第十九章平行四边形综合测试题
- 格式:doc
- 大小:163.96 KB
- 文档页数:4
数学:第19章平行四边形综合检测题〔人教新课标八年级下〕一、选择题〔每题3分,共30分〕1. □ABCD 中,如果∠B=100°,那么∠A 、∠D 的值分别是 〔 〕 A .∠A=80°,∠D=100° B .∠A=100°,∠D=80° C .∠B=80°,∠D=80° D .∠A=100°,∠D=100°2. 假设□ABCD 的周长为28,△ABC 的周长为17cm ,那么AC 的长为 〔 〕 A .11cm B . 5.5cm C .4cm D .3cm3. 在给定的条件中,能作出平行四边形的是 〔 〕 A .以60cm 为对角线,20cm 、34cm 为两条邻边 B .以20cm 、36cm 为对角线,22cm 为一条边 C .以6cm 为一条对角线,3cm 、10cm 为两条邻边 D .以6cm 、10cm 为对角线,8cm 为一条边4. 〔08广东湛江市〕 如图2所示,等边三角形ABC 的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是〔 〕A.2008B.2009C.2010 D.20115. 从等腰三角形底边上任一点分别作两腰的平行线,所成的平行四边形的周长等于这个等腰三角形的 〔 〕A .周长B .周长的一半C .腰长D .腰长的2倍6.如图1,在平行四边形ABCD 中,以下各式不一定正确的选项是 〔 〕A.︒=∠+∠18021B.︒=∠+∠18032C.︒=∠+∠18043D.︒=∠+∠18042图1 图27.如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,那么该图中的平行四边形的个数共有 〔 〕A.7 个B.8个C.9个D.11个8.如图3,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,那么图中与OA 相等的其它线段有 〔 〕A.1条B.2条C.3条D. 4条CAB4题┅图39.三角形三条中位线的长分别为3、4、5,那么此三角形的面积为〔〕A.12B.24C.36D.4810. 四边形ABCD,仅从以下条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?〔〕AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组二、填空题〔每题4分,共40分〕11.在平行四边形ABCD中,假设∠A-∠B=70°,那么∠A=_______,∠B=_______,∠C=_______,∠D=_________.12.在□ABCD中,AC⊥BD,相交于O,AC=6,BD=8,那么AB=________,BC= _________.13.如图4,□ABCD中,AB=4,BC=6,BC边上的高AE=2,那么DC边上的高AF的长是________.图4 图514.如图5,△ABC中,D、E分别是AB、AC边的中点,且DE=6cm,那么BC=__________.15.用40cm长的长绳围成一个平行四边形,使长边与短边的比是3:2,那么长边是____cm,短边是_____cm.16.如图6,在ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,那么EF 的长为_____.图6 图7 图817.如图7,□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,那么∠DAC=_____度.18.如图8,E、F是□ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.19. 如图9,四边形ABCD是平行四边形,对角线AC、BD相交于点O,边AB可以看成由_____________平移得来的,△ABC可以看成由__________绕点O旋转______________得来.20. 有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成____________形.三、解答题图1D CBA图2F EDCBAODCBA图921. 如图10,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.22.如图11所示,D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB23. 如图12,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜测:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜测加以证明:24. 李大伯家有一口如图13所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?假设能,请画出你的设计;假设不能,请说明理由.答案1.A2.D3.B4.C5.D6.D7.C8.B9.B 10.C11.125°,55°,125°,55°; 12. 5, 5; 13. 3; 14. 12cm ; 15.12, 8; 16.1; 17.20; 18. BE=DF .〔或∠BAE=∠CDF 等〕. 19. 边DC,△CDA,180° 20. 平行四边图10 图11 A B C DE F 图12 AB CD图1321. AE=CF;证明∵四边形ABCD为平行四边形,∴AF∥CE,又∵AE∥CF∴四边形AECF为平行四边形,AE=CF;22.证明:∵DE∥AB,DF∥AC∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AB,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠C=∠EDC,∴DE=CE,∴DF+DE=AE+CE=AC=AB.23.如下图,连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥24.能实现.如图:□EFGH是要求的图形ACD EFO。
第十九章四边形综合能力过关训练满分:100分题号一二三总分得分一、精心选一选(每小题3分,共30分)1、菱形具有而矩形不具有的性质是()A.对角线互相平分;B.四条边都相等;C.对角相等;D.邻角互补2、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()。
A.1个B.2个C.3个D.4个3、能够判定一个四边形是菱形的条件是()。
A.对角线相等且互相平分B.对角线互相垂直且互相平分C.对角线相等且互相垂直D.对角线互相垂直4、矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角5、三角形的重心是三角形三条()的交点A.中线B.高C.角平分线D.垂直平分线6、若顺次连结四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形8、如右图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC.如果这个梯形的周长为30,则AB的长为().A.4 B.5 C.6 D.79、下列说法中,不正确的是().A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形10、如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为 ( ) A .36o B .9o C .27o D .18o 二、耐心填一填(每小题3分,共30分)11、平行四边形ABCD 中,∠A=500,AB=30cm ,则∠B=____,DC=____ cm 。
