—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)
- 格式:doc
- 大小:4.76 MB
- 文档页数:18
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。
2012-2018年新课标全国卷Ⅰ文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是() A .17π B .18π C .20π D .28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD m =,αI 平面11ABB A n =,则,m n 所成角的正弦值为()A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M 堆的体积和堆放的M 各位多少?”已知1斛M 的体积约为1.62立方尺,圆周率约为3,估算出堆放的M 有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为()A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC ,三棱锥E - ACD 的体积为6,求该三棱锥的侧面积.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。
新课标全国卷I文科数学汇编立体几何-、选择题【2017, 6】如图,在下列四个正方体中,A B为正方体的两个顶点,四个正方体中,直接AB与平面MNQT平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂28 n直的半径.若该几何体的体积是,则它的表面积是()3A. 17 n B . 18 n C . 20 n D .28 n【2016,11】平面a过正方体ABCD—AB1C1D1的顶点A ,-■「I平面ABB1A = n,则m,n所成角的正弦值为()A. B【2015, 6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1. 62立方尺,圆周率约为3,估算出堆放的米有()A. 14 斛B . 22 斛 C . 36 斛D . 66 斛【2015, 11】圆柱被一个平面截去一部分后与半球(半径为正视图和俯视图如图所示,若该几何体的表面积为16+20 n,则r =() BA.三棱锥 B .三棱柱 C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().M N, Q为所在棱的中点,则在这二// 平面CB1D1,〉Pl 平面ABCD = m ,r)组成一个几何体,该几何体的三视图中的A. 1 B . 2 C . 4 D . 8【2015, 11】【2014, 8】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,A. 16+ 8 n B8 + 8n C16+ 16n D . 8 + 16n【2013 ,11】则这个几何体是()A. 6B. 9C. 12D. 15【2012, 7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为【2012, 8】平面〉截球O 的球面所得圆的半径为 1,球心O 到平面〉的距离为迈,则此球的体积为()【2011, 8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()二、 填空题【2017 , 16】已知三棱锥S - ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA 丄平面SCB, SA= AC , SB = BC ,三棱锥S — ABC 的体积为9,则球O 的表面积为 ____________ .【2013,15】已知H 是球O 的直径AB 上一点,AH : HB= 1 : 2, AB 丄平面a , H 为垂足,a 截球O 所得截面 的面积为n,则球 O 的表面积为 ___________ . 【2011 , 16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面3积是这个球面面积的 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.16三、 解答题【2017, 18】如图,在四棱锥 P - ABCD 中,AB // CD ,且/BAP /CDP =90 .(1)证明:平面 PAB I 平面 PAD ; ( 2 )若 PA = PD = AB = DC , ._ APD = 90,且四棱锥8P - ABCD 的体积为—,求该四棱锥的侧面积.3A .、、6 二B . 4,3■:C. 4, 6 ■:(A)(D>(C)(D)18】如图四边形 ABCD 为菱形,G 为AC 与 BD 交点,【2015, (I )证明:平面 AECL 平面BED(n )若/ ABC 120°, AEL EC 三棱锥 E- ACD 的体积为—,求该三棱锥的侧面积.3【2016,18】如图所示,已知正三棱锥 P - ABC 的侧面是直角三角形, PA = 6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点 E •连结PE 并延长交AB 于点G .(1) 求证:G 是AB 的中点;(2) 在题图中作出点 E 在平面PAC 内的正投影F (说明作法及理由),并求四面体 PDEF 的体积.【2014,19】如图,三棱柱ABC-AB I G中,侧面BB i C i C为菱形,BQ的中点为O,且AO _平面BBQC .(1)证明:BQ _ AB;(2)若AC _ AB,, . CBR =60 ,BC =1,求三棱柱ABC-A^G 的高.【2013,19】如图,三棱柱AB G ABG 中,CA= CB AB= AA,/ BAA= 60 °.(1)证明:ABL A c;(2)若AB= CB= 2,AQ= 6,求三棱柱ABC-A BC 的体积.实用标准文案2【2012,19】如图,三棱柱 ABC- ABC 中,侧棱垂直底面,占八、、♦(1)证明:平面 BDC 丄平面BDC2)平面BDC 分此棱柱为两部分,求这两部分体积的比.【2011,18】如图所示,四棱锥 P -ABCD 中,底面ABCD 为平行四边形,.DAB =60: , AB = 2AD ,PD _ 底面 ABCD . (1) 证明:PA _ BD ;(2) 若PD =AD -1,求棱锥 D -PBC 的高.1NACB=90&, AC=BC=AA , D 是棱 AA 的中21-、选择题【2017, 6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点, 四个正方体中,直接 AB 与平面MNQT 平行的是()【解法】选 A.由B, AB// MQ 则直线AB//平面MNQ 由C, AB// MQ 则直线AB//平面MNQ 由D, AB// NQ 则直线AB//平面MNQ 故A 不满足,选 A .【2016 , 7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径•若该几28 n,则它的表面积是( 3M N, Q为所在棱的中点,则在这何体的体积是).A . 17 n18 n C20 n解析:选A. 由三视图可知,该几何体是一个球截去球的-,设球的半径为R ,则--88 3 n R328兀,解得2 .该几何体的表面积等于球的表面积的7,加上3个截面的面积,每个截面是圆面的所以该几何体的表面积为S=74n 22 3 1 n 22 8 4=14 n ' 3n = 17 n .故选 A .【2016, 11】平面:•过正方体ABCD-A 1BC 1D 1的顶点ABCD =平面ABQA ]二n ,则m,n 所成角的正弦值为(2即平面AEF , 即研究AE 与AF 所成角的正弦值,易知—,所以其正弦值为-.故选A .3 2解析:选A 解法一: 将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面:,解法二(原理同解法一):过平面外一点 A 作平面:•,并使:-II 平面CBjD j ,不妨将点A 变换成B ,作][,即为平面A,BD ,如图所示,即研究 AB 与BD 所成角【2015, 6】《九章算术》是我国古代内容极为丰富的数学名著,下周八尺,高五尺,问”积及为米几何? ”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为 8尺,米堆的高为5尺,米堆的体积和堆放 的米各位多少? ”已知 1斛米的体积约为1. 62立方尺,圆周率约为3,估算 出堆放的米有()BA . 14 斛B . 22 斛C . 36 斛D . 66 斛116 解:设圆锥底面半径为 r ,依题 2 3r =8= r,所以米堆的体积43,1116 2 320 320 …为3 ( )2 5 ,故堆放的米约为十1. 62~22,故选B .43 3 99使之满足同等条件,在这样的情况下容易得到 的正弦值,易知NABD =3,所以其正弦值为3-•故选A .2书 中有如下问题:“今有委米依垣内角, E F【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20 n,则r =() BA. 1 B . 2 C . 4 D . 8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积2 2 2 2为 2 n r +n r x 2叶n r +2r x 2r =5 n r +4r =16+20n,解得r=2,故选B.【2014, 8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是()BA.三棱锥 B .三棱柱 C .四棱锥D .四棱柱解:几何体是一个横放着的三棱柱. 故选B2B . 8 + 8 nC . 16+ 16 nD . 8 + 16 n该几何体为一个半圆柱与一个长方体组成的一个组合体.2X 2 X 4 = 8 n, V 长方体=4X 2X 2= 16.所以所求体积为 16+ 8 n.故选 A .1,粗线画出的是某几何体的三视图,则此几何体的体积为【解析】由三视图可知,该几何体为 三棱锥A-BCD, 底面△ BCD 为底边为6,高为3的等腰三角形, 侧面ABDL 底面BCD AOL 底面BCD因此此几何体的体积为11V(― 6 3) 3 = 9,故选择 3 2【2012, 8] 8.平面:•截球O 的球面所得圆的半径为 距离为.2,则此球的体积为( )A . 6:B . 4、、3二C. 4 6:D. 6.3二【解析]如图所示,由已知 Q A =1 , 001 =庞,在Rt OO-i A 中,球的半径 R = OA = 3,所以此球的体积 V ■ R 3 — 4 • 3:;:;,故选择B .3【点评]本题主要考察球面的性质及球的体积的计算. 【2011, 8]在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【2013,11】某几何体的三视图如图所示,则该几何体的体积为 )•A . 6B . 9 C. 12 D. 15A . 16+ 8 n 解析:选A.V1V 半圆柱=—n2【2012, 7】如图,网格纸上小正方形的边长为1,球心O 到平面〉的D【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D.二、填空题【2017 , 16】已知三棱锥S _ ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA 丄平面SCB, SA 二AC , SB = BC ,三棱锥S — ABC 的体积为9,则球O 的表面积为 _____________ .【解析】取SC 的中点O ,连接OA,OB ,因为SA 二AC, SB 二BC ,所以OA _ SC,OB _ SC , 因为平面 SAC 丄平面 SBC 所以 OA 丄平面 SBC 设 OA1 1 11 31 3V A SBCS SBC OA2r r r r ,所以—r 9= r = 3,一 3凸3 2 3 3所以球的表面积为 4二r 2 =36二.