )2,PD 2=(3+t )2. 当PC =PD 时,有PC 2 =PD 2 即 32+(-3+8t )2=(3+t )2. 整理得7t 2-6t +1=0, ∴解方程得t =723±>0满足题意. ②假设当点P 为EH 与对称轴交点时,存在一个正数t ,使得线段P A 、PB 、PC 、PD 能构成一个平行四边形.如图12所示,只有当PC =PD 时,线段P A 、PB 、PC 、能构成一个平行四边形.∵点C 的坐标是(0,-8t ),点D 的坐标是(3, t ), 点P 的坐标是(3,-4),∴PC 2=32+(-4+8t )2,PD 2=(4+t )2. 当PC =PD 时,有PC 2=PD 2图11即 32+(-4+8t )2=(4+t )2 整理得7t 2-8t +1=0, ∴解方程得t =71或1均大于>0满足题意. 综上所述,满足题意的t =723 或71或1.】。