八年数学下第19章《四边形-平行四边形》章节测试及答案一、选择题(每小题3分,共24分)1.在□ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()(A)36°(B)108°(C)72°(D)60°2.如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为().(A)9 (B)6 (C)3 (D)3.平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为().(A)4<x<6 (B)2<x<8 (C)0<x<10 (D)0<x<64.在□ABCD中,对角线AC与BD相交于点O,则能通过旋转达到重合的三角形有().(A)2对(B)3对(C)4对(D)5对5.平行四边形的周长为24cm,相邻两边长的比为3:1,•那么这个平行四边形较短的边长为().(A)6cm (B)3cm (C)9cm (D)12cm6.下列说法正确的是().(A)有两组对边分别平行的图形是平行四边形(B)平行四边形的对角线相等(C)平行四边形的对角互补,邻角相等(D)平行四边形的对边平等且相等7.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足().(A)∠A+∠C=180°(B)∠B+∠D=180°(C)∠A+∠B=180°(D)∠A+∠D=180°8.一个多边形的内角和等于外角和的一半,那么这个多边形是()(A)三角形(B)四边形(C)五边形(D)六边形二、填空题(每小题3分,共30分)9.若一个多边形的内角和为1 080°,则这个多边形的边数是_______.10.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是___(•填一个你认为正确的条件)11.在□ABCD中,若∠A+∠C=120°,则∠A=_______,∠B=________.12.在□ABCD中,AB=4cm,BC=6cm,则□ABCD的周长为_______cm.13.已知O是□ABCD的对角线交点,AC=24cm,BD=38cm,AD=28cm,•则△AOD•的周长是______.14.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则平行四边形的周长为15.平行四边形两邻角的平分线相交所成的角为_________.16.如图1,P是四边形ABCD的DC边上的一个动点.当四边形ABCD满足条件______时,△PBA的面积始终保持不变(注:只需填上你认为正确的一种条件即可,•不必考虑所有可能的情形).(1) (2) (3)17.如图2,在□ABCD中,∠A的平分线交BC于点E.若AB=10cm,AD=14cm,则BE=____,EC=____.18.如图3,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出____个平行四边形.三、解答题(共46分)19.(8分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(8分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(8分)如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其两底和为5.22.(8分)如图,BC为固定的木条,AB,AC为可伸缩的橡皮筋.当点A在与BC•平行的轨道上滑动时,你能说明△ABC的面积将如何变化吗?并说明你的理由.23.(10分)小明为测量池塘的宽度,在池塘的两侧A,B引两条直线AC,BC相交于点C,在BC上取点E,G,使BE=CG,再分别过点E,G作EF∥AB,GH∥AB,交AC于点F,H.测出EF=10m,GH=4m(如图).小明就得出了结论:池塘的宽AB为14m.你认为小明的结论正确吗?请说明你的理由.24.(10分)李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.答案1.B 2.D 3.B 4.C 5.B 6.D 7.D 8.A 9.8 10.略11.60°;120° 12.20 13.59cm 14.68cm 15.90° 16.答案不唯一17.10cm;4cm 18.15 19.∠DAE=20°20.提示:只要证明DE是△ABE的中位线,FG是△OBC的中位线,得DE BCFG.•故四边形DFGE是平行四边形21.方法多种,图形略122.设△ABC的边BC上的高为h.由于轨道与BC平行,故h保持不变.根据S△ABC=BC·h•可知,△ABC的面积保持不变23.正确.理由:过点E作ED∥AC,交AB于点D.只要证明四边形ADEF是平行四边形,△BDE≌△GHC即可24.如图所示:????????。
E D C BA 第十九章 平行四边形单元测验试题班级______________某某__________ 得分_______一、填空:1、已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是______________(填一个你认为正确的条件)2、菱形的周长是20cm ,一条对角线长5cm ,菱形各角的度数分别是_________________.3、在□ABCD 中,若∠A+∠C=140°,则∠A=___________ ,∠B=____________.4、已知矩形的两条对角线的一个交角为60°,矩形的短边长4cm ,则它的对角线长为 _______________cm.5、已知菱形的两条对角线长分别为5cm 和8cm ,那么这个菱形的面积为____________cm 2.二、选择题 1、 如图,在□ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DEA等于( )A 、100°B 、80°C 、60°D 、40°2、 平行四边形的两条对角线分别为6和10,则其中一条边x 的取值X 围为( )A 、4<x <6B 、2<x <8C 、0<x <10D 、0<x <63、 给出下列命题( )①平行四边形的对角线互相平分;②对角线互相平分的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形其中,真命题的个数为( )A 、4个B 、3 个C 、2 个D 、1个4、 已知四边形的四个内角的度数之比是2︰2︰1︰3,那么这个四边形是( )A 、任意四边形B 、任意梯形C 、等腰梯形D 、直角梯形5、下列命题中,真命题是( )A 、有两边相等的平行四边形是菱形;B 、有一个角是直角的四边形是矩形C 、四个角相等的菱形是正方形;D 、两条对角线互相垂直且相等的四边形是正方形三、计算矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是100cm ,对角线长是15cm ,那么矩形的周长是多少?四、解答题1、 如图,已知E 、F 分别为□ABCD 边AD 、BC 上一点,且AF ∥CE ,试问BF 与DE 的关系怎样?F E DCB A2、 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DH ⊥AC ,EG ⊥AC ,HF ⊥AB ,EG 与FH 交于P ,试问四边形DEPH 是什么样的四边形?PHG FE D B A3、如图,要剪切如图(1)(尺寸单位:mm )所示的甲、乙两种直角梯形零件,且使两种零件的数量相等,有两种面积相等的矩形铝板,第一种长500mm ,宽300mm (如图(2));第二种长600 mm ,宽250mm (如图(3))可供选用。