【2013,15】已知H 是球O 的直径AB 上一点,AH : HB= 1 : 2, AB 丄平面a , H 为垂足,a 截球O 所得截面 的面积为n,则球 O 的表面积为 ____________ .9答案:一 n2解析:如图,2RR设球0的半径为 R,则AH h,OH k.又EH =n,33•••氏=9. ••• S球=4 n F 2= 9n.8 2【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.右圆锥底面面3积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为_____16【解析】设圆锥底面半径为 r ,球的半径为R ,则由n 2 - 4 n F 2,知r^-R 2 .16 4根据球的截面的性质可知两圆锥的高必过球心 0,点,因此PB _QB .设 PO =x , QO = y ,则 x y = 2R .— n-r rt-r F 、丄:.EH = 1. v 在 Rt △ OEH 中,F = 仝 +12 ,2丿又△PO B s^ BO Q,知r2 = O B2二xy .即xy = r2= —R2.4由及x.y可得X=|R,_R -则这两个圆锥中,体积较小者的高与体积较大者的高的比为1故答案为丄.3三、解答题【2017, 18】如图,在四棱锥P-ABCD中,AB // CD,且乙BAP £CDP = 90 .(1)证明:平面PAB _ 平面PAD ; ( 2)若PA = PD = AB 二DC,/ APD =90,且四棱锥8P -ABCD 的体积为?,求该四棱锥的侧面积.3【解法】(1) 丁BAP =CDP =90, . AB _ AP, CD _ DP又.AB // CD . AB _ DP又AP 平面PAD , DP 平面PAD,且AP门DP = P . AB _平面PAD AB u平面PAB ,所以平面PAB丄平面PAD(2)由题意:设PA = PD二AB = DC二a,因为/ APD= 90 ,所以PAD为等腰直角三角形即AD= , 2a取AD中点E,连接PE,则PE a , PE _ AD .2又因为平面PAB —平面PAD所以PE _平面ABCD 且两圆锥的顶因为AB丄平面PAD , AB // CD所以AB — AD , CD —AD又AB 二DC =a所以四边形ABCD为矩形所以V P^BCD J/BADpE 2a=[a3=8所以 3 3 2 3 3即a = 211 一S侧= 2 2 3+ 2 . 26=6+2 .32 2【2016, 18】如图所示,已知正三棱锥P - ABC的侧面是直角三角形,PA = 6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E •连结PE并延长交AB于点G .(1)求证:G是AB的中点;2)在题图中作出点E在平面PAC内的正投影F (说明作法及理由),并求四面体PDEF的体积.解析:(1)由题意可得△ ABC为正三角形,故PA = PB=PC=6. 因为P在平面ABC内的正投影为点D,故PD —平面ABC • 又AB 平面ABC,所以AB _ PD .因为D在平面PAB内的正投影为点E ,故DE _平面PAB .又AB 平面PAB,所以AB _ DE .因为AB _ PD , AB _ DE , PD「| DE 二D , PD, DE 平面PDG , 所以AB _平面PDG •又PG 平面PDG,所以AB _ PG .因为PA二PB,所以G是AB的中点.(2)过E作EF // BP交PA于F,则F即为所要寻找的正投影.理由如下,因为 PB _ PA , PB// EF ,故EF _ PA •同理EF _ PC , 又 PA n PC = P , PA,PC 平面 PAC ,所以 EF _ 平面 PAC , 故F 即为点E 在平面PAC 内的正投影.11所以 V D _PEFS A PEF DE PF EF DE . 3 6在厶PDG 中,PG =3.2 , DG=、、6 , PD =2;3,故由等面积法知 DE =2 .由勾股定理知PE 二2、、2,由△ PEF 为等腰直角三角形知 PF =EF =2,故V D 』EF【2015, 18】如图四边形 ABCD^菱形,G 为AC 与 BD 交点,(I )证明:平面 AEC L 平面BED(n )若/ ABC 120°, AEL EC 三棱锥 E- ACD解:(I ) •/ BEL 平面 ABCD : BEL AC•/ ABCD^ 菱形,••• BD L AC••• ACL 平面BED 又AC 平面AEC •平面 AECL 平面 (n )设 AB=x 在菱形 ABCD^,由/ AB(=120° 可得,AG=GC=3 X在 Rt △ AEC 中,可得 EG=22由 BA=BD=B 可得 AE= ED=EC=6 .•••△ AEC 的面积为3,A EAD 勺面积与厶ECD 勺面积均为,5 .C所以三棱锥E-ACD 勺侧面积为3+2- 5 .…12分的体积为—,求该三棱锥的侧面积.3•••在Rt △ EBG 为直角三角形,可得BE=l x .2…V E /CD1AC GD BE 6x 3224解得x =2 .18.解析 (1)因为BE _平面ABCD,所以BE _ AC . 又ABCD为菱形,所以AC _ BD .又因为BD^BE B , BD , BE 二平面BED ,所以AC —平面BED .又AC二平面AEC,所以平面AEC _平面BED .(2)在菱形ABCD 中,取AB 二BC 二CD 二AD 二2x ,又ABC = 120,所以AG 二GC =:;3x,BG 二GD = x .在厶AEC 中,AEC=90_,所以EG AC 〜3x ,2所以在Rt △ EBG 中,BE h:$EG2 - BG2「hm2x ,所以V EJkCD =- - 2x 2x sin120:'迈x 6x3 6,解得x=1.3 2 3 3在Rt△ EBA , Rt△ EBC , Rt△ EBD 中,可得AE 二EC 二ED 二6 .1 1 J—所以三棱锥的侧面积S侧二2 2 6 、6 = 3 • 2、5.2 2【2014,19】如图,三棱柱ABC-ABQ中,侧面BB1C1C为菱形,B1C的中点为O,且AO _平(2)若AC _ AB, CBB^ =60 ,BC =1,求三棱柱ABC-ABG 的高.证明:(I )连接BC,则O为BC与BC的交点,••• AC L平面BBCC.二AOL BC, …2 分因为侧面BBGC为菱形,••• BG丄BC,-4分••• BG丄平面ABC,:AB 平面ABC,故BC丄AB …6分(II)作ODL BC 垂足为D,连结AD ••• AOL BC,二BC丄平面AOD 又BC平面ABC二平面ABCL 平面AOD交线为AD,作OH L AD,垂足为H ,二OH L平面ABC …9分•••/ CBB=60°,所以△ CBB为等边三角形,又BC=1 ,可得O[= '3,41 1 t面BB C C .(1)证明:BQ _ AB;由于AC L AB , ••• OA B1C ,二AD h^OD2 OA22 2由OHAD=ODOA 可得OH=W ,又0为BC 的中点,所以点B 到平面ABC 的距离为 1 ,14 7所以三棱柱ABC-ABG 的高高为。
专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E ,故CH =.从而点C 到平面1C DE 的距离为17.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E为4.【2019年高考北京卷文数】如图,在四棱锥P ABCDCD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3)3. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面PAC .【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,,22F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩nn ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P A B C -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)5.【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =连结OB .因为AB =BC =2AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC ,∠ACB =45°.所以OM =3,CH =sin OC MC ACB OM ⋅⋅∠=5.所以点C 到平面POM 的距离为5. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形,∴EF GD∥.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.【答案】(1)见解析;(2;(3.【解析】(1)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DMAD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN在等腰三角形DMN中,MN=1,可得12cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为26.(3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD .【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB 1A 1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(1)见解析;(2)13.【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =, 由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D ,故111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1(12),3),AB A B AC ==-=-uuu r uuu u r uuu u r 由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(1(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu rn n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,||||AC AC AC θ⋅===⋅uuu ruuu r uuu r n |n n |因此,直线1AC 与平面1ABB. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由A B A P ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为P ABCD -的体积.【答案】(1)见解析;(2)【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面PAD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM .设BC =x ,则CM =x ,CD ,PM ,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以2PN x =.因为△PCD 的面积为122x ⨯=解得x =−2(舍去),x =2,于是AB =BC =2,AD =4,PM =所以四棱锥P −ABCD 的体积()224132V ⨯+=⨯⨯=【名师点睛】解答本题时,(1)先由平面几何知识得BC ∥AD ,再利用线面平行的判定定理证得结论;(2)取AD 的中点M ,利用线面垂直的判定定理证明PM ⊥底面ABCD ,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 【答案】(1)见解析;(2)1:1【解析】(1)取AC 的中点O ,连结DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD .(2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°.由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC . (3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(12)见解析;(3 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos AD DAP AP ∠==所以,异面直线AP 与BC(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF ==在Rt △DPF 中,可得sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 21.【2017年高考江苏卷】如图,在三棱锥A BCD与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.∥,22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分. (1)如图,设PA 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,PA 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面PAB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,得CE ,在△PBN 中,由PN =BN =1,PB 得QH =14,在Rt △MQH 中,QH=14,MQ , 所以sin ∠QMH =8,所以直线CE 与平面PBC 所成角的正弦值是8.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
适用标准文档高考立体几何大题及答案1.( 2009 全国卷Ⅰ文)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD 2 ,DC SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ文)如图,直三棱柱ABC-A 1B1C1中, AB ⊥ AC,D 、 E 分别为 AA 1、 B1C 的中点, DE ⊥平面 BCC1(Ⅰ)证明: AB=AC (Ⅱ)设二面角A-BD-C 为 60°,求 B1C 与平面 BCD所成的角的大小A 1C1 B 1D EACB3. ( 2009 浙江卷文)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120 , P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.适用标准文档4.(2009 北京卷文)如图,四棱锥P ABCD 的底面是正方形,PD底面ABCD,点E在棱PB 上 .(Ⅰ)求证:平面AEC平面PDB;(Ⅱ)当PD2AB 且E为PB的中点时,求AE 与平面 PDB 所成的角的大小.5.( 2009 江苏卷)如图,在直三棱柱ABC A1B1C1中,E、F分别是 A1B 、 A1C 的中点,点D 在 B1C1上, A1 D B1C。
求证:( 1) EF∥平面 ABC ;( 2)平面A1FD平面 BB1C1C .高考立体几何文科大题及问题详解适用标准文档6.( 2009 安徽卷文)如图,ABCD的边长为 2 的正方形,直线l 与平面 ABCD平行, g 和 F 式 l 上的两个不一样点,且 EA=ED,FB=FC,和是平面ABCD内的两点,和都与平面ABCD垂直,(Ⅰ)证明:直线垂直且均分线段AD:(Ⅱ)若∠ EAD=∠ EAB=60°, EF=2,求多面体 ABCDEF的体积。
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A. {4,1}-B. {1,5}C. {3,5}D. {1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若312i i z =++,则||=z ( ) A. 0 B. 1C.2D. 2【答案】C 【解析】【分析】先根据21i =-将z 化简,再根据向量的模的计算公式即可求出. 【详解】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.514- B.512- C.514+ D.512+ 【答案】C 【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案. 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A. 15B.25 C.12D. 45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A. y a bx =+ B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 4【答案】B 【解析】【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时22||(31)(2)22CP =-+-=根据弦长公式得最小值为229||2982CP -=-=.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9 B. 7π6 C. 4π3D. 3π2【答案】C 【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.设3log 42a =,则4a -=( )A.116B.19C.18D.16【答案】B 【解析】【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由3log 42a =可得3log 42a =,所以49a =,所以有149a-=,故选:B .【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.9.执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C 【解析】【分析】根据程序框图的算法功能可知,要计算满足135100n ++++>的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足135100n ++++>的最小正奇数,因为()()211112135110024n n n n -⎛⎫+⨯+ ⎪⎝⎭++++==+>,解得19n >,所以输出的21n =.故选:C. 【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题. 10.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A. 12B. 24C. 30D. 32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q qq ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.11.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A.72B. 3C.52D. 2【答案】B 【解析】 【分析】由12F F P 是以P 为直角直角三角形得到2212||||16PF PF +=,再利用双曲线的定义得到12||||2PF PF -=,联立即可得到12||||PF PF ,代入12F F P S =△121||||2PF PF 中计算即可. 【详解】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,因为121||1||2OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.12.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.【答案】1 【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 【详解】绘制不等式组表示的平面区域如图所示,目标函数7z x y =+即:1177y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点A 的坐标为:1,0A ,据此可知目标函数的最大值为:max 1701z =+⨯=. 故答案为:1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.14.设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________. 【答案】5 【解析】 【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果. 【详解】由a b ⊥可得0a b ⋅=, 又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=, 即5m =, 故答案为:5.【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目. 15.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.【点睛】本题考查导数的几何意义,属于基础题.16.数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.【答案】7 【解析】 【分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=, 17a ∴=故答案为:7.【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 【答案】(1)甲分厂加工出来的A 级品的概率为0.4,乙分厂加工出来的A 级品的概率为0.28;(2)选甲分厂,理由见解析.【解析】 【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100件产品的总利润,即可求出平均利润,由此作出选择. 【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为400.4100=,乙厂加工出来的一件产品为A 级品的概率为280.28100=; (2)甲分厂加工100件产品的总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元, 所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题. 18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求ABC 的面积; (2)若sin A +3sin C =2,求C . 【答案】(1)3;(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论; (2)将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,23,c a ABC ∴==∴△的面积1sin 32S ac B ==; (2)30A C +=︒,sin 3sin sin(30)3sin A C C C ∴+=︒-+132cos sin sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题. 19.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO 23π,求三棱锥P −ABC 的体积. 【答案】(1)证明见解析;(26. 