酶工程4-5 过滤与膜分离
- 格式:ppt
- 大小:2.71 MB
- 文档页数:23
一、选择1.酶工程技术是(C)的技术过程A.利用酶的催化作用将底物转化为产物B.通过发酵生产和分离纯化获得所需酶C.酶的生产与应用D.酶在工业上的大规模应用2.核酸类酶是(D)A.催化RNA进行水解反应的一类酶B.催化RNA进行剪接反应的一类酶C.由RNA组成的一类酶D.分子中起催化作用的主要成分是RNA的一类酶3.RNA剪切酶是(B)A.催化其他RNA分子进行反应的酶B.催化其他RNA分子进行剪切反应的R酶C.催化本身RNA分子进行剪切反应的R酶D.催化本身RNA分子进行剪接反应的R酶4.酶的改性是指通过各种方法(A)的技术A.改进酶的催化特性B.改变酶的催化特性C.提高酶的催化效率D.提高酶的稳定性5.酶的转换数是指(C)A.酶催化底物转化为产物的数量B.每个酶分子催化底物转化为产物的分子数C.每个酶分子每分钟催化底物转化为产物的分子数D.每摩尔酶催化底物转化为产物的摩尔数6.酶的固定化常用的固定方式不包括(D)A.吸附B.包埋C.连接D.将酶加工成固体7.通过酶工程生产的酶制剂中酶的化学本质是(B)A.蛋白质B.有机物C.RNAD. 核酸8.当前生产酶制剂所需的酶主要的来自(C)A.动物组织和器官B.植物组织和器官C.微生物D.基因工程二、名词解释酶的提取:指在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中的过程。
酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
固定化酶:通过物理的或化学的手段,将酶束缚于水不溶的载体上,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用;曾称其为水不溶酶或固相酶。
包埋法:将酶或含酶菌体包埋在各种多孔载体中,使酶固定化的方法称为包埋法。
核酶(ribozyme):具有催化功能的RNA分子,是生物催化剂。
又称核酸类酶、酶RNA、核酶类酶RNA。
多药耐药性( MDR):是指肿瘤细胞对一种化疗药物表现出耐药性,同时对其他许多结构不同、作用靶点亦不相同的化疗药物也表现出交叉耐药的现象,是通过化疗药物治疗肿瘤急需突破的一大难题。
酶制剂精制过程应用的膜分离技术2020年8月27日在酶制剂工业中,酶的精制过程主要包括两方面:一是对酶发酵液的菌(包括发酵残渣)与酶的分离;二是对酶清液的浓缩和纯化。
传统生产工艺是发酵、絮凝沉淀、过滤、溶剂萃取、真空蒸发、干燥,其生产过程能耗高、酶失活率高、收率低。
近十多年来,在液体酶制剂的生产中,成功地采用了膜分离技术对其进行分离、浓缩和提纯,取得了良好的效益。
采用陶瓷膜微滤技术使得工艺在很短的时间内即收集到很高浓度的活菌体,而且活菌体基本上没有失活,大大提高了产品的竞争力,同时大大提高了产品的收率,在大程度上保证了企业的高收益,同时陶瓷膜过滤不仅仅单纯是对活菌体的物理状态下的高截留,同时充分的分离出清澈度很高的酶下游清液,降低了下游浓缩工艺的生产负荷,并起到了保护下游膜工艺的作用。
下游酶清液采用超滤浓缩,在超滤过程中同时去掉了部分色素和杂蛋白和大部分无机盐,很大程度上提高了产品的质量和稳定性能,同时超滤浓缩在常温下进行,酶活没有损失,收率高,再者膜系统的操作简单,大大降低了劳动强度,并大大缩短了浓缩时间。
超滤系统的废水排放很少,在一定程度上降低了环保压力。
总之在该酶工艺中采用陶瓷膜微滤串连超滤浓缩工艺,具有传统工艺无法比拟的优势,膜系统不仅产品质量高,收率,同时能耗少,生产成本低,生产周期短。
而这些恰恰是企业不断发展不可或缺的因素,因此在酶的生产厂家,此膜技术有着很广大的应用空间。
德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差异化需求。
帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。