八年级数学下册《第十九章 四边形》单元测试卷及答案解析-沪科版一、单选题1.若一个n 边形内角和为540︒,则n 的值为( )A .5B .6C .7D .82.在ABC 中,点D ,E 分别是AB ,AC 上的点,且DE BC ,点F 是DE 延长线上一点,连接CF .添加下列条件后,不能判断四边形BCFD 是平行四边形的是( )A .BD CFB .DF BC = C .BD CF = D .=B F ∠∠3.菱形的边长为5,它的一条对角线的长为6,则菱形的另一条对角线的长为( )A .8B .6C .5D .44.如图,菱形ABCD 的对角线相交于点O ,AC=5cm ,10cm BD =则菱形的面积为( )A .25cmB .210cmC .225cmD .250cm5.已知一个多边形的内角和是它的外角和的3倍,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,在平行四边形ABCD 中120BAD ∠=︒连接BD ,作AE //BD 交CD 延长线于点E ,过点E 作EF BC ⊥交BC 的延长线于点F ,且1CF =,则AB 的长是()A .1B .2C 3D 27.如图,在矩形ABCD 中,AB=3,BC=6,对角线AC 的垂直平分线分别交AD 、AC 于点M ,N ,则AM 的长为( )A .154B .153C .254D .2538.如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若45B ∠=︒,23BC =则GH 的最小值为()A 3B .22C 6D 69.如图,在边长为5的正方形ABCD 中,点M 为线段CD 上一点,且23CM DM =,点P 是对角线AC 上一动点,过点P 作PE AD ⊥于点E ,PF CD ⊥于点F ,则PM EF +的最小值为( )A 21B .52C 29D .213+10.正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( ) A .正三角形和正方形B .正三角形和正六边形C .正方形和正六边形D .正方形和正八边形二、填空题11.已知一个多边形的每个外角都是45°,则这个多边形的边数为12.如图,在▱ABCD 中,▱B =75°,AC =AD ,则▱DAC 的度数是 °.13.如图,在菱形ABCD 中,过点A 作AE BC ⊥于点E ,交对角线BD 于点F ,点G 为DF 的中点.若90BAG ∠=︒,则DBC ∠= °.14.用两类不同形状的正多边形密铺地面,除了正三角形与正六边形可供选择外,还可以选择 与 来密铺.三、解答题15.在四边形ABCD 中,▱D=60°,▱B 比▱A 大20°,C 是▱A 的2倍,求▱A ,▱B ,▱C 的大小。
八(下)第19章平行四边形检测题一、选择题(每题3分,共30分)1,一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点2,如图1,假如□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3,平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长能够是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm 4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5,如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6,如图3,大正方形中有2个小正方形,假如它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定7,矩形一个角的平分线分矩形一边为1cm 和3cm 两局部,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28,如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形局部种花,则种花局部的图形的周长(粗线局部)为( )A.123mB.20mC.22mD.24m9,如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( )A .3B .23C .5D .25图6 图4 F EDC B A 图5 图3 AD C B HE FG 图2O A B C 图110,如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )A.36 mB.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11,如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2. 15,如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.假如AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17,如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,能够得到7条折痕,那么对折四次能够得到 条折痕,假如对折n 次,能够得到 条折痕.…… 第一次对折 第二次对折 第三次对折图13图11A 1B 1C 1D 1 D A B C D A B C EF 图12 D C BA 图7 图9 图8K NM Q C B图10 E D C B A三、解答题(共40分)19,如图1,4,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.20,在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个局部,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21,如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G .(1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.A B C D A B C D D CB A 图15 A BCDEF 图17图16 O F D B E C A· 图18 F E D C B A 图1422,如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).23,(08上海市)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.24,已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜测并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结____________;(2)猜测:______=______;(3)证明:25,如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?假如成立,请给出说明理由;假如不成立,请说明理由.EB AO C 图19 D A B F 图20 图21参考答案:一、1,C ;2,D ;3,D ;4,C ;5,C ;6,A ;7,D ;8,B ;9,D ;10,C .二、11,30°;12,=;13,;14,或15,1212S S =;16,20;17,7;18,15、2n -1.三、21,由题意得△BEF ≌△DFE,∴DE=BE,∵在△BDE 中,DE=BE,∠DBE=45°,∴∠BD E=∠DBE=45°,∴∠DEB=90°,∴DE ⊥BC.∴EC=12(BC-AD)= 12(8-2)=3.∴BE=5;22,(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点);23,:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=. 2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24,(1)说明△CED ≌△CEA 即可,(2)BC =2AB ,理由略;25,(1)四边形ABCD 是矩形.连结OE .∵四边形ABCD 是平行四边形,∴DO =OB ,∵四边形DEBF 是菱形,∴DE =BE ,∴EO ⊥BD ,∴∠DOE = 90°,即∠DAE = 90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形,∴∠FDB =∠EDB ,又由题意知∠EDB =∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°,则∠ADB = 60°,∴在Rt △ADB 中,有AD ∶AB =1:3,即3=BCAB ;26,(1)连结AF ;(2)猜测AF =AE ;(3)连结AC ,交BD 于O ,因为四边形ABCD 是菱形,所以AC ⊥BD 于O ,DO =BO ,因为DE =BF ,所以EO =BO 所以AC 垂直平分EF ,所以AF =AE ;27,(1)因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,所以∠MEA =∠AFO ,所以Rt △BOE 能够看成是绕点O 旋转90°后与Rt △AOF 重合,所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA 又因为AM ⊥BE ,所以∠F +∠MBF =90°=∠B +∠OBE ,又因为∠MBF =∠OBE ,所以∠F =∠E ,所以Rt △BOE 能够看成是由Rt △AOF 绕点O 旋转90°以后得到的,所以OE =OF ;。
