2.6 反函数
- 格式:doc
- 大小:347.00 KB
- 文档页数:14
函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。
在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。
1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。
当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。
1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。
函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。
1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。
这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。
二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。
了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。
2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。
一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。
2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。
二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。
2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。
反函数的定义及其性质反函数(Inverse Function),又称反映射,是指在数学中,如果一个函数 f 把集合 X 映射到集合 Y 上,且映射是双射(即每一个 Y 的值都对应于唯一的 X 的值),那么就可以定义出一个新函数 g,把 Y 映射回 X 上,这个 g 便称作 f 的反函数。
本文将介绍反函数的定义及其性质,让我们深入了解这一重要概念。
一、反函数的定义设函数 f 的定义域为 X,值域为 Y,如果对于 Y 中的任意元素y ,都只存在一个 X 中的元素 x 使得 f(x)=y,那么 f 是一个双射函数。
此时,可以定义另一个函数 g,将 Y 中的每个元素 y 分别与 f 中的一个元素 x 对应,记为 g(y)=x。
这个函数 g 便是函数 f 的反函数。
通俗来说,就是将 f(x) 的输出结果与 x 对应并得到一组函数值的过程。
二、反函数的性质1. 双射函数的反函数必定存在。
因为双射是存在一一对应,而各个元素“对应着对应的对应”,总是可以找到一个映射使得原函数是双射的,进而反函数一定存在。
2. 反函数是双射函数。
由反函数的定义可知,函数 f 的反函数 g 是把 Y 中的元素 y 映射回 X 的一个函数。
也就是说,反函数将 f 的输出结果逆向映射回其输入值,所以 g 也是一个双射函数。
反函数的存在,其实是描述两个集合之间逆向一一对应的性质,反函数也符合这一性质。
3. 函数的反函数唯一。
反函数的存在,说明原函数是双射函数,而双射函数有一个重要的性质:对于每个元素 y,都只有一个 x 与之对应。
也就是反函数只有一个,这是因为对于 f(x1)=y 和 f(x2)=y 的任意两个 x1 和x2 ,由于 f 是双射函数,所以x1 ≠ x2,所以每个 y 都唯一对应一个 x,在反函数中也就只能有一个 g(y)。
4. 函数和它的反函数互为反函数。
对于由函数 f 得到的反函数 g,其运算定义为 f 和 g 可以互相调用,即 g(f(x))=x ,f(g(y))=y。
数学公式知识:反函数的概念与计算方法反函数是数学中重要的概念之一,它是指一个函数的输入与输出在二元组中完全对调的函数。
在实际应用中,反函数被广泛地应用于多种领域,比如物理学、工程学、计算机科学等。
本文将介绍反函数的概念、计算方法及应用。
我们希望通过本文,帮助读者更好地理解反函数的概念及其重要性。
一、反函数的概念首先要明确的是,一个函数必须满足单射条件,才能有反函数。
单射是指函数的每个输出值都对应唯一的输入值。
例如,函数f(x) = 2x是单射函数,因为每个x的输出值都是唯一的。
但是,函数f(x) = x^2不是单射函数,因为它的输出值对应多个输入值。
如果函数f(x)是单射函数,那么它的反函数f^(-1)(y)就是指满足以下条件的函数:f^(-1)(f(x)) = x这意味着,如果对于函数f(x)的某个输出值y,存在唯一的一个输入值x能够使得f(x)等于y,那么反函数f^(-1)(y)就表示这个唯一的输入值x。
根据反函数的定义,我们可以发现,反函数实际上就是函数f(x)在水平方向上的镜像,因为它是把原来输入的x和输出的f(x)对调了一下。
二、反函数的计算方法有些时候,我们需要计算一个函数的反函数,这时候我们可以按照以下方法进行计算:1.将函数f(x)改写成y = f(x)2.交换x和y的位置,得到x = f^(-1)(y)3.将x用y表示,得到f^(-1)(y) = g(y),即为该函数的反函数。
例如,对于函数f(x) = 3x + 4,我们可以按如下步骤计算其反函数:1.把函数改写为y = 3x + 42.交换x和y的位置,得到x = 3y + 43.将x用y表示,得到f^(-1)(y) = (x - 4) / 3因此,函数f(x)的反函数就是f^(-1)(y) = (y - 4) / 3。
三、反函数的应用反函数在实际应用中有着很广泛的应用,以下是其中的一些例子:1.多项式插值多项式插值是一种用于拟合数据的技术,它通过一些已知的数据点来计算一个多项式函数。
常见的反函数与原函数对照表反函数与原函数是微积分中常见的概念,也是数学及其他自然科学中的基本工具之一。
反函数和原函数的概念具有重要性,它们是函数的逆运算,可以帮助我们解决各种实际问题。
下面将介绍常见的反函数与原函数对照表。
反函数是一种函数,在一定条件下与原函数相互逆,即一个函数的自变量是另一个函数的因变量,而另一个函数的自变量是前一个函数的因变量。