酶工程电子教案第三章酶的提取与分离纯化◆酶的提取与分离纯化是指将酶从细胞或其它含酶原料中提取出来,再与杂质分开,而获得所要求的酶制品的过程。
◆主要内容包括细胞破碎,酶的提取,离心分离,过滤与膜分离,沉淀分离,层析分离,电泳分离,萃取分离,浓缩,干燥、结晶等。
1.细胞破碎◆细胞破碎方法可以分为机械破碎法,物理破碎法,化学破碎法和酶促破碎法等,如表3-1所示。
表3-1 细胞破碎方法及其原理1.1 机械破碎法◆通过机械运动所产生的剪切力的作用,使细胞破碎的方法称为机械破碎法。
◆常用的破碎机械有组织捣碎机,细胞研磨器,匀浆器等。
◆机械破碎法分为3种:捣碎法,研磨法和匀浆法。
1.2物理破碎法◆通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法,称为物理破碎法。
物理破碎法多用于微生物细胞的破碎。
◆常用的物理破碎法方法有温度差破碎法、压力差破碎法、超声波破碎法等,现简介如下:(1)温度差破碎法:利用温度的突然变化,由于热胀冷缩的作用而使细胞破碎的方法称为温度差破碎法。
(2)压力差破碎法:通过压力的突然变化,使细胞破碎的方法称为压力差破碎法。
常用的有高压冲击法、突然降压法、及渗透压变化法等。
(3)超声波破碎法:利用超声波发生器所发出的声波或超声波的作用,使细胞膜产生空穴作用( cavitation)而使细胞破碎的方法称为超声波破碎法。
1.3化学破碎法◆通过各种化学试剂对细胞膜的作用,而使细胞破碎的方法称为化学破碎法。
◆常用的化学试剂有甲苯、丙酮、丁醇、氯仿等有机溶剂,和特里顿(Triton)、吐温(Tween)等表面活性剂。
◆有机溶剂可以使细胞膜的磷脂结构破坏,从而改变细胞膜的透过性,使胞内酶等细胞内物质释放到细胞外。
◆表面活性剂可以和细胞膜中的磷脂以及脂蛋白相互作用,使细胞膜结构破坏,从而增加细胞膜的透过性。
1.4酶促破碎法◆通过细胞本身的酶系或外加酶制剂的催化作用,使细胞外层结构受到破坏,而达到细胞破碎的方法称为酶促破碎法,或称为酶学破碎法。
酶工程考点2021年酶工程复习要点(老师给)1.酶工程的发展历史;氨基酰化酶、青霉素酰化酶、葡萄糖异构酶、天冬氨酸酶等酶的应用;常见酶如蛋白酶、脂肪酶、纤维素酶、糖苷酶和果胶酶等的作用机理;酶的三大催化特性;a)氨基酰化酶:催化剂dl-氨基酸生产l-氨基酸。
b)青霉素酰化酶:青霉素酰化酶,又称为青霉素酰胺酶或青霉素氨基水解酶。
该酶已大规模应用于工业生产β-内酰胺类抗生素的关键中间体和半制备β-内酰胺类抗生素。
c)葡萄糖异构酶:用于淀粉酶生产,进行葡萄糖异构化反应。
生产果葡糖浆,以代替蔗糖。
d)天冬氨酸酶:催化富马酸和氨生成天冬氨酸。
e)蛋白酶:将蛋白质多肽链从中间阻断或从两端逐一水解,分解成氨基酸。
f)脂肪酶:水解酶类,能逐步的将甘油三酯水解成甘油和脂肪酸。
g)纤维素酶:复合酶,水解纤维素分解成葡萄糖的一组酶的总称。
h)糖苷酶:又称糖苷水解酶,就是所有可以水解糖苷键的酶类的总称。
i)果胶酶:就是指水解植物主要成分―果胶质的酶类。
j)酶的三大催化特性:专一性强、催化效率高、作用条件温和。
2.酶生物合成的调节机理(主要就是原核生物):mRNA水平调节,操纵子概念;分解代谢(葡萄糖效应原理)、诱导Dozul(诱导物的种类)、新陈代谢产物Dozul;a)原核生物中酶合成的调节主要是转录水平的调节,主要有三种模式,即分解代谢物Dozul促进作用,酶制备的诱导促进作用和酶制备的意见反馈Dozul促进作用。
b)操纵子(operon)是一组功能上相关,受同一调控区控制的基因组成的一个遗传单位。
c)分解代谢物阻遏作用(葡萄糖效应):当葡萄糖作碳源时,葡萄糖的降解物对腺苷酸环化酶存有抑制作用,camp的浓度减少,引致cap-camp复合物增加,启动基因的适当位点没足够多的cap-camp复合物融合,rna聚合酶无法融合启动基因的适当位点,mRNA无法展开,酶的生物合成受制约。
d)酶合成的诱导作用是加入某些物质使酶的生物合成开始或加速的现象。