第19章 平行四边形综合检测题(三)一、选择题(每题3分,共30分)1、一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点 2、如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5、如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6、如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 7、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28、如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( ) A.123m B.20m C.22m D.24m图3A DCBHEFG图2OABD C图19、如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3B .23C .5D .2510、如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( ) A.36 m B.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11、如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12、如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13、如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14、已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.图6图4FEDCBA图5D CBA 图7图9图8 KNM Q CB15、如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16、如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17、如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___. 18、将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19、如图14,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.……第一次对折第二次对折第三次对折图13图11A 1B 1C 1D 1D ABC D ABCEF图12FE DCBA 图14图10ED CB A20、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21、如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G . (1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.ABCDABCDDCBA图15图1622、如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).23、如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.ECDBAOABCDE F图1724、已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结____________;(2)猜想:______=______; (3)证明:25、如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.O C图19DABEF图20EM F CO DBA图21EFOCMDAB参考答案一、1,C ;2,D ;3,D ;4,C ;5,C ;6,A ;7,D ;8,B ;9,D ;10,C .二、11,30°;12,=;13,14,;15,1212S S =;16,20;17,7;18,15、2n -1.三、21,由题意得△BEF ≌△DFE,∴DE=BE,∵在△BDE 中,DE=BE,∠DBE=45°,∴∠BD E=∠DBE=45°,∴∠DEB=90°,∴DE ⊥BC.∴EC=12(BC -AD)= 12(8-2)=3.∴BE=5;22,(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点); 23,:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=.2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24,(1)说明△CED ≌△CEA 即可,(2)BC =2AB ,理由略;25,(1)四边形ABCD 是矩形.连结OE .∵四边形ABCD 是平行四边形,∴DO =OB ,∵四边形DEBF 是菱形,∴DE =BE ,∴EO ⊥BD ,∴∠DOE = 90°,即∠DAE = 90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形,∴∠FDB =∠EDB ,又由题意知∠EDB =∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°,则∠ADB = 60°,∴在Rt △ADB 中,有AD ∶AB =1:3,即3=BCAB;26,(1)连结AF ;(2)猜想AF =AE ;(3)连结AC ,交BD 于O ,因为四边形ABCD 是菱形,所以AC ⊥BD 于O ,DO =BO ,因为DE =BF ,所以EO =BO 所以AC 垂直平分EF ,所以AF =AE ;27,(1)因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,所以∠MEA =∠AFO ,所以Rt △BOE 可以看成是绕点O 旋转90°后与Rt △AOF 重合,所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,OB=OA又因为AM BE,所以∠F+∠MBF=90°=∠B+∠OBE,又因为∠MBF=∠OBE,所以∠F=∠E,所以Rt△BOE可以看成是由Rt△AOF绕点O旋转90°以后得到的,所以OE=OF;。
平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