常见的反函数包括正弦函数、余弦函数、正切函数以及自然对数函数等。
正弦函数是三角函数中应用最广泛的一种,它的反函数是反正弦函数。
简单的说,如果y=sin(x),那么x=arcsin(y)。
反正弦函数是单调递增的,其定义域为[-1,1],值域为[-π/2,π/2],表示当y为反正弦函数的取值时,对应的x值是多少。
余弦函数也是一种三角函数,其反函数为反余弦函数。
如果y=cos(x),则x=arccos(y)。
反余弦函数是单调递减的,其定义域为[-1,1],值域为[0,π],表示当y为反余弦函数的取值时,对应的x值是多少。
正切函数是另一种常见的三角函数,其反函数是反正切函数。
如果y=tan(x),则x=arctan(y)。
反正切函数是单调递增的,其定义域为R,值域为[-π/2,π/2],表示当y为反正切函数的取值时,对应的x值是多少。
自然对数函数是指以自然常数e为底的对数函数。
其反函数是指数函数。
如果y=ln(x),则x=e^y。
指数函数是单调递增的,其定义域为R,值域为(0,+∞),表示当y为指数函数的取值时,对应的x值是多少。
总之,反函数和原函数是一对相互逆运算的函数。
了解不同函数之间的反函数和原函数是学习微积分的基本要求。
通过对常见反函数和原函数的对照表的学习,我们可以更好地理解数学知识,并在解决实际问题时更加得心应手。
反函数关于
(最新版)
目录
1.反函数的定义与性质
2.反函数的求法
3.反函数的应用
正文
一、反函数的定义与性质
反函数,又称逆函数,是指将函数的输出作为输入,将函数的输入作为输出的一种特殊关系。
设函数 f(x) 的定义域为 D,值域为 R,如果存在另一个函数 g(x),它的定义域为 R,值域为 D,并且对于所有的 x∈D,有 f(g(x))=x,g(f(x))=x,则称函数 g(x) 是函数 f(x) 的反函数,记作 f^-1(x)。
反函数具有以下性质:
1.反函数是单射的,即对于不同的 x1, x2,有 f(x1)≠f(x2) 时,f^-1(f(x1))=x1,f^-1(f(x2))=x2。
2.反函数是满射的,即对于所有的 y∈R,都有存在 x∈D,使得
f(x)=y。
3.反函数的定义域等于原函数的值域,反函数的值域等于原函数的定义域。
二、反函数的求法
求反函数的方法主要有以下两种:
1.换元法:设 y=f(x),则 x=f^-1(y),将 x 用 y 表示,然后解出y 关于 x 的表达式,即得到反函数的解析式。
2.反函数的图形法:根据原函数的图形,绘制出反函数的图形,然后通过观察反函数的图形,直接写出反函数的解析式。
三、反函数的应用
反函数在实际应用中有广泛的应用,例如:
1.在数学中,反函数可以用于求解方程,将方程中的未知数用反函数表示,将方程转化为关于反函数的方程,然后解出反函数的值,最后代入原函数中求得未知数的值。
2.在物理中,反函数常用于求解运动的逆过程,通过已知的运动轨迹,求解物体的初始速度和加速度。
反函数知识点总结大全一、基本概念1. 反函数的定义:设函数f是定义在集合A上的函数,如果对于A中的每一个x都有唯一的一个y使得f(x) = y,那么就存在一个函数g,使得g(y) = x。
则称g为函数f的反函数,记作g = f^(-1)。
反函数是满足f(g(x))=x和g(f(x))=x的一对函数。
2. 反函数存在的条件:一个函数有反函数的充分必要条件是该函数是一一映射的。
即对于函数f,如果对于不同的x1和x2,有f(x1)≠f(x2),则称f是一一映射。
3. 反函数的表示:在一定条件下,函数的反函数可以表示为y=f^(-1)(x),转换为x=f(y)。
可以通过求解来得到。
4. 反函数的组合:当两个函数互为反函数时,它们的反函数构成一对互为互逆的函数,进行组合后恰好得到自变量x,即(f^(-1)◦f)(x) = x。
二、性质1. 函数和反函数的图像关系:函数和它的反函数的图像分别关于y=x对称。
这意味着反函数的图像是原函数图像沿着y=x轴做对称得到的。
2. 反函数的导数关系:如果函数f在点x处可导且f'(x)≠0,则它的反函数g也在点y=f(x)处可导,且g'(y) = 1 / f'(x)。
3. 反函数的定义域和值域:一个函数的定义域和值域可以通过反函数来确定。
函数f的定义域是它的值域的反函数的定义域,函数f的值域是它的定义域的反函数的值域。
4. 函数和反函数的性质:反函数的奇偶性、周期性和单调性与原函数相似。
如果原函数是奇函数,那么反函数也是奇函数。
如果原函数是周期性函数,那么反函数也是周期性函数。
如果原函数是单调函数,那么反函数也是单调函数。
三、图像1. 原函数和反函数的图像:原函数和反函数的图像关于y=x轴对称。
通过这种方法,可以很方便得到反函数的图像。
2. 举例:y = f(x),求f^(-1)(x)图像。
可以先画出原函数的图像,然后再对该图像进行关于y=x的对称处理。
初中反函数知识点总结一、反函数的定义1.1 函数的定义在讨论反函数之前,我们先来了解一下函数的概念。
函数是一个映射关系,它将一个自变量的取值映射到另一个因变量的取值。
函数通常用f(x)来表示,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2 反函数的定义若对于函数f(x),存在函数g(y),使得g(f(x))=x对于函数f(x)的定义域内的每一个x都成立,且f(g(y))=y对于函数f(x)的值域内的每一个y都成立,那么函数g(y)就是函数f(x)的反函数。
反函数通常用f^(-1)(y)来表示。
二、反函数的性质2.1 反函数的存在对于每一个函数f(x),如果它是一一对应的(即对于不同的x,f(x)的取值也是不同的),那么它必然存在反函数g(y)。
2.2 反函数的图像若函数f(x)的图像是一条曲线或者抛物线,那么它的反函数g(y)的图像通常是一条对称于y=x轴的曲线或者抛物线。
2.3 反函数的性质反函数的性质有以下几点:(1)f(x)和f^(-1)(x)是一一对应的;(2)f^(-1)(f(x))=x,f(f^(-1)(x))=x;(3)f(x)和f^(-1)(x)的定义域和值域互换。
三、反函数的求解3.1 求解反函数的方法对于给定的函数f(x),求解它的反函数g(y)的方法通常有两种:(1)利用代数方法,将y=f(x)转化成x=f^(-1)(y),然后解出f^(-1)(x);(2)利用图像,将函数f(x)的图像与y=x进行对称,然后求解出反函数g(y)的图像。