【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC ≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC ≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为3,3rl rl ππ==2222OD l r =-=,解得1,3r l ==2sin 603AC r ==,在等腰直角三角形APC 中,2622AP AC ==, 在Rt PAO 中,2262142PO AP OA =-=-=, ∴三棱锥P ABC -的体积为112363332P ABC ABC V PO S -=⋅=⨯=△.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.20.已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】 【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2x e a x =+有两个解,令()(2)2x eh x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)xf x e x =-+,'()1x f x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-,所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线xy e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线xy e =的切线斜率,结合图形求得结果.21.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+ 联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭. 当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共10分。
高考数学最新真题专题解析—立体几何综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知正方体ABCD−A1B1C1D1,则()A. 直线BC1与DA1所成的角为90∘B. 直线BC1与CA1所成的角为90∘C. 直线BC1与平面BB1D1D所成的角为45∘D. 直线BC1与平面ABCD所成的角为45∘【答案】ABD【分析】本题主要考查直线与直线所成角及直线与平面所成角,属于中档题.【解答】解:如图,因为BC1⊥B1C,B1C//DA1,所以BC1⊥DA1,故A正确;对于选项B:因为直线BC1⊥平面CDA1B1,且CA1⊂平面CDA1B1,所以直线BC1⊥CA1,故B正确;对于选项C:连接A1C1与B1D1交于点O1,则∠O1BC1即为直线BC1与平面BB1D1D所成的角,sin∠O1BC1=O1C1BC1=12,所以∠O1BC1=30∘,故C错误;对于选项D:直线BC1与平面ABCD所成的角即为∠C1BC=45∘,所以D 正确.【母题来源】2022年新高考I卷【母题题文】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答案】解:(1)设A到平面A1BC的距离为d,因为直三棱柱ABC−A1B1C1的体积为4,即可得S△ABC·AA1=4,故V A1−ABC =13S△ABC·AA1=43,又V A1−ABC =V A−A1BC=13S△A1BC·d=13×2√2×d=43,解得d =√2,所以A 到平面A 1BC 的距离为√2;(2)连接AB 1,因为直三棱柱ABC −A 1B 1C 1中,AA 1=AB , 故AA 1B 1B 为正方形,即AB 1⊥A 1B ,又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AB 1⊂平面ABB 1A 1, 故AB 1⊥平面A 1BC ,所以AB 1⊥BC ,又因为AA 1⊥BC ,AB 1,AA 1⊂平面ABB 1A 1,且AB 1∩AB 1=A , 故BC ⊥平面ABB 1A 1,则BC ⊥AB , 所以BB 1,AB,BC 三条直线两两垂直, 故如图可以以B 为原点建立空间直角坐标系,设AA 1=AB =a ,BC =b ,则A 1B =√2a ,由条件可得{12a ×b ×a =412×√2a ×b =2√2,解得{a =2b =2, 则B(0,0,0),C(2,0,0),A(0,2,0),A 1(0,2,2),A 1C 的中点D(1,1,1), 所以BA ⃗⃗⃗⃗⃗ =(0,2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,1),BC ⃗⃗⃗⃗⃗ =(2,0,0) 设平面ABD 的一个法向量为n 1⃗⃗⃗⃗ =(x,y,z),{n1⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ =0n1⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0⇒{2y=0x+y+z=0,取n1⃗⃗⃗⃗ =(1,0,−1),同理可求得平面BCD的一个法向量为n2⃗⃗⃗⃗ =(0,1,−1)所以|cos<n1⃗⃗⃗⃗ ,n2⃗⃗⃗⃗ >|=|n1⃗⃗⃗⃗⃗ ·n2⃗⃗⃗⃗⃗ ||n1⃗⃗⃗⃗⃗ |·|n2⃗⃗⃗⃗⃗ |=12,所以二面角A−BD−C的正弦值为√32.【母题来源】2022年新高考II卷【母题题文】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E−ABC,E−ACF,F−ABC的体积分别为V1,V2,V3,则()A. V3=2V2B. V3=2V1C. V3=V1+V2D. 2V3=3V1【答案】CD【解析】【分析】本题主要考查三棱锥的体积,属于基础题.【解答】解:设AB=ED=2FB=2,则V1=13×2×2=43,V2=13×2×1=23.连结BD交AC于M,连结EM、FM,则FM=√3,EM=√6,EF=3,故S△EMF=1 2⋅√3⋅√6=3√22,V3=13S△EMF×AC=2,V3=V1+V2,2V3=3V1.【母题来源】2022年新高考II卷【母题题文】如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30∘,PO=3,PA=5,求二面角C−AE−B正弦值.【答案】解:(1)法一:连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,作AB中点D,连接OD、DE,则有OD⊥AB,又AB⊥AC,所以OD//AC,又因为OD⊄平面PAC,AC⊂平面PAC,所以OD//平面PAC,又D、E分别为AB、PB的中点,所以,在△BPA中,DE//PA又因为平面PAC,PA⊂平面PAC,所以DE//平面PAC,又OD、DE⊂平面ODE,OD∩DE=D,所以平面ODE//平面PAC,又OE⊂平面ODE,所以OE//平面PAC;法二:(1)连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,又AB⊥AC,在Rt△ABF,O为BF中点,延长BO,交AC于F,连接PF,所以在△PBF中,O、E分别为BF、PB的中点,所以EO//PF,因为EO⊄平面PAC,PF⊂平面PAC,所以EO//平面PAC;(2)法一:过点D作DF//OP,以DB为x轴,DO为y轴,DF为z轴.建立如图所示的空间直角坐标系.因为PO=3,PA=5,由(1)OA=OB=4,又∠ABO=∠CBO=30∘,所以OD=2,DB=2√3,),所以P(0,2,3),B(2√3,0,0),A(−2√3,0,0),E(√3,1,32设AC=a,则C(−2√3,a,0),平面AEB的法向量设为n1⃗⃗⃗⃗ =(x1,y1,z1),直线AB的方向向量可设为a⃗=(1,0,0),直线DP⊂平面AEB,直线DP的方向向量为b⃗ =(0,2,3){a ⃗ ⋅n 1⃗⃗⃗⃗ =0b ⃗ ⋅n 1⃗⃗⃗⃗ =0,所以{x 1=02y 1+3z 1=0,所以x 1=0,设y 1=3,则z 1=−2,所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n ⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=13√3=4√313, 二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113法二:(2)过点A 作AF//OP ,以AB 为x 轴,AC 为y 轴,AF 为z 轴 建立所示的空间直角坐标系.因为PO =3,PA =5,由(1)OA =OB =4,又∠ABO =∠CBO =30°,所以,AB =4√3,所以P(2√3,2,3),B(4√3,0,0), A(0,0,0),E(3√3,1,32),设AC =a ,则C(0,a,0),平面AEB 的法向量设为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AB ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{4√3x 1=03√3x 1+y 1+32z 1=0,所以x 1=0设z 1=−2,则y 1=3, 所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x,y,z),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n 2⃗⃗⃗⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=√1213√3=4√313二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113. 【命题意图】考察棱柱、棱锥棱台、圆柱、圆锥、圆台及其简单组合体的结构特征,能画出简单空间图形并能识别立体图形的模型,考察几何体中的点线面关系,考察线线、线面、面面之间的平行和垂直关系,考察异面直线所成的角,直线和平面所成的角,二面角的平面角等的求解,考察数形结合思想,空间想象力及逻辑推导能力。