八年级数学 ( 下) 第十九章平行四边形单元检测( 时间90 分钟满分100 分)班级学号姓名得分一、选择题( 每题 3 分,共24 分)1.在平行四边形ABCD 中,∠B =110°,延伸AD 至 F,延伸CD 至 E,连接EF,则∠ E+∠ F= ( )A .110°B.30°C. 50°D. 70°2.菱形拥有而矩形不拥有的性质是( )A .对角相等B.四边相等C.对角线相互均分 D .四角相等3.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点 E 是 BC 的中点.若OE=3 cm,则 AB 的长为( )A . 3 cm B. 6 cm C. 9 cm D. 12 cm4.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB 、BC 、CD 、 DA 的中点.若 AB = 2,AD = 4,则图中阴影部分的面积为( )A . 8B . 6 C.4 D. 35 .用两块全等的含有30°角的三角板拼成形状不一样的平行四边形,最多能够拼成( )A.1个B.2 个C.3 个D.4 个6.如图是一块电脑主板的表示图,每一转角处都是直角,数据如下图 ( 单位: mm) ,则该主板的周长是( )A . 88 mmB .96 mmC. 80 mm D. 84 mm 第 6 题7.如图,平行四边形ABCD 中,对角线 AC 、BD 订交于点O, E、F 是 AC 上的两点,当E、F 知足以下哪个条件时,四边形 DEBF 不必定是平行四边形( )A .∠ ADE =∠ CBF B.∠ ABE =∠ CDF 第 7 题C. OE=OF D. DE =BF8.如图是用 4 个同样的小矩形与 1 个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x、 y表示小矩形的两边长( x> y) ,请察看图案,指出以下关系式中不正确的选项是( )A.x y 7 B .x y 2C.4xy 4 49 D .x 2 y 2 25 第 8 题二、填空题 ( 每题 4 分,共 24 分 )9.若四边形 ABCD 是平行四边形,请增补条件( 写一个即可 ) ,使四边形 ABCD 是菱形.10.如图,在平行四边形 ABCD 中,已知对角线 AC 和 BD 订交于点 O,△ ABO 的周长为15,AB = 6,那么对角线AC +BD 第10题=11.如图,延伸正方形 ABCD 的边 AB 到 E,使 BE= AC ,则∠ E=°.12.已知菱形 ABCD 的边长为6,∠ A = 60°,假如点 P是菱形内一点,且PB=PD=2 3 ,那么AP 的长第 11 题为.13.在平面直角坐标系中,点 A 、 B、 C 的坐标分别是A( - 2,5) , B( -3,- 1) ,C( 1,- 1) ,在第一象限内找一点D,使四边形 ABCD 是平行四边形,那么点 D 的坐标是.14.如图,四边形ABCD 的两条对角线AC 、BD 相互垂直,A 1B 1C1D1是中点四边形.假如 AC = 3,BD = 4,那么 A 1B1C1 D1的面积为第 14 题三、解答题 ( 52 分 )15. ( 8 分 ) 如图,在矩形ABCD 中, AE 均分∠ BAD ,∠ 1=15°.( 1) 求∠ 2 的度数. ( 2) 求证: BO = BE.16.( 8 分 ) 已知:如图, D 是△ ABC 的边 BC 上的中点, DE ⊥ AC ,DF ⊥ AB ,垂足分别为E、F,且 BF = CE.当∠ A 知足什么条件时,四边形 AFDE 是正方形 ?请证明你的结论.17. ( 8 分 ) 如图,在平行四边形ABCD 中, O 是对角线AC 的中点,过点O 作 AC 的垂线与边 AD 、 BC 分别交于E、 F.求证:四边形AFCE 是菱形.18.( 8 分) 已知:如图,在正方形BF=BC,连接DF 交AB于再证明 ).ABCD 中, AC 、 BDE.求证: OE= ( )交于点O,延伸CB 到点F,使BF( 在括号中填人一个适合的常数,19.( 8 分 ) 在一次数学研究活动中,小强用两条直线把平行四边形ABCD 切割成四个部分,使含有一组对顶角的两个图形全等.( 1) 依据小强的切割方法,你以为把平行四边形切割成知足以上全等关系的直线有组.( 2) 请在以下图的三个平行四边形中画出知足小强切割方法的直线.( 3) 由上述实验操作过程,你发现所画的两条直线有什么规律?20. ( 12 分 ) 已知:如图,在△ABC 中, AB =AC ,若将△ ABC 绕点 C 顺时针旋转 180°获得△ FEC.( 1) 试猜想线段 AE 与 BF 有何关系 ?说明原因.( 2) 若△ ABC 的面积为 3 cm 2,恳求四边形 ABFE 的面积.( 3) 当∠ ACB 为多少度时,四边形 ABFE 为矩形 ?说明原因.。
第19章?平行四边形?测试题创作人:历恰面日期:2020年1月1日一.选择题〔3分×10=30分〕1.假设菱形ABCD中,AE⊥BC于E,菱形ABCD面积为48cm2,AE=6cm,那么AB的长度为〔〕A.12cm B.8cm C.4cm D.2cm2.一组对边平行,并且对角线互相垂直相等的四边形是〔〕A.菱形或者矩形; B.正方形或者等腰梯形; C.矩形或者等腰梯形; D.菱形或者直角梯形3.如图,梯形ABCD,AD∥BC,对角线AC、BD交于O,那么图中面积相等的三角形有〔 • 〕4.如图,矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC 上从B向C挪动而R不动时,以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定5.梯形的两底长分别是16cm、8cm,两底角分别是60°、30°,那么较短的腰长为〔〕A.8cm B.6cm C.10cm D.4cm6.在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,•那么图中阴影局部面积最大的是〔〕A7.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD 这四个条件中任取两个,能使四边形ABCD 是平行四边形的选法有〔 〕A .6种B .5种C .4种D .3种8.如图,正方形ABCD 中,∠DAF =25°,AF 交对角线BD 于点E ,那么∠BEC 等于〔 〕A .45°B .60°C .70°D .75°9.如图,四边形ABED 与四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG =3cm ,DG =4cm ,ABED 的面积是36cm 2,那么四边形ABCD 的周长为〔 〕A .49cmB .43cmC .41cmD .46cm10.直角梯形的一个内角为120°,较长的腰为6cm ,有一底边长为5cm ,•那么这个梯形的面积为〔 〕A 2B 2C .2D cm 2 2二、填一填〔3分×10=30分〕11.平行四边形的重心是它的_________.12.一个矩形的面积为a 2-2ab +a ,宽为a ,那么矩形的长为_________.13.四边形一个内角为60°,四条边顺次是a 、b 、c 、d ,且222222a b c d ac bd +++=+,那么这个四边形是____________.14.梯形ABCD 中,AD ∥BC ,∠B =90°,AD =4,AB =8,BC =10,那么CD =________. 15.平行四边形ABCD 中,AB =6cm ,BC =12cm ,对边AD 和BC 间的间隔 是BDC4cm ,•那么对边AB 和CD 间的间隔 是_________.16.折叠矩形纸片ABCD ,使点B 与点D 重合,折痕为分别交AB 、CD 于E 、F ,假设 AD =4cm ,AB =10cm ,•那么DE =_______cm .17.菱形两对角线长分别为24cm 和10cm ,那么菱形的高为_________. 18.如图,延长正方形ABCD 的一边AB 到点E ,使BE =AC ,那么 ∠E =________.19.等腰梯形中位线长15cm ,一个底角为60°,且一条对角线平分这个角,那么这个等腰梯形周长是________.20.菱形有一个内角是120°,有一条对角线为6cm ,那么此菱形的边长是______. 三、解答题21.〔6分〕如图,有两只蜗牛分别位于一个正方形相邻的两个顶点C 、B 上,它们分别向AD 和CD 边爬行,假如它们爬行的道路BE 和CF 互相垂直.