3.2 求解反函数的实例例如,对于函数f(x)=2x+3,我们要求解它的反函数。
首先,我们将y=2x+3转化成x=1/2(y-3),然后我们得到f^(-1)(x)=1/2(x-3)。
这样,我们就求解出了函数f(x)的反函数f^(-1)(x)。
四、反函数的应用4.1 反函数的应用范围反函数在代数、几何和物理中有着广泛的应用。
反函数知识点总结反函数是函数概念中的重要内容,反函数的概念常常出现在高等数学和几何学中。
它是一个非常有用的工具,可以帮助我们解决各种数学问题。
首先,我们先来了解一下什么是函数。
在数学中,函数是一个特殊的关系,它将一个输入值映射到一个输出值。
数学上用一个函数图像来表示函数,函数图像是一条曲线,代表了所有可能的输入和对应的输出。
而反函数是与原函数相对应的另一个函数,它将原函数的输出值映射回原函数的输入值。
我们可以将反函数视为原函数的“逆运算”。
为了方便描述反函数的性质,我们假设有两个函数f和g,其中f是一个函数,g是f的反函数。
对于给定的x,如果我们将x作为输入传递给f,得到的输出记为y=f(x);反过来,如果将y作为输入传递给函数g,得到的输出就是原始的输入x。
这一过程可以用g(f(x))=x来表示。
基于这个定义,我们可以得出反函数的一些重要性质:1. 反函数与原函数互为逆运算:对于函数f的反函数g,有f(g(x))=x和g(f(x))=x成立。
2. 函数与反函数的图像相互关于y=x对称:函数f与反函数g的图像通过y=x对称。
也就是说,如果我们将函数f的图像绕着直线y=x旋转180度,得到的图像就是反函数g的图像。
3. 函数必须是一一对应关系:为了存在反函数,函数f必须是一一对应关系,也就是说,不同的输入值对应不同的输出值。
如果函数f不是一一对应关系,那么它就没有反函数。
4. 反函数的定义域和值域与原函数相反:如果函数f的定义域为X,值域为Y,那么反函数g的定义域为Y,值域为X。
以上是反函数的一些基本性质。
在实际应用中,反函数可以帮助我们解决一些复杂的数学问题,例如求解方程、求解逆矩阵等。
对于一元函数,我们可以通过一些方法求解它的反函数。
例如,对于一次函数y=ax+b,反函数可以通过交换x和y,并解方程得到。
对于二次函数y=ax^2+bx+c,可以通过配方法、求根公式等方法来求解反函数。
对于三次函数、四次函数等高次函数,求解反函数可能会更加复杂。
反函数及其图象知识点的辅导:反函数也是函数,它是函数部分的重要概念之一.从映射的观点认识,反函数也是一种映射:如果函数y =f (x )是定义域集合A 到值域集合C 的映射,那么它的反函数y=f -1(x )是集合C 到集合A 的映射.但必须明确只有一一映射确定的函数才有反函数.要正确地理解反函数的概念,关键是要弄清y =f (x )、x= f -1(y )以及y =f -1(x )三者之间的关系,特别是在不同的函数中x 、y 在含义、地位上的区别,以及三个函数的图象之间的关系. 一、反函数的定义函数y =f (x )中x 是自变量,y 是x 的函数,设它的定义域为A ,值域为C ,我们根据函数y =f (x )中x 、y 的关系,用y 把x 表示出,得到x=φ(y ),如果对于y 在C 中的任何一个值,通过x=φ(y ),x 在A 中都有唯一的值和它对应,那么x=φ(y )就表示y 是自变量,x 是自变量y 的函数,这样的函数x=φ(y )(y ∈C )叫做函数y= f (x )(x ∈A )的反函数.记作x= f -1(y ).在函数x= f -1(y )中,y 是自变量,x 表示函数,但在习惯上,我们一般用x 表示自变量,用y 表示函数,为此我们常常对调函数x= f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).注:1o不是任何函数都有反函数,因为函数是数集A 到数集B 的映射,它的对应法则包括一对一和多对一两种情况,根据反函数的定义,只有给出的函数y= f (x )的对应关系是一对一的,才有反函数.例:(1)函数y=x 2(x ∈R )有没有反函数?为什么?(2)怎样改变定义域才能使它有反函数?反函数是什么?解:(1)函数y=x 2(x ∈R )没有反函数(2)如果把定义域分为(-∞,0]、[0,+∞)两个区间,则y =x 2在(-∞,0]上存在反函数,其反函数是y =-)0(≥x x ,y =x 2在[0,+∞)上存在反函数,其反函数是y =)0(≥x x .一般地,由于严格单调函数的对应关系是从“定义域到值域”的“一对一”,所以能求出它的反函数,即严格单调函数必有反函数,且严格递增函数的反函数也必严格递增,如果用某一个解析式表示的函数不是单调函数,可以将其定义域限制在一个单调区间内,也能研究它的反函数.2o 反函数的定义域与值域正好是原函数的值域与定义域,否则,即使对应法则互逆,也不能算是原函数的反函数.如:)(2)(2z x x y z y y x ∈=∈=与前者的值域不是后者的定义域,所以求原来函数的反函数时,必须已知或先确定原来函数的值域.3o 函数y =f (x )如果有反函数y =f -1(x ),那么原来函数y=f (x )也是反函数 y =f -1(x )的反函数,即它们互为反函数.因而f -1[f (x )]=x ,f[f -1(x )]=x.4o y =f (x ),x =f -1(y ),y =f -1(x )之间的关系.a. y =f (x )与x =f -1(y ):x ,y 所表示的量相同,但是地位不同.在y=f (x )中,x 是自变量,y 是函数值;在x =f -1(y )中,y 是自变量,x 是函数值. b. y =f (x )与y =f -1(x ):x 、y 地位相同,x 都是自变量,y 是函数值,这比较符合 习惯,并给研究函数带来某些方便,但是x 、y 所表示的量(指实际意义)在两式中被互换了,在y =f (x )中的x 、y 所表示的量分别是y =f -1(x )中的y 、x 所表示的量.c. x =f -1(y )与y =f -1(x ):都是y =f (x )的反函数,它们的对应法则相同,故实质上是同一个函数.二、互为反函数的函数图象间的关系例:求函数y=3x -2(x ∈R )的反函数,并且画出y =f (x )、x =f -1(y )与y =f -1(x )考虑:在例中,函数y =3x -2的图象与其反函数32+=y x 的图象有何关系?