高考文科数学总复习——真题汇编之立体几何(含参考答案)一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为 A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是1111ABCD A B C D -E 1CC AE CD 23576.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A .B .C .D .7.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2B .4C .6D .8A B C D ,,,ABC△D ABC俯视图正视图22119.【2018浙江卷8】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ110.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( ) (A )4 (B ) 8(C )12 (D )16二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏卷10】如图所示,正方体的棱长为2,以其所有面的中心为顶点S SA SB SA 30 SAB △8的多面体的体积为 .三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =CPOM3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.4.【2018北京卷18】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.ABCD CD M CD C D AMD ⊥BMC AM P MC ∥PBD6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B 1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C 1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题1.π82.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.2322AC 12AC由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离. 由题设可知OC ==2,CM ==,∠ACB =45°. 所以OM =,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .222OP OB PB +=12AC 23BC 42325sin OC MC ACB OM ⋅⋅∠4545⊂CD ⊂⊄⊂4.解:(Ⅰ)∵PA PD=,且E为AD的中点,∴PE AD⊥.∵底面ABCD为矩形,∴BC AD∥,∴PE BC⊥.(Ⅱ)∵底面ABCD为矩形,∴AB AD⊥.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB PD⊥.又PA PD⊥,∴PD⊥平面PAB,∴平面PAB⊥平面PCD.(Ⅲ)如图,取PC中点G,连接,FG GD.∵,F G分别为PB和PC的中点,∴FG BC∥,且12FG BC=.∵四边形ABCD为矩形,且E为AD的中点,∴1,2ED BC DE BC=∥,∴ED FG∥,且ED FG=,∴四边形EFGD为平行四边形,∴EF GD∥.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.5.解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN ∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DMAD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN在等腰三角形DMN中,MN=1,可得12cosMNDMNDM∠==.所以,异面直线BC与MD(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=4.在Rt△CMD中,sin CMCDMCD∠==.所以,直线CD与平面ABD.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅==⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin|cos|,|||CCCCCC|θ==⋅⋅==nnn,所以直线CC1与平面AQC1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB===⊥⊥得111AB A B==,所以2221111A B AB AA+=.故111AB A B⊥.由2BC=,112,1,BB CC==11,BB BCCC BC⊥⊥得11B C=,由2,120AB BC ABC==∠=︒得AC=由1CC AC⊥,得1AC=2221111AB B C AC+=,故111AB B C⊥.因此1AB⊥平面111A B C.(Ⅱ)如图,过点1C作111C D A B⊥,交直线11A B于点D,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ===111111cos C AB C A B ∠=∠=,所以1C D =,故111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-[来源:学#科#网Z#X#X#K]由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C .(Ⅱ)设直线1AC 与平面1ABB 所成的角为θ.由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB === 设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧=⎪⎨=⎪⎩可取(=n.所以111|sin |cos ,||||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13.9.解:(1)依题意可知:圆锥的高度为322422=-=OP ,所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。
专题09 立体几何1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.3.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E , 所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.一、考向分析:二、考向讲解考查内容解 题 技 巧 几何 体表 面积 与体 积1、空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量。
重难点03 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海松江区·高三一模)在正方体中,下列四个结论中错误1111ABCD A B C D 的是( )A .直线与直线所成的角为B .直线与平面所成的角为1B C AC 60︒1B C 1AD C 60︒C .直线与直线所成的角为D .直线与直线所成的角为1B C 1AD 90︒1B C AB 90︒【答案】B【分析】连接∵为等边三角形,∴,即直线与所成的1AB 1AB C V 160ACB ∠=︒1B C AC 角为60°,故选项A正确;连接,∵,∴四面体是正四面体,11B D 1111AB B C CD AD ===11AB CD ∴点在平面上的投影为的中心,设为点O ,连接,,则1B 1AD C 1AD C A 1B O OC,OC BC =设直线与平面所成的角为θ,1B C 1AD C 则,故选项B 错误;11cos 2OC B C θ===≠连接,∵,且,∴直线与所成的角为90°,故选项C 1BC 11AD BC A 11B C BC ⊥1B C 1AD 正确;∵平面,∴,即直线与所成的角为90°,故选项D 正AB ⊥11BCC B 1AB B C ⊥1B C AB 确.故选:B .2.(2020·全国高三专题练习(文))一个棱柱是正四棱柱的条件是()A .底面是正方形,有两个面是矩形的四棱柱B .底面是正方形,两个侧面垂直于底面的四棱柱C .底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱D .底面是正方形,每个侧面都是全等的矩形的四棱柱【答案】D【分析】选项A 、B 中,两个面为相对侧面时,四棱柱不一定是直四棱柱,C 中底面不是正方形,故排除选项A 、B 、C ,故选:D.3.(2020·浙江台州市·高三期中)设为空间一点,、为空间中两条不同的直线,、P l m αβ是空间中两个不同的平面,则下列说法正确的是()A .若,,,则P l ∈P β∈l α⊂lαβ= B .若,,,则与必有公共点P α∈P l ∈//l m m αC .若,,,则l α⊥m β⊥//αβ//l mD .若与异面,,,则l m l α⊂m β⊂//αβ【答案】C【分析】对于A 选项,如下图所示:设,,,则,满足,但,A 选项错m αβ= l m P = l α⊂P l ∈P β∈l αβ≠ 误;对于B 选项,若,,则满足条件,若,则或,B 选l α⊂P l ∈P α∈//l m m α⊂//m α项错误;对于C 选项,,,可知,又,,C 选项正确;l α⊥ //αβl β⊥m β⊥//l m ∴对于D 选项,如下图所示,与异面,,,但与相交,D 选项错误.l m l α⊂m β⊂αβ故选:C.4.(2020·宜宾市南溪区第二中学校高三期中(文))如图,正方体的1111ABCD A B C D -棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的E 11A CF M AD CD 是( )A .B .平面11//FM A C BM ⊥1CC F C .三棱锥的体积为定值D .存在点,使得平面平面B CEF -E //BEF 11CC D D【答案】D【分析】在A 中,因为分别是的中点,所以,故A 正确;,F M ,AD CD 11////FM AC A C 在B 中,因为,,故,tan 2BC BMC CM ∠==tan 2CD CFD FD ∠==BMC CFD ∠=∠故.故,又有,2BMC DCF CFD DCF π∠+∠=∠+∠=BM CF ⊥1BM C C ⊥所以平面,故B 正确;BM ⊥1CC F 在C 中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,B CEF -BCF B CEF -故C 正确.在D 中,与平面有交点,所以不存在点,使得平面平面,故BF 11CC D D E //BEF 11CC D D D 错误.故选:D.5.(2020·河南开封市·高三一模(文))如图,将正四棱锥置于水平反射镜面P ABCD -上,得一“倒影四棱锥”.下列关于该“倒影四棱锥”的说法中,所有正确结论P ABCD Q --的编号是( )①平面;//PA BCQ ②平面;PQ ⊥ABCD ③若在同一球面上,则也在该球面上;,,,,P A B C D Q ④若该“倒影四棱锥”存在外接球,则AB PA =A .①③B .②④C .①②③D .①②④【答案】D 【分析】由题意四棱锥与四棱锥是两个相同的正四棱锥P ABCD -Q ABCD -连接相交于点,连接,AC BD O ,OP OQ 由四棱锥为正四棱锥,则平面.P ABCD -PO ⊥ABCD 根据题意四棱锥为正四棱锥,所以平面.Q ABCD -QO ⊥ABCD均垂直于平面,所以三点共线.,PO OQ ABCD P O Q ,,所以平面,故②正确.PQ ⊥ABCD 由,根据题意AC PQ O ⋂=,,AP QC AO OC PO OQ ===所以与全等,所以APO △CQO A PAO OCQ ∠=∠所以,平面,平面,//AP QC AP ⊄QCB QC ⊂QCB 所以平面,故①正确.//PA BCQ 当在同一球面上,若正方形的外接圆不是球的大圆时,,,,,P A B C D ABCD 根据对称性,则点不在此球面上,故③不正确.Q 若该“倒影四棱锥”存在外接球,根据对称性则正方形的外接圆是该球的大圆.ABCD 所以此时球的球心为正方形的对角线的交点,即点,设ABCD O 2AB a =则,OA =OA OP R ==所以,所以④正确.2AP a AB ===故选:D6.(2020·全国高三专题练习(文))如图所示,正方体的棱长为,ABCD A B C D ''''-1、分别是棱、的中点,过直线、的平面分别与棱、交于、E F AA 'CC 'E F BB 'DD 'M N,设,,则下列命题中错误的是( )BM x =]1[0x ∈,A .平面平面MENF ⊥BDDB ''B .当且仅当时,四边形的面积最小12x =MENF C .四边形周长是单调函数MENF ()L f x =D .四棱锥的体积为常函数C MENF '-()V h x =【答案】C【分析】A 选项,∵,,,∴,∴//EF AC AC BD ⊥'⊥AC BB AC BDD B ⊥''EF ⊥平面,BDD B ''又∵平面,∴平面平面,A 对,EF ⊂MENF MENF ⊥BDD B ''B 选项,由面面,又面平面,面平//ABB A ''CDD C ''ABB A ''⋂ENFM EM =CDD C ''⋂面,ENFM FN =所以,同理,所以四边形为平行四边形.