试比拟它们爬行间隔 的长短〔要有过程〕.ABC DEF22.〔6分〕:如图,△ABC 和△DBC 的顶点在BC 边的同侧,AB =DC ,AC =BD 交于E ,∠BEC 的平分线交BC 于O ,延长EO 到F ,使EO =OF .求证:四边形BFCE 是菱形.ABCDEFO 23.〔8分〕如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,假设∠EAF =60°,CF =2cm ,CE =3cm ,求□ABCD 的周长和面积.FEDCBA24.〔8分〕如图,AC ⊥BC ,AE 平分∠CAB ,CD ⊥AB ,EF ⊥AB ,连接FG ,求证:CEFG 为菱形.25.〔10分〕在矩形纸片ABCD 中,AB BC =6,沿EF 折叠后,点C 落在AB 边上的点P 外,•点D 落在点Q 处,AD 与PQ 相交于点H ,∠BPE =30°. 〔1〕求BE 、QF 的长;〔2〕求四边形PEFH 的面积.QFEDCBA PH26.〔10分〕如图,梯形ABCD 中,∠DBC =30°,DBAC EF 为梯形的中位线.求梯形的面积及EF 的长.A B CD EF27.〔10分〕如图,梯形ABCD中,CD∥AB,AC=BC,且AC⊥BC,AB=AD,求∠CAD.CDBA创作人:历恰面日期:2020年1月1日。
平行四边形测试题及答案一、选择题1. 平行四边形的定义是什么?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 四边形的对角线互相垂直答案:A2. 平行四边形的对角线具有什么性质?A. 互相垂直B. 互相平分C. 相等D. 互相平行答案:B3. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C4. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 互相垂直答案:B5. 平行四边形的对角线将平行四边形分成几个全等的三角形?A. 1B. 2C. 4D. 8答案:B二、填空题6. 平行四边形的对角线互相________。
答案:平分7. 平行四边形的对边互相________。
答案:平行8. 如果一个四边形的对角线互相平分且相等,那么这个四边形一定是________。
答案:矩形9. 平行四边形的面积可以通过底和高的乘积来计算,公式为________。
答案:面积 = 底× 高10. 菱形是特殊的平行四边形,它的四条边都________。
答案:相等三、简答题11. 请描述平行四边形的判定定理。
答案:一个四边形是平行四边形,如果满足以下任一条件:(1)两组对边分别平行;(2)两组对边分别相等;(3)对角线互相平分;(4)一组对边平行且相等。
12. 在平行四边形中,如果一组对边是垂直的,那么这个平行四边形是什么形状?答案:如果一组对边垂直,那么这个平行四边形是矩形。
四、计算题13. 已知平行四边形的底为10cm,高为5cm,求其面积。
答案:面积= 10cm × 5cm = 50平方厘米14. 已知平行四边形的对角线长度分别为8cm和6cm,且对角线互相平分,求平行四边形的面积。
答案:设平行四边形的面积为S,对角线交点为O,那么OA=4cm,OB=3cm,根据三角形面积公式,S = 2 × (1/2) × OA × OB = 2 × (1/2) × 4cm × 3cm = 12平方厘米。
第十九章四边形检测题一、填空题1、如图在四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度。
2、如图,BD是平行四边形ABCD的对角线,度E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是(填上你以为正确的一个即可,没必要考虑所有可能情形)。
3、如图,一个平行四边形被分成面积为S1、S2、S3、S4四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,则S1S4与S2S3的大小关系为。
E第2题 第3题s3第1题s2s4s1DCDBAACBBAEFCD4、工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图(1),使AB=CD,EF=GH;(2)摆成如图(2)的四边形,则这时窗框的形状是形,依照的数学道理是(3)将直角尺靠紧窗框的一个角,如图(3),调整窗框的边框,点直角尺的两条直角边与窗框无裂缝时,如图(4),说明窗框合格,这时窗框是,依照的数学道理是。
5、如图,菱形ABCD的对角线的长别离是2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交A于F,则阴影部份的面积是。
二、选择题6、下列命题中正确的是()(A)对角线相互平分的四边形是菱形 (B)对角线相互平分且相等的四边形是菱形 (C)对角线相互垂直的四边形是菱形 (C)对角线相互垂直平分的四边形是菱形。
7、如图某花木场有一块等腰梯形ABCD的空地,其各边的中点别离是点E、F、G、H,测量得对角线AC=10米,现想用篱笆围成四边形EFGH场地,则需篱笆的总长度是( ) A、40米 B 30米 C 20米 D 10米8、如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则该梯形的面积是( )A 30 B 15 C 7.5 D 609、如图,已知距形ABCD,R、P别离是DC、BC上的点,E、F别离是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )A、线段EF的长慢慢增大 B 线段EF的长慢慢减小 C 线段EF的长不改变 D 线段EF的长不能确信第7题图 第8题图 第9题图C三、解答题10、已知如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF。
沪科版八年级数学下册第19章四边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是()A.梯形的下底是上底的两倍B.梯形最大角是120︒C.梯形的腰与上底相等D.梯形的底角是60︒2、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km∠+∠+∠+∠=()3、如图,在六边形ABCDEF中,若1290∠+∠=︒,则3456A.180°B.240°C.270°D.360°4、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D5、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足222222+,则这++=+a b c d ab cd个四边形是()A.任意四边形B.平行四边形C.对角线相等的四边形D.对角线垂直的四边形6、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A B C D7、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形8、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.29、下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C.4.5 D.4.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为 _____.2、在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 的长为_____.3、如图,在四边形ABCD 中,90ABC DCB ∠+∠=︒,,E F 分别是,AD BC 的中点,分别以,AB CD 为直径作半圆,这两个半圆面积的和为8π,则EF 的长为_______.4、七边形内角和的度数是__________.5、在边长为4dm 的正方形纸片(厚度不计)上,按如图的实线裁剪,将阴影部分按虚线折叠成一个有盖的正方体盒子,则这个盒子的容积为______3dm .