函数y=3x -2的图象与其反函数32+=x y 的图象有何关系?为什么?分析:函数y =3x -2与其反函数32+=y x ,虽然形式上它们的图象是同一条直线,但它们的自变量轴与因变量轴恰恰相反.如果我们把x 轴都看作是自变量轴,y 轴看作因变量轴,那么它们的图象是关于直线y=x 对称的.为了看清这一点,我们把函数y =3x -2的反函数32+=y x 换写成32+=x y ,这时函数与反函数中x 都表示自变量,y 都表示因变量,从图中看到,它们的图象是关于直线y=x 对称的.结论:1o .函数y =f (x )的图象和它的反函数y=f -1(x )的图象关于直线y=x 对称; 2o .y =f (x )与x =f -1(y )的图象重合知识点的讲解例1:求下列函数的反函数:(1)y=)1(11≠-+x xxxxx(2)y=x 2-8x +13 (x ≥4) (3)y =x|x|+2x (4)y =1-)01(12<≤-x x -(1)解:在原函数中,y=xxx xx -+-=-++--=-+12112)1(111-≠∴y 由y=xx -+11得:1+x =(1-x )y∴y -xy=1+x∴(y +1)x =y -1 ① y ≠-1 ∴x=11+-y y ②∴原函数的反函数是y=11+-x x (x ≠-1)说明:本题在由①式得到②式时,不能想当然将等式两边同除y +1,应注意,这样做的前提条件是y ≠-1 ,所以本题一开始先求原函数的值域,一方面是为了得到反函数的定义域,另一方面是为了保证后面正确运算的可能性. (2)解:y =f (x )=x 2-8x +16=(x -4)2-3 ∴ 当x ≥4时,f (x )单调递增 ∴它存在反函数.由y=(x -4)2-3得 (x -4)2=y +3 ∴x -4=3+±y∴x =43+±y 4≥x ∴ x =4+3+y又)4(1382≥+-=x x x y的值域是 y ≥-3∴原函数的反函数是y =4+3+x (x ≥-3)说明:通过本小题再次说明只有一一映射确定的函数才有反函数,y =x 2-8x+13本不存在反函数,但当把x 的取值范围限定在定义域的某个单调区间上以后,可以求出反函数,而且它的反函数也是唯一的,其表达式应由原函数中x 的范围(即x ≥4)加以确定. (3)解:y =x|x|+2x =⎩⎨⎧<+-≥+0,20,222x x x x x x 1o .当x ≥0时,由y =x 2+2x =(x +12)-1,得x +1=1+±y ,11011++-=∴≥+±-=y x x y x又 y =x 2+2x ,当x ≥0时,y ≥0∴y =x|x|+2x 当x ≥0时的反函数是y =-1+)0(1≥+x x ;2o .当x<0时,由y =-x 2+2x =-(x -12)+1,得(x -12)=1-y ,即x-1=y -±1,x =1y -±1 x<0 ∴x =1-y -1 又 y =x|x|+2x 当x<0时,y<0∴y =x|x|+2x (x<0)的反函数是y =1-)0(1<-x x∴y =x|x|+2x 的反函数是 y =⎩⎨⎧<--≥++-)0(11)0(11x xx x说明:1o对于求分段函数的反函数问题,应分别求出每一段上原函数的反函数,然后再表示成分段函数的形式.2o要注意,本题反函数中的x ≥0与x<0是由原函数的值域得到的,而不是由原函数中的x ≥0,x<0直接得来的. (4)解:由y =1-21x -得21x -=1-y ∴1-x 2=1-2y +y 2 ∴x =-22y y - 又 y =1-)01(12<≤--x x 的值域是0<y ≤1∴原函数的反函数是y =-)10(22≤<-x x x小结:求函数的反函数的步骤:①判断确定f(x)的映射是否为一一映射.一般情况下,所给的f(x)都是由一一映射所确定的函数,但是大家应明确不是由一 一映射确定的函数就求不出反函数;②将y=f(x)看成方程,解出x =f -1(y);③将x,y 互换,得到y =f -1(x);④写出y =f -1(x)的定义域.一般情况下,应通过原函数的值域确定反函数的定义域.例2:已知函数),(cd x R x dcx b ax y -≠∈++=中a 、b 、c 、d 均不为0(1)试求a 、b 、c 、d 满足什么条件时有反函数,并求出此反函数; (2)试求a 、b 、c 、d 满足什么条件时函数与反函数的图象重合.解:(1)由dcx b ax y ++=得cyx +dy =a x +b ,得(cy -a )x=b -dy ,这里必须cy -a ≠0,即 000·≠-≠+--+≠-++ad cb dcx adcax cb cax a dcx bax c 得得,在此条件下,得acy dy b x --=∴知当cb -a d ≠0时,函数)(cd x R x dcx b ax y -≠∈++=且的反函数是)(c b x R x acx b dx y ≠∈-+-=且(2)由条件,函数与反函数的图象重合即两函数是同一函数.由dcx b ax y ++=与acx b dx y -+=-比较可得a +d =0,知当cb -a d ≠0且a +d=0时,函数与反函数的图象重合.说明:本题中的结论可作为一个规律,加以记忆,这样对于dcx b ax y ++=型的反函数,不需进行推导,可直接写出结果. 例3:求下列函数的反函数。
反函数的计算方法嘿,咱来聊聊反函数呗!你知道不,反函数就像是一把神奇的钥匙,可以打开数学世界里的另一扇门。
先说说啥是反函数呢?简单来讲,就好比两个人互相照应,一个函数和它的反函数就是这样的关系。
如果一个函数能把某个数变成另一个数,那么它的反函数就能把后面这个数变回原来那个数。
神奇吧!那怎么计算反函数呢?这可是个关键问题。
首先得确定原函数是一一对应的。
啥叫一一对应呢?就像每个人都有唯一的身份证号码一样,一个自变量对应一个因变量,不能一对多或者多对一。
要是函数不是一一对应的,那就没法找到反函数啦。
接着呢,把原函数中的x 和y 互换位置。
这就好比两个人交换了角色。
原来x 是主角,现在y 成了主角,而x 则变成了配角。
然后解出y,这个新的y 就是原函数的反函数啦。
比如说,函数y = 2x + 1,咱来求它的反函数。
先把x 和y 互换位置,变成x = 2y + 1。
然后解这个方程,把y 解出来。
先把1 移到左边,变成x - 1 = 2y,再两边同时除以2,就得到y = (x - 1)/2。
这就是原来函数的反函数啦。