//EM FN //EN FM MENF 由平面,平面,所以EF ⊥BDD B ''MN ⊂BDD B ''EF MN⊥所以四边形为菱形,∴,MENF 12MENF S EF MN =⋅又的面积最小,只需最小,EF =MENF MN 则当且仅当时,四边形的面积最小,B 对,12x =MENF C选项,∵,,MF=()f x =∴在上不是单调函数,C 错,()f x [0]1,D 选项,,C MENF F MC E F C NE V V V -''-'-=+,点到平面的距离为,,11124C ME S C E '∆'=⋅=F C ME '11113412F C ME V -'=⋅=又,点到平面的距离为,,11124C NE S C E '∆'=⋅=F C NE '11113412F C NE V -'=⋅=∴为常函数,D 对,1()6h x =故选:C .7.(2020·安徽高三月考(文))某几何体三视图如图,则该几何体的最长棱与最短棱长度之和为( )A .B .5C .D .2+2+【答案】D 【分析】解:该三视图还原后的几何体刚好是正方体的一部分将几何体嵌入棱长为2的正方体中即四面体,ABCD则最长棱,最短棱,BC =2CD =故最长棱与最短棱长度之和为.2+故选:D.二、填空题8.(2020·湖南常德市一中高三月考)在平行四边形中,,,ABCD AB =3BC =且为折痕,将折起,使点到达点处,且满足,cos A =BD BDC ∆C E AE AD =则三棱锥的外接球的半径为_________.E ABD -【分析】在中,由,,且ABD △AB =3BC =cos A =,BC AD =由余弦定理可得,2222cos BD AB AD AB AD A =+-⋅即,解得,(2223BD =+-239=3BD =折起后,,可得,,且,AE AD =3AE BD ==3AD BE ==AB ED ==所以三棱锥的三组对棱长相等,可将四面体放在长方体中,如图所示,ABED 设长方体的相邻三棱长分别为,外接球半径为,,,x y z R 则,则,即222222998x y y z z x ⎧+=⎪+=⎨⎪+=⎩22213x y z ++=2R =R =所以四面体.E ABD-9.(2020·全国高三其他模拟(文))已知四棱锥中,底面是梯形,且P ABCD -ABCD ,,,,且,//AD BC AD DC ⊥224===AD DC CB AP PD⊥AP PD =外接球的表面积为________.=PC P BCD -【答案】283π【分析】取的中点,连接,因为,可得,AD E ,PE BE AP PD =AD PE ⊥又由底面是梯形,且,,,可得ABCD //AD BC AD DC ⊥22AD DC CB ==AD BE ⊥,所以平面,又由平面,所以所以平面,AD ⊥PBE AD ⊂ABCD PBE ⊥ABCD 在直角中,,PBC A 2PB ==在直角中,,且,所以等边三角形,PAD △AP PD ⊥AP PD ⊥4=AD PBE △取的中点,可得且BE F PF BE ⊥PF =设三棱锥外接球的球心为,半径为,球心到的距离为,P BCD -O r ABCDh 在直角中,可得,BOM A 22222r OM BM h =+=+在直角中,可得,PON △22222)1r PN OM h =+=+解得,273=r 所以球的表面积为.27284433S r πππ==⨯=故答案为:.283π10.(2020·湖南长沙市·长沙一中高三月考(文))以棱长为为O 球心,以为半径的球面与正四面体的表面相交得到若干个圆(或圆弧)的总(13)R R <<长度的取值范围是____________.【答案】]【分析】将棱长为补为正方体,则正方体边长为A BCD -所以该正四面体外接球半径为3,即,3OB =设中点为,底面的中心为,连接,,CD E BCD A O 'BE OE 如图:则,,,BE=BO '=EO '=∴,1OO '==OE==当1R <…为圆心的圆,设半径为.(0r r <…所以总长度为;42r π⨯…时,球在四面方体每个面上截得的轨迹都是三段圆弧,其长度显然小于3R <<,当或时,球在正四面体每个面上截得的轨迹都是点,长度为0,1R →3R →故答案为:.]11.(2020·江西高三其他模拟(文))在四面体ABCD 中,AC =BC ,AD =BD ,∠ABC =∠ABD =,CD =8,若四面体ABCD 的外接球的表面积为100π.则该四面体ABCD 的体积4π为_____________.【答案】40【分析】AC =BC ,AD =BD ,∠ABC =∠ABD =,4π和是等腰直角三角形,ADB ∴A ACB △取中点,则可得,AB O OA OB OC OD ===为四面体ABCD 的外接球的球心,O ∴设球半径为,则,解得,即,R 24100R ππ=5R =5OA OB OC OD ====,,,AB OC ABOD OC OD O ⊥⊥⋂= 平面,又,AB ∴⊥OCD 18122OCD S =⨯=A .1112104033ABCD A OCD B OCD OCD V V V S AB --∴=+=⋅=⨯⨯=A故答案为:40.三、解答题12.(2020·全国高三专题练习(文))如图,已知直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=1,AC ⊥BC ,E 在AB 上,且BA =3BE ,G 在AA 1上,且AA 1=3GA 1.(1)求三棱锥A 1-ABC 1的体积;(2)求证:AC 1⊥EG .【答案】(1);(2)证明见解析.16【分析】(1)在直三棱柱ABC -A 1B 1C 1中,BC ⊥AC ,所以BC ⊥平面ACC 1A 1,所以B 到平面ACC 1A 1的距离为1,所以=.1111A ABC B AA C V V --=111111326⨯⨯⨯⨯=(2)如图所示:,在AC 上取点D ,使CD =CA ,连接ED ,DG ,13因为BE =BA ,13所以DE BC ,//又BC ⊥平面ACC 1A 1,所以DE ⊥平面ACC 1A 1.又AC 1⊂平面ACC 1A 1,所以DE ⊥AC 1.在正方形ACC 1A 1中,由CD =CA ,A 1G =A 1A ,1313得DG ⊥AC 1.又DE ∩DG =D ,所以AC 1⊥平面DEG .所以AC 1⊥EG .13.(2020·四川成都市·成都七中高三期中(文))如图甲,平面四边形中,已知ABCD ,,,,现将四边形沿折起,45A ︒∠=90︒∠=C 105ADC ︒∠=2AB BD ==ABCD BD 使得平面平面 (如图乙),设点,分别是棱,的中点.ABD ⊥BDC E F AC AD(1)求证:平面;DC ⊥ABC (2)求三棱锥的体积.A BEF -【答案】(1)证明见解析;(2.【分析】(1)图甲中,∵且,,AB BD =45A ︒∠=45ADB ︒∴∠=,即,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=AB BD ⊥图乙中,∵平面ABD 平面BDC ,且平面ABD 平面,⊥ BDC BD =∴平面BDC ,又平面BDC ,∴,AB ⊥CD ⊂AB CD ⊥又,∴,且,90DCB ︒∠=DC BC ⊥AB BC B ⋂=又,平面AB C ,∴DC 平面AB C ;AB BC ⊂⊥(2)因为点,分别是棱,的中点,E F AC AD 所以,且,所以平面,//EF DC 12EF DC =EF ⊥ABC 由(1)知,平面BDC ,又平面BDC ,所以,AB ⊥BC ⊂AB BC ⊥,,,105ADC ︒∠= 45ADB ︒∠=1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos302BC BD ︒∴=⋅==1sin 30212DC BD ︒=⋅=⨯=所以,,12ABC S AB BC =⨯⨯=△12ABEABC S S ==△△1122EF DC ==所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△14.(2020·江西高三其他模拟(文))在如图所示的几何体中,底面四边形ABEF 为等腰梯形,AB ∥EF ,侧面四边形ABCD 是矩形,且平面ABCD ⊥平面ABEF ,2EF AB ==1BC BE ==(1)求证:AF ⊥平面BCE ;(2)求三棱锥A -CEF 的体积.【答案】(1)证明见解析;(2).13【分析】(1)证明:取的中点为,连接EF M BM //,//,AB MF AF BM ∴ 1,BE AF BM EM ==== 222,,BE BM EM BM BE ∴+=∴⊥因为平面 平面ABCD⊥,,ABEF BCAB ⊥平面,BC BM BM ∴⊥∴⊥,BEC 平面AF ∴⊥BEC(2)1111.323A CEF C AEF V V --==⨯⨯=15.(2020·河南新乡市·高三一模(文))如图,在四棱柱中,底面1111ABCD A B C D -是以,为底边的等腰梯形,且,,ABCD AB CD 24AB AD ==60DAB ∠=︒.1AD D D ⊥(1)证明:.1AD BD ⊥(2)若,求四棱柱的体积.112D D D B ==1111ABCD A B C D -【答案】(1)证明见解析;(2)【分析】:(1)证明:在中,,,,ABD △4AB =2AD =60DAB ∠=︒由余弦定理得BD ==则,即,222AD BD AB +=AD BD ⊥而,,1AD D D ⊥1BD D D D ⋂=故平面,AD ⊥11D DBB 又平面,1BD ⊂11D DBB .1AD BD ∴⊥(2)解:如图所示:取的中点,连接,BD O 1D O 由(1)可知:平面,AD ⊥11D DBB 平面,AD ⊂ABCD 平面平面,∴11D DBB ⊥ABCD 由于,11D D D B =,1D O BD ∴⊥故平面,1D O ⊥ABCD 即为四棱柱的高,1D O 1111ABCD A B C D -又,,12DD = DO =,11D O ===由知:梯形的高,AD BD ⊥h ==梯形的面积为,∴ABCD 1(24)2⨯+=故11111ABCD A C D B V -==。
2012-2018年新课标全国卷Ⅰ文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A .17πB .18πC .20πD .28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为()A B C D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M 堆的体积和堆放的M 各位多少?”已知1斛M 的体积约为1.62立方尺,圆周率约为3,估算出堆放的M 有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为()AB .C .D .【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC ,三棱锥E - ACD的体积为3【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。
全国卷历年高考立体几何真题归类分析(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。