三、解答题(5小题,每小题10分,共计50分)1、已知矩形ABCD ,AB =6,BC =10,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将△ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)在平面内找一点G ,①使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;②如图2,将图1翻折后的矩形沿y轴正半轴向上平移m(m>0)个单位,若以A、O、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标.2、如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.3、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.4、如图1,ABC 在平面直角坐标系中,且::2:3:4BO AO CO =;(1)试说明ABC 是等腰三角形;(2)已知2160cm ABC S =△.写出各点的坐标:A ( , ),B ( , ),C ( , ).(3)在(2)的条件下,若一动点M 从点B 出发沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.①若OMN 的一条边与BC 平行,求此时点M 的坐标;②若点E 是边AC 的中点,在点M 运动的过程中,MOE △能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.5、如图,矩形ABCD 中,8AB =,4BC =,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形.(2)当四边形BEDF 是菱形时,求EF 的长.-参考答案-一、单选题1、D【分析】如图(见解析),先根据平角的定义可得123180∠+∠+∠=︒,再根据123∠=∠=∠可求出12360∠=∠=∠=︒,由此可判断选项,B D ;先根据等边三角形的判定与性质可得,60DE CD CDE =∠=︒,再根据平行四边形的判定可得四边形ABCE 是平行四边形,根据平行四边形的性质可得AE BC =,然后根据菱形的判定可得四边形DEFG 是菱形,根据菱形的性质可得DE EF AD ==,最后根据线段的和差、等量代换可得,2CD AD BC AD ==,由此可判断选项,A C .【详解】解:如图,123180,123∠+∠+∠=︒∠=∠=∠,12360∴∠=∠=∠=︒,AD BC ,1801120ADC ∴∠=︒-∠=︒,梯形ABCD 是等腰梯形,160,120,ABC BAD ADC CD CE ∴∠=∠=︒∠=∠=︒=,则梯形最大角是120︒,选项B 正确;没有指明哪个角是底角,∴梯形的底角是60︒或120︒,选项D错误;如图,连接DE,=∠=︒,,260CD CE∴是等边三角形,CDE∴=∠=︒,DE CD CDE,60∴∠+∠=︒,180ADC CDEA D E共线,∴点,,∠=∠=︒,ABC360∴,AB CE=,AB CE∴四边形ABCE是平行四边形,∴=,AE BC∠=∠=︒,CGF CDE60∴,DE FGEF DG,EF FG=,∴四边形DEFG是菱形,∴==,DE EF AD==+=,选项A、C正确;BC AE AD DE AD∴=,2CD AD故选:D.【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.2、D【详解】AB,即可求出CM.根据直角三角形斜边上的中线性质得出CM=12【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.3、C【分析】根据多边形外角和360 求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.4、D【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】 解:四边形OABC 是矩形,∴90OAB ∠=︒,在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.5、B【分析】根据完全平方公式分解因式得到a=b ,c=d ,利用边的位置关系得到该四边形的形状.【详解】解:222222+,++=+a b c d ab cd22220a ab bc cd d-++-+=,2222-=a b+-(,c d()0)--=a b=,0,0c d∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.6、A【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°ADH∴∠=︒30∴AH=2×1=1,DH=2∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=1DN是解题的关键.27、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键8、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.9、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE == ∴GH【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、80°【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.2、10或14或10【分析】=,通过BF和CE 利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出AB AF=、DE DC是否相交,分两类情况讨论,最后通过边之间的关系,求出BC的长即可.解:四边形ABCD是平行四边形,∥,==,AD BCAB CDAD BC∴=,6∠=∠,AFE FBC∴∠=∠,DEC ECBBF平分∠ABC, CE平分∠BCD,∠=∠,ABF FBC∴∠=∠,DCE ECB∠=∠,AFE ABF∴∠=∠,DCE DEC∴由等角对等边可知:6==,DE DCAF AB==,6情况1:当BF与CE相交时,如下图所示:AD AF DE EF=+-,AD∴=,10∴=,BC10情况2:当BF与CE不相交时,如下图所示:=++AD AF DE EF∴=AD,14∴=,BC14故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF和CE是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.3、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=12 CD,EM∥AB,FM∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根据勾股定理求AB,FM=12出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可.【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分别是AD、BC、BD的中点,∴EM=12AB,FM=12CD,EM∥AB,FM∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴阴影部分的面积是:12π(ME2+FM2)=12EF2π=8π,∴EF=4.故答案为:4.【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键.4、900°900度【分析】根据多边形内角和公式计算即可.【详解】解:七边形内角和的度数是(72)180900-⨯︒=︒,故答案为:900°.