再看个复杂点的例子,y = x²(x≥0)。
互换位置后变成x = y²(y≥0)。
解这个方程可得y = √x。
这就是它的反函数。
反函数的计算过程就像是一场解谜游戏,充满了挑战和乐趣。
你想想,通过一步步的推导,最终找到那个神秘的反函数,是不是很有成就感呢?而且反函数在很多地方都有大用处呢。
比如在物理学中,一些公式的推导就需要用到反函数。
在工程学中,也常常会用到反函数来解决实际问题。
反函数就像是数学世界里的一个秘密武器,掌握了它,就能在数学的海洋里畅游得更自在。
你难道不想试试用反函数来解决一些难题吗?总之,反函数的计算方法并不难,只要掌握了关键步骤,就能轻松搞定。
多做一些练习题,熟悉了反函数的特点和计算方法,你会发现数学其实很有趣。
不要害怕挑战,勇敢地去探索反函数的奥秘吧!。
反函数的运算公式反函数,这可是数学中的一个重要概念啊!对于很多同学来说,可能一开始会觉得有点头疼,但别怕,咱们一起来好好琢磨琢磨。
先来说说啥是反函数。
假如有一个函数 f(x),通过一系列的运算和规则,把 x 变成了 y 。
那么反函数呢,就是能把 y 再变回 x 的那个函数。
比如说,函数 f(x) = 2x ,它的反函数就是 f -1 (x) = x/2 。
那反函数的运算公式是啥呢?一般来说,如果原函数是 y = f(x),咱们先把 x 用 y 表示出来,得到x = φ(y),那么反函数就是 f -1 (y) = φ(y) 。
给大家举个例子吧,就说函数 y = 3x + 1 。
咱们要找它的反函数,那就先把 x 解出来。
首先,y = 3x + 1 ,移项得到 y - 1 = 3x ,然后 x = (y - 1) / 3 ,所以它的反函数就是 f -1 (y) = (y - 1) / 3 。
我记得之前教过一个学生,叫小明。
这孩子呀,刚开始接触反函数的时候,那叫一个迷糊。
我给他讲了好几遍,他还是一脸懵。
后来我就发现,他老是在移项和解方程的时候出错。
我就专门给他找了一堆类似的题目,让他反复练习。
一开始,他做得那叫一个惨不忍睹,错误百出。
不过这孩子有股子倔劲儿,不服输。
每天都花好多时间在这上面,还主动来问我问题。
慢慢地,他开始找到感觉了。
有一次课堂练习,做到反函数的题目时,我看到他的眼神不再迷茫,而是充满了自信。
最后交上来的作业,全对!那一刻,我真的特别欣慰。
咱们再回到反函数的运算公式。
在实际运算中,大家一定要注意定义域和值域的问题。
因为原函数的定义域就是反函数的值域,原函数的值域就是反函数的定义域。
比如说,函数y = √x (x≥0),它的反函数就是 y = x²(x≥0)。
这里,原函数的定义域是x≥0 ,所以反函数的值域也是y≥0 。
总之,反函数的运算公式虽然看起来有点复杂,但只要咱们多练习,多琢磨,就一定能掌握。
反函数运算法则反函数是一个与原函数相对应的函数,即如果原函数将一个数映射到另一个数,那么反函数将这个数映射回原来的数。
反函数的求法包括三个步骤,需要先检验原函数是否为双射,确定反函数存在性,然后根据原函数反解出自变量x,得到反函数的定义域,最后交换自变量和因变量的位置,得到最终的反函数。
[0]原函数的三要素有:定义域,对应法则,值域。
函数本质上是数集与数集的(非一对多的)对应关系,其表达式用哪个符号表示并不重要。
因此,为了简单,把反函数定义限制为首先得是双射(一对一的)。
原函数f: A→B,反函数就是f^{-1}: B→A,且保持对应关系不变。
求反函数的第一步是检验原函数是否为双射,或者做水平线检验,确定反函数存在性。
其次,需要根据原函数反解出自变量x,得到反函数的定义域。
最后,交换自变量和因变量的位置,得到最终的反函数。
在交换自变量和因变量的位置时,需要注意反函数一般是在原函数的单调区间才存在的,也可以借助函数图形、函数单调性、定义域与值域是互换关系,来得到反函数的定义域加以验证。
举个例子,A={1,2,3},B={2,4,6},原函数f:A→B,对应法则表达形式为f(1)=2,f(2)=4,f(3)=6。
按标准步骤求,或者直接取反对应关系(因为简单能直接看出来),反函数f^{-1}:B→A,对应法则表达形式为f^{-1}(2)=1,f^{-1}(4)=2,f^{-1}(6)=3。
[0]在反函数的求解中,需要注意一些特殊情况。
例如,对于三角函数y=sin(x),只有在特定区间上才有反函数存在。
因此,反三角函数并不是三角函数的反函数,而是在特定区间上的三角函数的反函数。
在掌握了反函数的概念和求解方法后,可以进一步研究复合函数的反函数。
复合函数的反函数可以通过两个例子来解决更为复杂的问题,同时也展示了反函数存在的前提(单调)和定义域的重要性。
总之,在求解反函数时需要注意以下几点:1.检验原函数是否为双射,确定反函数存在性。
反函数基本公式大全反函数是指对于一个函数f(x),如果存在一个函数g(x),使得f(g(x))=x,那么g(x)就是f(x)的反函数。
在数学中,反函数是一个非常重要的概念,它在解方程、求导、积分等数学问题中都有着重要的应用。
本文将介绍一些反函数的基本公式,希望能够帮助大家更好地理解和运用反函数的知识。
1. 反函数的定义。
设函数f(x)在区间I上是单调的且连续的,且在区间I上有一个逆函数g(x),那么对于任意的x∈I,都有f(g(x))=x和g(f(x))=x成立。
这时,函数g(x)就是函数f(x)的反函数。
2. 反函数的求法。
若函数f(x)在区间I上是严格单调的,那么它在该区间上有且仅有一个反函数。
我们可以通过以下步骤来求反函数:(1)将原函数y=f(x)中的x和y互换位置,得到x=f(y);(2)解出y=f^(-1)(x),即得到原函数的反函数。
3. 反函数的基本公式。
(1)一次函数的反函数。
对于一次函数y=kx+b,它的反函数为y=(x-b)/k。
(2)幂函数的反函数。
对于幂函数y=x^n,它的反函数为y=x^(1/n)。
(3)指数函数的反函数。
对于指数函数y=a^x,它的反函数为y=logₐx。
(4)对数函数的反函数。
对于对数函数y=logₐx,它的反函数为y=a^x。
(5)三角函数的反函数。
对于三角函数y=sin(x)、y=cos(x)、y=tan(x)等,它们的反函数分别为y=arcsin(x)、y=arccos(x)、y=arctan(x)等。
4. 反函数的性质。