专题11:文科立体几何高考真题小题(全国卷)赏析(解析版) 1,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.2,2019年全国统一高考数学试卷(文科)(新课标Ⅲ)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF ,平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD , MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,35,,72MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.3,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷) 在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为( )A .8B .62C .82D .83【答案】C【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=,根据2AB =,求得123BC =可以确定122CC =之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯=故选C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.4.2018年全国普通高等学校招生统一考试文数(全国卷II )在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .22B 3C 5D 7 【答案】C【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan22BE aEABAB a∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.2018年全国卷Ⅲ文数中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.B.C.D.【答案】A【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题.6.2018年全国卷Ⅲ理数高考试题文设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为A .123B .183C .243D .543【答案】B【详解】分析:作图,D 为MO 与球的交点,点M 为三角形ABC 的中心,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大,然后进行计算可得.详解:如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大此时,OD OB R 4===2393ABC S AB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴==Rt OMB ∴中,有22OM 2OB BM -=DM OD OM 426∴=+=+=()max 19361833D ABCV-∴=⨯⨯=故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM⊥平面ABC时,三棱锥D ABC-体积最大很关键,由M为三角形ABC的重心,计算得到2BM233BE==,再由勾股定理得到OM,进而得到结果,属于较难题型.7.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π【答案】B【解析】设正方形边长为a,则圆的半径为2a,正方形的面积为2a,圆的面积为2π4a.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.8.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A .B .C .D .【答案】A【解析】对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ .故排除B ,C ,D ,选A .点睛:本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.9,2017年全国普通高等学校招生统一考试文科数学(新课标2卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【答案】B【解析】 由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B. 点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.10.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4 【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==, 结合勾股定理,底面半径221312r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ).A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论.【详解】画出正方体1111ABCD A B C D -,如图所示.对于选项A ,连1D E ,若11A E DC ⊥,又111DC A D ⊥,所以1DC ⊥平面11A ED ,所以可得11DC D E ⊥,显然不成立,所以A 不正确.对于选项B ,连AE ,若1A E BD ⊥,又1BD AA ⊥,所以DB ⊥平面1A AE ,故得BD AE ⊥,显然不成立,所以B 不正确.对于选项C ,连1AD ,则11AD BC .连1A D ,则得111,AD A D AD ED ⊥⊥,所以1AD ⊥平面1A DE ,从而得11AD A E ⊥,所以11A E BC ⊥.所以C 正确.对于选项D ,连AE ,若1A E AC ⊥,又1AC AA ⊥,所以AC ⊥平面1A AE ,故得AC AE ⊥,显然不成立,所以D 不正确.故选C .【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题.12.2019年全国统一高考数学试卷(理科)(新课标Ⅱ)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.13.2016年全国普通高等学校招生统一考试文科数学(新课标1卷)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为A .3B 2C 3D .13【答案】A【详解】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所3 A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.14.2016年全国普通高等学校招生统一考试文科数学(全国2卷) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 A .12π B .323π C .8π D .4π【答案】A 【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为233243)12ππ⋅=,故选A. 【考点】 正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个: 外接球、内切球和与各条棱都相3a 、2a和22a .15.2016年全国普通高等学校招生统一考试理科数学(全国2卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π【答案】C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.16.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.B.C.90D.81【答案】B【解析】【详解】试题分析:解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:.故选:B.点睛:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.17.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)在封闭的直三棱柱内有一个体积为V的球,若,,,,则该球体积V的最大值是A.B.C.D.【答案】B【解析】试题分析:设的内切圆半径为,则,故球的最大半径为,故选B.考点:球及其性质.18.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式19.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r = ( )A .1B .2C .4D .8 【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+="16" + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式 20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】D 【详解】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.21.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.36πB.64πC.144πD.256π【答案】C【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.22.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【答案】B 【解析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱. 考点:由三视图还原几何体.23.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【答案】C 【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图.24.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为A .3B .32C .1D 3【答案】C 【解析】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅=⨯⨯=.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.二、填空题25.2018年全国普通高等学校招生统一考试文数(全国卷II )已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________. 【答案】8π 【解析】分析:作出示意图,根据条件分别求出圆锥的母线SA ,高SO ,底面圆半径AO 的长,代入公式计算即可.详解:如下图所示,30,90SAO ASB ∠=∠=又211822SAB S SA SB SA ∆=⋅==, 解得4SA =,所以2212,232SO SA AO SA SO ===-=,所以该圆锥的体积为2183V OA SO ππ=⋅⋅⋅=.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.26,2017年全国普通高等学校招生统一考试文科数学(新课标1卷)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______. 【答案】36π 【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r ,可得112932r r r ⨯⨯⨯⨯= ,解得r=3.球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离P 到平面ABC 的距离为___________.. 【分析】本题考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,勾股定理解决. 【详解】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连CO , 知,CD PD CD PO ⊥⊥,=PDOD P ,CD 平面PDO ,OD ⊂平面PDO ,CD OD ∴⊥PD PE ==∵2PC =.sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,PO CO ∴⊥,CO 为ACB ∠平分线,451,OCD OD CD OC ︒∴∠=∴===2PC =,PO ∴==【点睛】画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题即很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.28,2019年全国统一高考数学试卷(文科)(新课标Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .【答案】118.8 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯-⨯⨯⨯=, 四棱锥O −EFG 的高3cm , ∴31123123O EFGH V cm -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144V cm =⨯⨯=,试卷第21页,总21页 所以该模型体积为22114412132V V V cm =-=-=,其质量为0.9132118.8g ⨯=.【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.。