酶过滤分离技术的原理酶过滤分离技术,又称为酶膜技术,是一种利用酶作用原理进行生物分离和纯化的方法。
该技术基于酶的特异性和活性,利用先进的膜材料和纯化工艺,实现对酶及其底物、产物和杂质的有效分离和纯化。
酶过滤分离技术被广泛应用于制药、食品、生物工程、环境保护等领域,具有高效、经济、环保等优势。
酶过滤分离技术的基本原理是通过酶在膜的作用下,将底物、产物等分子通过选择性渗透的方式进行分离和纯化。
具体而言,酶过滤分离技术包括以下几个步骤:1. 膜选择:酶膜技术的关键在于选择合适的膜材料。
一般来说,膜应具有一定的孔隙度和渗透性,能够允许底物、产物等分子通过,但能有效阻隔酶和大分子杂质的进入。
常用的膜材料包括无机膜、有机膜、混合膜等。
2. 酶固定化:在酶膜技术中,酶固定化是一步至关重要的操作。
通常,酶会被固定在膜的表面或孔隙中,以增加其活性和稳定性。
常用的酶固定化方法有物理吸附、交联固定化、共价固定化等。
3. 反应体系控制:在酶膜技术中,反应条件的控制对于酶的活性和选择性至关重要。
通过控制温度、pH值、底物浓度、酶浓度等反应条件,可以实现酶对底物的高效转化和产物的高纯度分离。
4. 分离和纯化:在酶过滤分离技术中,通过膜的渗透性和选择性,实现不同分子的有效分离和纯化。
具体而言,底物和杂质能够透过膜,而酶和产物则被滞留在膜上。
通过改变渗透压、流速、酶的浓度等条件,可以调控分子在膜上的停留时间,实现精确分离和纯化。
5. 脱盐和浓缩:在酶膜技术中,脱盐和浓缩是常见的操作步骤。
脱盐通常通过调节渗透压和逆渗透压,实现对底物、产物等的高效脱盐。
而浓缩则是通过控制流速和酶的浓度,将目标分子在膜上集中,从而实现对产物的高浓缩。
酶过滤分离技术具有以下特点和优势:1. 高效纯化:酶过滤分离技术利用酶的特异性和活性,可实现对底物和产物的高效分离和纯化。
与传统分离方法相比,具有高分辨率、高产率等优势。
2. 高选择性:酶膜技术通过选择合适的膜材料和反应条件,可以实现对底物和杂质的高选择性分离。
WHU生科院酶工程考试重点蝉整理O(∩_∩)O~生物催化剂:1. 更高的催化效率:酶催化的反应速率是相应的无催化反应速率的108~1020倍,并且至少高出非酶催化反应速率几个数量级。
2. 更高的反应专一性:酶分子特定的空间结构决定了其特定的底物专一性。
3. 温和的反应条件:一般的化学催化往往需要高温、高压和极端的pH条件。
4. 具有调节能力:许多酶的催化活性可受到多种调节机制的灵活调节,如别构调节、酶的共价修饰调节、酶合成与降解的调节。
5. 酶的本质是蛋白质:易变性和降解。
酶:酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂。
1)所有的酶都是由生物体产生的(甚至病毒)2)酶和生命活动密切相关a. 酶参与了生物体内所有的生命活动和生命过程①执行具体的生理功能②清除有害物质,起保护作用③协同激素等生理活性物质在体内发挥信号转换、传递和放大作用,调节生理过程和生命活动。
④催化代谢反应,建立各种各样代谢途径和代谢体系。
b. 酶的组成和分布是生物进化与组织功能分化的基础c. 酶能在多种水平上进行调节以适应生命活动的需要酶的本质:酶的化学本质是蛋白质.绝大部分酶是蛋白质。
或主要是蛋白质为核心的酶作为催化剂,但随科学发展不排斥有其他类型的催化剂存在。
活性中心:酶分子上与催化活性直接相关的少数氨基酸残基组成的催化区域,称作酶的活性中心(active center).包括结合部位(binding site)和催化部位(catalytic site)。
1. 活性中心在种系进化上的严格保守性2. 酶活性中心构象的维持依赖于酶分子空间结构的完整性3. 酶活性中心各基团的相对位置得以维持,就能保全酶的活力比活力:酶的比活力(specific activity):每毫克蛋白所含的酶单位数,用U/mg蛋白表示。
活力:酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。
酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。
郭勇酶工程第四版第四章思考题答案一、名词解释1、细胞破碎:许多酶存在于细胞内。
为了提取这些胞内酶,首先需要对细胞进行破碎处理。
包括机械破碎,物理破碎:化学破碎:酶促破碎。
2、酶的提取:是指将酶或其他含酶原料中提取出来,再与杂质分开,而获得所需求的酶制品过程。
3、沉淀分离:使溶液中的溶质由液相转变为固相析出,古老、实用、简单的初步分离方法。
4、层析分离:层析技术,亦称色谱技术,是一种物理的分离方法。
它是利用混合物中各组分的物理化学性质的差别,使各组分以不同程度分布在两个相中,其中一个相为固定的(称为固定相),另一个相则流过此固定相(称为流动相)并使各组分以不同速度移动,从而达到分离的目的。
5、凝胶层析:利用某些凝胶对于不同分子大小的组分阻滞作用的不同。
6、亲和层析:由吸附层析发展起来的,是从复杂混和物中纯化蛋白质的最好方法。
又称:功能层析,生物专一吸附,选择层析,利用生物大分子间特异的亲和力来纯化生物大分子,如:抗原和抗体;酶和底物或辅酶或抑制剂;激素和受体:RNA和其互补的DNA等。
7、离心分离:离心是借助于离心机旋转所产生的离心力,使不同大小和不同密度的物质分开的技术。
是最常用的一种方法。
8、电泳:指带电粒子在电场中向着与其所带电荷性质相反的电极方向移动的过程。
9、萃取:利用溶质在互不相溶的两相之间分配系数的不同而使溶质得到纯化或浓缩的方法。
10、双水相萃取:又称水溶液两相分配技术,用两种不相溶的亲水性高分子聚合物水溶液,如聚乙二醇(PEG)和葡聚糖(Dextran)进行萃取。
由于形成的两相均有很高的含水量(达70%-90%),故称“双水相”系统。
11、超临界萃取:利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,超临界流体具有很好的流动性和渗透性,将超临界流体与待分离的物质分开.12、过滤:借助于过滤解质将不同大小、不同形状的物质分离的技术过程。
《酶及酶工程》教学大纲Enzyme and Enzyme Engineering课程编码:27A11419 学分: 4.0课程类别:专业必修课计划学时:80 其中讲课:48 实验或实践:32适用专业:生物技术推荐教材:郭勇主编,《酶工程原理与技术》第二版,高等教育出版社,2010年。
参考书目:付加芳编,《酶及酶工程实验》,济南大学出版,2015年。
郭勇主编,《酶工程》第三版,科学出版社,2009年。
课程的教学目的与任务学生通过该课程的学习,应熟悉从应用目的出发研究酶,掌握酶工程的基本原理、酶的生产方法、酶的提取与分离纯化、酶的改造方法、非水相酶催化、酶反应器以及酶的应用,根据需要通过人工操作,掌握酶的生产与应用的技术过程。
进一步了解酶在各行各业中实际应用的最新发展和发展趋势,在以后的毕业环节和工作中能够自觉地应用这些技术方法来指导自己的工作。
本课程实验部分是为《酶及酶工程》课所开的实验。
通过本实验,应使学生掌握酶基本的分离纯化、纯度及分子量测定方法,同时了解凝胶包埋固定脲酶的处理方法及活力、Km值的测定方法,掌握各个因素对脲酶活力的影响测定方法。
通过系统的实验训练,培养学生的独立实验、观察问题、分析问题和解决问题的能力。
课程的基本要求通过本课程的学习要求学生了解酶及工程的发展概况、应用领域及研究内容;掌握酶的生产及分离纯化、酶和细胞的固定化、酶分子的修饰和改造的理论基础;熟悉工业酶生产常用菌种的产酶特性;熟悉工业酶发酵的工业流程、培养条件的优化调控以及提高酶产量所采取的措施;了解固定化细胞、动、植物细胞发酵产酶的特点及工艺条件控制;掌握酶的结晶、浓缩与干燥的原理与常用方法;掌握酶和菌体固定的原理、方法,以及固定化酶的性质。
掌握和了解微生物、植物、动物细胞和原生质的固定方法及应用。
对酶反应器有一定的认识,并掌握酶反应器的设计原理和操作要点;了解酶的动力学和酶在轻工、食品、医药工业、化工、环境保护等领域的应用以及酶应用的最新发展。