(1)反函数与原函数的图像关于直线y=x对称;(2)若函数f(x)在区间I上是严格单调递增的(或递减的),则它在该区间上有且仅有一个反函数;(3)若函数f(x)的定义域为D,值域为R,且有反函数g(x),则函数g(x)的定义域为R,值域为D。
5. 反函数的应用。
(1)在求解方程时,可以利用反函数将复杂的方程转化为简单的形式;(2)在微积分中,反函数可以帮助我们求解一些复杂的积分问题;(3)在实际问题中,反函数也有着广泛的应用,如经济学、物理学等领域。
反函数及其应用如何通过反函数及其应用解决各种代数问题反函数及其应用导语:在数学中,反函数是一个相对于原函数的概念。
本文将介绍反函数的定义和性质,并讨论如何通过反函数及其应用来解决各种代数问题。
一、反函数的定义反函数是指在函数关系中,若函数f(x)将集合A中的元素映射到集合B中的元素,则存在一个函数g(x),它能将集合B中的元素映射回集合A中的元素,且这两个函数互为反函数。
二、反函数的性质1. 原函数f和反函数g互为反函数,当且仅当它们的复合函数满足以下等式:f(g(x)) = x,g(f(x)) = x。
2. 若f是一个可逆的函数,则它的反函数存在且唯一。
3. 反函数的图像是原函数图像关于直线y = x的对称图形。
三、如何求解反函数为了求解一个函数的反函数,可以按照以下步骤进行:1. 将原函数表示为y = f(x)的形式。
2. 对于y = f(x)中的x和y,互换其位置得到x = f(y)。
3. 将x = f(y)关于y求解,得到y = g(x)。
4. 检验函数g是否和原函数f互为反函数。
四、反函数的应用反函数在代数问题中有着广泛的应用,以下是一些常见的应用场景:1. 解方程通过使用反函数,可以将复杂的方程转化为简单的形式来求解。
例如,对于方程f(x) = b,可以通过求解反函数g(b) = x来找到方程的解。
2. 求逆矩阵在线性代数中,逆矩阵是一个非常重要的概念。
通过使用反函数,可以快速求解一个矩阵的逆矩阵,进而解决线性方程组。
3. 函数的合成反函数使得函数的合成更加方便。
通过将一个函数的反函数代入到另一个函数中,可以简化运算,加快计算速度。
4. 求导运算在微积分中,反函数对求导运算有着重要的作用。
通过求解一个函数的反函数,可以简化复杂函数的求导过程。
5. 函数图像的对称性反函数的图像关于直线y = x对称,可以利用这个性质来研究函数的图像和性质。
结语:通过本文的介绍,我们了解了反函数的定义和性质,以及如何求解反函数。
九年级反函数知识点归纳总结反函数是数学中的一个重要概念,也是九年级数学中的一项重要知识点。
它与函数密切相关,对于理解函数的性质与特点有着重要的作用。
本文将对九年级反函数的知识点进行归纳总结,帮助同学们更好地理解与掌握。
一、反函数的定义在开始具体讨论九年级反函数的知识点前,首先需要明确反函数的定义。
对于一个函数f,若存在另一个函数g,使得对于f的定义域内的任意x,都有g(f(x)) = x,且对于g的定义域内的任意y,都有f(g(y)) = y,则函数g称为函数f的反函数。
反函数通常用f⁻¹表示。
二、反函数的判断与性质1. 反函数的存在性要判断一个函数是否有反函数,需要先判断函数是否为一一对应。
对于函数y = f(x),若函数的定义域上的不同元素对应于值域上的不同元素,则函数为一一对应,存在反函数。
2. 反函数的性质反函数具有以下性质:(1)若函数f有反函数,则反函数也一定存在;(2)若函数f不具有反函数,则可以考虑对其进行限制,使其在某个特定区间内具有反函数;(3)若函数f和g互为反函数,则f和g的定义域和值域相等。
三、反函数的求解方法1. 通过交换自变量和因变量的方法求反函数若函数y = f(x),要求其反函数,可通过将自变量x和因变量y互换位置,并解出y关于x的表达式。
具体步骤如下:(1)将y = f(x)中的x和y互换位置,得到x = f(y);(2)解出y关于x的表达式,即可获得反函数的表达式。
2. 通过求解方程组的方法求反函数对于一元一次方程组y = f(x)和x = f⁻¹(y),可以联立方程组并解出x关于y的表达式,从而得到反函数的表达式。
四、反函数的图像特点函数与其反函数在坐标平面上的图像有以下特点:1. 对称关系函数f与它的反函数f⁻¹在坐标平面上关于直线y = x对称。
2. 直线关系若函数f的图像经过一点(a, b),则它的反函数的图像经过点(b, a)。
常见的反函数公式大全反函数是数学中一个常见的概念。
它是指可以将原函数f(x)映射到另一个函数g(x),并且具有以下性质f(g(x))= xg(f(x))= x例如,y= sin x反函数为 y = arcsin x,其中 arcsin x示 sin-1 x意思,也就是 x应的 sin。
反函数是日常生活中经常用到的一种函数,也是工程计算中经常用到的工具。
因此,了解反函数的相关知识,对我们的科学与技术的发展有很大的帮助。
本文将介绍反函数的定义、性质以及一些常见的反函数公式。
一、反函数的定义反函数,也叫做逆函数。
它是指原函数 f(x)另一个函数,即 g (x),可以将原函数 f(x)按照一定的规则映射到另一个函数 g(x),具有以下性质:f(g(x))= xg(f(x))= x例如,y= sin x反函数为 y = arcsin x,表示 x应的 sin。
也就是说,当反函数 g(x)映射到原来的函数 f(x)后,得到的值等于 x。
反函数并不是每个函数都有的,只有满足特定条件的函数才有反函数。
二、反函数的性质反函数是有特定条件的函数才有的,而且有一些显著的性质。
1、反函数是对称的反函数存在对称性,也就是说,如果函数 f(x)有反函数 g(x),那么 f(-x)也有反函数 g(-x),两者是对称的。
2、反函数是可逆的它满足以下关系:f(g(x))= xg(f(x))= x这也表明反函数是可逆的,也就是说,当反函数 g(x)映射到原来的函数 f(x)后,得到的值等于 x。
3、反函数是单射的反函数是单射的,也就是说,反函数映射后的结果是唯一的,不存在多个映射的情况。
三、常见的反函数公式1、幂函数的反函数y = xm(m≠ 0)的反函数为 y = x1/m2、对数函数的反函数为y = a log x(a>0)的反函数为 y = a x3、三角函数的反函数sin x反函数为 arcsin x;cos x反函数为 arccos x;tan x反函数为 arctan x。
反函数常用知识点总结1.反函数的定义:如果存在一个函数f和它的逆函数g,则称f为可逆函数,并且g称为f的反函数。
反函数的定义域是f的值域,值域是f的定义域。