2012-2018年新课标全国卷Ⅰ文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A .17πB .18πC .20πD .28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为()A .3B .22C .3 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M堆的体积和堆放的M各位多少?”已知1斛M的体积约为1.62立方尺,圆周率约为3,估算出堆放的M有( )A.14斛 B.22斛 C.36斛 D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( ) BA.1 B.2 C.4 D.8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A.三棱锥B.三棱柱C.四棱锥D.四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.6 B.9 C.D.【2012,8】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π【2018,5】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A.12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC ,三棱锥E - ACD 的体积为6,求该三棱锥的侧面积.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.【2012,19】如图,三棱柱ABC -A1B1C1中,侧棱垂直底面,90ACB∠=︒,AC=BC=21AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA。
(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积。
解读一、选择题【2017,6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是()【解法】选A.由B,AB∥MQ,则直线AB∥平面MNQ;由C,AB∥MQ,则直线AB∥平面MNQ;由D,AB∥NQ,则直线AB∥平面MNQ.故A不满足,选A.【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是().DA1B1CABC1A .17πB .18πC .20πD .28π解读:选A .由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A . 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为()A.2 B.2 C.3 D .13解读:选A .解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=A .ABCDA 1B 1C 1D 1EF解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为2.故选A .D 1C 1B 1A 1DCBA【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M 堆的体积和堆放的M 各位多少?”已知1斛M 的体积约为1.62立方尺,圆周率约为3,估算出堆放的M 有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以M 堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的M 约为3209÷1.62≈22,故选B .【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr 2+2r×2r =5πr 2+4r 2=16+20π, 解得r=2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )BA .三棱锥B .三棱柱C .四棱锥D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8πB .8+8πC .16+16πD .8+16π 解读:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A .【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .D .【解读】由三视图可知,该几何体为三棱锥A-BCD,底面△BCD为底边为6,高为3的等腰三角形,侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.【2012,8】8.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π【解读】如图所示,由已知11O A=,12OO=,在1Rt OO A∆中,球的半径3R OA==,所以此球的体积34433V Rππ==,故选择B.【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【解读】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形.故选D.【2018,5】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为B【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BA. 2B.C. 3D. 2【2018,10】在长方形ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为CA. 8B. 6C. 8D. 8OB DA二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解读】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥, 因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC ,设OA r=,3111123323A SBCSBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解读:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为. 【解读】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =.根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=.① 又PO B BO Q ''△∽△,知22r O B xy '==. 即2234xy r R ==.② 由①②及x y >可得3,22R x R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【解法】(1)90BAP CDP ∠=∠=︒,∴,AB AP CD DP ⊥⊥又AB ∥CD ∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且APDP P =∴AB ⊥平面PADAB ⊂平面PAB ,所以平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a ===,因为90APD ∠=︒,所以PAD ∆为等腰直角三角形 即=2AD a取AD 中点E ,连接PE ,则22PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以31121823333P ABCDV AB AD PE a a a a-====即2a=11=223+226=6+2322S⨯⨯⨯⨯⨯侧【2016,18】如图所示,已知正三棱锥P ABC-的侧面是直角三角形,6PA=,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E.连结PE并延长交AB于点G.(1)求证:G是AB的中点;(2)在题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.PABD CGE解读:(1)由题意可得ABC△为正三角形,故6PA PB PC===.因为P在平面ABC内的正投影为点D,故PD⊥平面ABC.又AB⊂平面ABC,所以AB PD⊥.因为D在平面PAB内的正投影为点E,故DE⊥平面PAB.又AB⊂平面PAB,所以AB DE⊥.因为AB PD⊥,AB DE⊥,PD DE D=,,PD DE⊂平面PDG,所以AB⊥平面PDG.又PG⊂平面PDG,所以AB PG⊥.因为PA PB=,所以G是AB的中点.(2)过E作EF BP∥交PA于F,则F即为所要寻找的正投影.E GCD BAP F理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =,3PD =2DE =.由勾股定理知22PE =PEF △为等腰直角三角形知2PF EF==,故43D PEF V -=.【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC ,三棱锥E - ACD 6解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴BD ⊥AC ,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得, AG=GC=32x ,GB=GD=2x. 在RtΔAEC 中,可得EG =32x . ∴在RtΔEBG 为直角三角形,可得BE=22x . …9分 ∴3116632E ACD V AC GD BE x -=⨯⋅⋅==,解得x =2. 由BA=BD=BC 可得6∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD 5所以三棱锥E-ACD 的侧面积为3+25 …12分18. 解读(1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以3AG GC x ==,BG GD x ==.在AEC △中,90AEC ∠=,所以132EG AC x ==, 所以在Rt EBG △中,222BE EG BG x =-=,所以3116622sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中, 可得6AE EC ED ===.所以三棱锥的侧面积112256632522S =⨯⨯⨯+⨯⨯=+侧.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1, 故B 1C ⊥AB .…6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD 3由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。