2.判断是否存在反函数:一个函数是否有反函数,需要满足两个条件:首先,函数必须是可逆的,即每个输入对应唯一的输出;其次,函数的定义域和值域需互相转换。
3.反函数的求解:若函数f的反函数g存在,求解g的方法是将f(x)的等式转化为x的等式,并解出x。
例如,如果f(x)=y,则g(y)=x。
4.反函数的图像关系:函数f和它的反函数g的图像是关于y=x对称的。
也就是说,反函数的图像是把原函数的横坐标和纵坐标互换后的结果。
5. 隐函数求反函数:有些函数难以直接求出反函数,可以通过隐函数求解的方法求得。
例如,对于二次函数y = ax^2 + bx + c,通过将x和y互换位置,并解出x,可以得到反函数。
6.组合函数的反函数:如果f和g是互为反函数的两个函数,且h(x)=f(g(x)),则h的反函数是g的反函数与f的反函数的组合,即h的反函数是g的反函数和f的反函数的复合函数。
7.其他特殊函数的反函数:对于一些常见的函数,如指数函数、对数函数、三角函数等,它们的反函数有着特殊的性质和求解方法,需要单独进行学习和掌握。
8.反函数的性质:反函数具有以下性质:-f和g互为反函数,当且仅当f(g(x))=x和g(f(x))=x;-若函数f(x)在一些区间上是严格单调的,则它在该区间上存在反函数;-反函数的导数与原函数的导数之间存在关系,即(f^(-1))'(x)=1/f'(f^(-1)(x))。
9.反函数的应用:反函数在实际问题中有广泛的应用,例如在统计学中用于求解概率分布的逆变换方法、在经济学中用于求解供需函数的反函数等。
10.限制反函数的定义域与值域:有时候,为了使反函数存在或满足其中一种性质,需要限制原函数的定义域和值域。
例如,对于幂函数f(x)=x^n,为了求解其反函数,需要将定义域限制为非负实数,值域限制为非负实数或正实数,才能确保反函数的存在性与单调性。
反函数的基本知识点反函数是数学中一个重要的概念,它与原函数密切相关。
了解反函数的基本知识点对于理解函数和解决一些问题至关重要。
在本文中,我将介绍反函数的定义、求法、性质以及一些实际应用。
首先,我们来回顾一下函数的定义。
在数学中,函数是一种从一个集合到另一个集合的映射关系,常常表示为y=f(x)。
一个函数可以用来描述不同集合之间的依赖关系,其中,x被称为自变量,y被称为因变量。
在一个函数中,自变量的每一个取值都有一个唯一的对应值,即函数的值。
定义1:设有一个函数y=f(x),如果对于函数f(x)的定义域上的每一个y值,存在唯一一个x值与之对应,那么x=f^(-1)(y)就称为f(x)的反函数。
反函数通常用f(x)的逆函数符号f^(-1)(y)表示。
从定义可知,反函数是原函数的一个逆过程,即通过原函数的值可以唯一确定原函数的自变量。
反函数和原函数的自变量与因变量的位置恰好相反。
接下来让我们来讨论求反函数的方法。
求反函数的关键是找到一个逆过程,找到一个新的函数,使得对于原函数的每个值,都能够求出反函数的值。
根据定义1,我们可以通过以下步骤来求反函数:步骤1:令y=f(x),求解x=f^(-1)(y)。
步骤2:将x=f^(-1)(y)转换为y=f^(-1)(x)。
在实际求反函数时,我们需要注意以下几点:1.原函数必须是一对一的函数,即函数的每个值对应唯一的自变量,否则无法求出反函数。
2.求解反函数时,可以利用方程求根的方法来进行,也可以对原函数的表达式进行逆运算得到反函数的表达式,具体方法取决于问题的要求。
了解了反函数的求法,我们来看看反函数的性质。
反函数具有以下几个重要的性质:性质1:对于原函数的定义域上的任意x和y,如果x=f^(-1)(y),那么y=f(x)。
性质2:原函数和反函数互为逆运算,即f(f^(-1)(x))=x和f^(-1)(f(x))=x。
性质3:如果原函数和反函数在x处相交,那么这个点一定在直线y=x上。
2.6反函数
二、函数
高考要求:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用与的性质解决一些问题.
考点回顾:
1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若与
互为
反函数,函数的定义域为、值域为,则,
;
3.互为反函数的两个函数具有相同的单调性,它们的图象关于对称.4.求反函数的一般方法:
(1)由解出,
(2)将中的互换位置,得,(3)求的值域得
的定义域.
考点例析:
考点1、求反函数
EG1.求下列函数的反函数:
(1);
(2);
(3).
解:(1)由得,∴,
∴所求函数的反函数为.
(2)当时,得,
当时,得,
∴所求函数的反函数为.
(3)由得,
∴,
∴所求反函数为.
B1-1.函数的反函数是(C)
(A)(B)
(C)(D)
B1-2.已知函数f(x)=x5-5x4+10x3-10x2+5x-1,则f(x)的反函数为(C) A.B.
C.D.
B1-3..设函数f(x)=1-,则函数y=的图象是(B)
考点2、反函数性质的应用
EG2.函数的图象关于对称,求的值.
解:由得,
∴,
由题知:,,∴.
B2-1.若既在的图象上,又在它反函数图象上,求的值.解:∵既在的图象上,又在它反函数图象上,
∴,∴,∴.
B2-2.设函数,又函数与的图象关于对称,求的值.
解法一:由得,∴,,
∴与互为反函数,由,得.
解法二:由得,∴,∴.要认真体会,用好解法二。
B2-3已知函数f(x)是函数y=-1(x∈R)的反函数,函数g(x)的图
象与函数y=的图象关于直线y=x-1成轴对称图形,记F(x)=f(x)+g (x).
(1)求F(x)的解析式及定义域.
(2)试问在函数F(x)的图象上是否存在这样两个不同点A、B,使直线AB恰好与y轴垂直?若存在,求出A、B两点坐标;若不存在,说明理由.
解:(1)由y=-1(x∈R),得10x=,x=lg.∴f(x)=lg
(-1<x<1).
设P(x,y)是g(x)图象上的任意一点,则P关于直线y=x-1的对称点P′的坐标为(1+y,x-1).
由题设知点P′(1+y,x-1)在函数y=的图象上,∴x-1=.
∴y=,即g(x)=(x≠-2).
∴F(x)=f(x)+g(x)= +,其定义域为{x|-1<x<1}.
(2)∵f(x)= =)(-1<x<1)是减函数,g(x)=
(-1<x<1)也是减函数,∴F(x)在(-1,1)上是减函数.
故不存在这样两个不同点A、B,使直线AB恰好与y轴垂直.
实战训练
1.函数y=f(x)的图象与直线y=x有一个交点,则y=f-1(x)与y=x的交点个数为( )(B)
(A)O个(B)1个(C)2个(D)不确定
2.奇函数y=f(x)(x∈R)的反函数为y=f-1(x),则必在y=f-1(x)的图象上的点是( ) (B)
(A)(-f(a),a) (B)(-f(a),-a) (C)(-a,-f(a)) (D)(a,f-1(a))
3.已知函数y=-的反函数f-1(x)=,则f(x)的定义域为( )(D)
(A)(-2,0) (B)[-2,2] (C)[-2,0] (D)[0,2]
4.已知函数的图象关于直线对称,那么.
(解法见EG2)
5、已知函数y= 的反函数是y=,则函数y= 的图象是(C)
6.函数在区间[1,2]上存在反函数的充分必要条件是D A. B. C. D.
7.已知函数图象关于点(2,-3)对称,则a的值为
A.3 B.-2 C.2 D.-3
8.若函数y=f(x)存在反函数,则方程f(x)=2c(c为常数)( )C
(A)有且只有一个实根(B)至少有一个实根
(C)至多有一个实根(D)没有实根
9.函数f(x)=x+b与g(x)=ax-5互为反函数,则a,b的值分别为()A
(A)a=2,b=(B)a=,b=2 (C)a=,b=-5 (D)a=-5,b=
10.如果函数y=f(x)的图象过点(0,1),则y=+2的图象必过点()A
(A) (1,2) (B)(2,1) (C) (0,1) (D)(2,0)
11.(2005年北京东城区模拟题)函数y=-(x≠-1)的反函数是
A.y=--1(x≠0)
B.y=-+1(x≠0)
C.y=-x+1(x∈R)
D.y=-x-1(x∈R)
解析:y=-(x≠-1)x+1=-x=-1-.x、y交换位置,得y=-1-.
答案:A
12函数y=+1(x>0)的反函数为
A.y=-1(x>1)
B.y=+1(x>1)
C.y=-1(x>0)
D.y=+1(x>0)
解析:函数y=+1(x>0)的值域为{y|y>1},由y=+1,解得x=-1.
∴函数y=+1(x>0)的反函数为y=-1(x>1).
答案:A
13.函数f(x)=-(x≥-)的反函数
A.在[-,+∞)上为增函数
B.在[-,+∞)上为减函数
C.在(-∞,0]上为增函数
D.在(-∞,0]上为减函数
解析:函数f(x)=-(x≥-)的值域为{y|y≤0},而原函数在[-,+∞)上是减函数,
所以它的反函数在(-∞,0]上也是减函数.
答案:D
14.(2006年福建卷)函数的反函数是(A)
(A)(B)
(C)(D)
15.(2006年安徽卷)函数的反函数是()
A.B.C.D.
按分段函数的反函数的求法解。
选C。
16.(2006年陕西卷)设函数的图像过点(2,1),其反函数的图像过点,则等于()(B )
(A)3 (B)4 (C)5 (D)6
17.(2006年全国卷II)函数y=ln x-1(x>0)的反函数为(B)
(A)y=(x∈R) (B)=(x∈R)
(C)y=(x>1) (D)y=(x>1)
18.(2006年全国卷I)已知函数的图象与函数的图象关于直线对称,则
A.B.
C.D.
解:的反函数是y =,所以。
选D。
19.(2006年山东卷)函数y=1+(0<a<1)的反函数的图象大致是(A)
(A)(B)
20.(2006年上海卷)若函数=(>0,且≠1)的反函数的图像过点(2,-1),则=.
21.(2006年上海卷)函数的反函数
_____{.}
22.(2005年春季上海,4)函数f(x)=-(x∈(-∞,-2])的反函数f-1(x)=_____.
解析:y=-(x≤-2),y≤-4.
∴x=-.x、y互换,
∴f-1(x)=-(x≤-4).
答案:-(x≤-4)
23..若函数f(x)=,则f-1()=___________.
解法一:由f(x)=,得(x)=. ∴()==1.
解法二:由=,解得x=1. ∴()=1.
答案:1
24.已知,是上的奇函数.
(1)求的值
(2)求的反函数
(3)对任意的解不等式.
解:(1)由题知,是上的奇函数所以,得,(2)∵,得,
∴.
(3)∵,∴,∴,
①当时,原不等式的解集,
②当时,原不等式的解集.
经典回顾:
1.已知函数f(x)=的图象关于直线y=x对称,求实数m.
解:∵f(x)的图象关于直线y=x对称,又点(5,0)在f(x)的图象上,∴点(0,5)也在f(x)的图象上,即-=5,得m=-1.
2.已知函数f(x)=a+b>0,b≠1)的图象经过点(1,3),
函数(x+a)(a>0)的图象经过点(4,2),试求函数(x)的表达式.
解:∵函数f(x)=a+(b>0,b≠1)的图象经过点(1,3),
∴a+=3,a=3-=3-1=2.又函数(x+a)(a>0)的图象经过点(4,2),∴(4+a)=2.
∴f(2)=4+a=4+2=6,即2+=6. ∴b=4.
故f(x)=2+.再求其反函数即得(x)=(x-2)+1(x>2).
3.已知函数f(x)=2(-)(a>0,且a≠1).
(1)求函数y=f(x)的反函数y=(x);
(2)判定(x)的奇偶性;
(3)解不等式(x)>1.
解:(1)化简,得f(x)=. 设y=,则=.∴x=.
∴所求反函数为:y=(x)=(-1<x<1).
(2)∵(-x)===-=-(x),∴(x)是奇函数.
(3)>1.
当a>1时,原不等式>a<0.∴<x<1.
当0<a<1时,原不等式
解得∴-1<x<.
综上,当a>1时,所求不等式的解集为(,1);
当0<a<1时,所求不等式的解集为(-1,).
4.已知函数f(x)=(x>1).
(1)求f(x)的反函数(x);
(2)判定(x)在其定义域内的单调性;
(3)若不等式(1-)(x)>a(a-)对x∈[,]恒成立,求实数a的取值范围.
解:(1)由y=,得x=.
又y=,且x>1,∴0<y<1.
∴(x)=(0<x<1).
(2)设0<<<1,则-<0,1->0,1->0.
∴-=<0,即<.
∴在(0,1)上是增函数.
(3)由题设有(1-)>a(a-).
∴1+>-a,即(1+a)+1->0对x∈[,]恒成立.显然a≠-1.令t=,
∵x∈[,],∴t∈[,].
则g(t)=(1+a)t+1->0对t∈[,]恒成立.
由于g(t)=(1+a)t+1-是关于t的一次函数,∴g()>0且g()>0,
即解得:-1<a<.。