【点睛】本题考查了多边形内角和公式,解题关键是熟记n 边形内角和公式:2180()n -⨯︒.5、【分析】根据题意可得,设正方体的棱长为a dm ,则减去的部分为2个边长为a dm 的正方形,将阴影部分按虚线折叠成一个有盖的正方体盒子,则四个角折叠后刚好凑成1个边长为a dm 的正方形,据此列一元二次方程求解,进而即可求得正方体的容积【详解】解:设正方体的棱长为a dm ()0a >,则222426a a -=解得a∴这个盒子的容积为3dm故答案为:【点睛】本题考查了一元二次方程的应用,立方体展开图,正方形的性质,根据题意列出一元二次方程是解题的关键.三、解答题1、(1)103;(2)①点G 的坐标为(﹣8,6)或(8,6)或(8,﹣6);②4,8,6m G 或6,8,6.m G 或732,8,33m G ⎛⎫= ⎪⎝⎭. 【分析】(1)由矩形的性质得AD =BC =OC =10,CD =AB =OA =6,∠AOC =∠ECF =90°,由折叠性质得EF =DE ,AF =AD =10,则CE =6﹣EF ,由勾股定理求出BF =OF =8,则FC =OC ﹣OF =2,在Rt △ECF 中,由勾股定理得出方程,解方程即可;(2)①分三种情况,当AB 为平行四边形的对角线时;当AF 为平行四边形的对角线时;当BF 为平行四边形的对角线时,分别求解点G 的坐标即可;②分三种情况讨论,当OF 为对角线时,由菱形的性质得OA =AF =10,则矩形ABCD 平移距离m =OA ﹣AB=4,即OB=4,设FG交x轴于H,证出四边形OBFH是矩形,得FH=OB=4,OH=BF=8,则HG=6,如图,当AO为菱形的对角线时,当AF为菱形的对角线时,结合矩形与菱形的性质同理可得出答案.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折叠性质得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF22221068AF OA,∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103;(2)①如图所示:当AB为平行四边形的对角线时,AG=BF=8,AG BF∥,∴点G的坐标为:(﹣8,6);当AF为平行四边形的对角线时,AG'=BF=8,'AG BF,∴点G'的坐标为:(8,6);FG AB,当BF为平行四边形的对角线时,FG''=AB=6,''∴点G''的坐标为:(8,﹣6);综上所述,点G的坐标为(﹣8,6)或(8,6)或(8,﹣6);②如图,当OF为菱形的对角线时,∵四边形AOGF为菱形,∴OA=AF=10,∴矩形ABCD平移距离m=OA﹣AB=10﹣6=4,即OB=4,设FG交x轴于H,如图所示:∵OA FG∥轴,∥,BC x∴∠FBO=∠BOH=∠OHF=90°,∴四边形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴点G的坐标为:(8,﹣6).如图,当AO 为菱形的对角线时,则6,8,,AB OB GB BF AO GF6,8,6.m G 如图,当AF 为菱形的对角线时,同理可得:,6,OA OF OA m 且,,GF OA GF BC ∥0,6,8,,A m F m 22268,m m 解得:7,3m2570,,8,,33A F 所以7258,33G 即328,.3G 综上:平移距离m 与G 的坐标分别为:4,8,6m G 或()6,8,6m G =-或732,8,.33mG . 【点睛】本题是四边形综合题目,考查了矩形的判定与性质、菱形的判定与性质,坐标与图形性质、平行四边形的性质、勾股定理、折叠变换的性质、平移的性质等知识;熟练掌握矩形的性质和折叠的性质是解题的关键.2、(1)见解析(2)见解析【分析】(1)首先证明△AEF ≌△DEC (AAS ),得出AF =DC ,进而利用AF ∥B D 、AF =BD 得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【小题1】解:证明:(1)∵AF ∥BC ,∴∠AFC =∠FC D .在△AFE 和△DCE 中,AEF DEC AFE DCE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形;【小题2】∵AB =AC ,BD =DC ,∴AD ⊥B C .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.【点睛】此题主要考查了平行四边形的判定以及矩形的判定方法、全等三角形的判定与性质,正确掌握平行四边形的判定方法是解题关键.3、(1)证明见解析;(2)73°.【分析】(1)根据正方形的性质及各角之间的关系可得:ABE CBF ∠=∠,由全等三角形的判定定理可得AEB CFB ≌,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得45BEF EFB ∠=∠=︒,再由三角形的外角的性质可得EGC GFC BCF EBG BEF ∠=∠+∠=∠+∠,由此计算即可.【详解】(1)证明:∵四边形ABCD 是正方形,∴90ABC ∠=︒,AB BC =,∵BE BF ⊥,∴90FBE ∠=︒,∵90ABE EBC ∠+∠=°,90CBF EBC ∠+∠=︒,∴ABE CBF ∠=∠,在AEB 和CFB 中,AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩, ∴AEB CFB ≌,∴AE CF =;(2)解:∵BE ⊥BF ,∴90FBE ∠=︒,又∵BE BF =,∴45BEF EFB ∠=∠=︒,∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵62ABE ∠=︒,∴906228EBG ∠=︒-︒=︒,∴452873EGC GFC BCF EBG BEF ∠=∠+∠=∠+∠=︒+︒=︒.∴GFC BCF ∠+∠的值为73︒.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.4、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M 的坐标为(2,0)或(4,0)时,△OMN 的一条边与BC 平行;②当M 的坐标为(0,10)或(12,0)或(253,0)时,,△MOE 是等腰三角形.【分析】(1)设2BO m =,3AO m =,4CO m =,则5AB AO BO m =+=,由勾股定理求出AC ,即可得出结论;(2)由ABC 的面积求出m 的值,从而得到OB 、OA 、OC 的长,即可得到A 、B 、C 的坐标;(3)①分当//BC MN 时,AM AN =;当//ON BC 时,AO AN =;得出方程,解方程即可; ②由直角三角形的性质得出10cm OE =,根据题意得出MOE △为等腰三角形,有3种可能:如果OE OM =;如果EO EM =;如果MO ME =;分别得出方程,解方程即可.【详解】解:(1)证明:设2BO m =,3AO m =,4CO m =,则5AB AO BO m =+=,在Rt ACO 中,5AC m ==,AB AC ∴=,∴ABC 是等腰三角形;(2)∵115416022ABC S AB OC m m =⋅=⨯⋅=,0m >,∴4m =,∴8cm BO =,12cm AO =,16cm CO =,20cm AC =.∴A 点坐标为(12,0),B 点坐标为(-8,0),C 点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)①如图3-1所示,当MN ∥BC 时,∵AB =AC ,∴∠ABC =∠ACB ,∵MN ∥BC ,∴∠AMN =∠ABC ,∠ANM =∠ACB ,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M为AB的中点,AB=,∵20cm∴10cmAM=,∴2cmOM=,∴点M的坐标为(2,0);如图3-2所示,当ON∥BC时,同理可得12cm===,OA AN BM∴4cm=-=,OM BM OB∴M点的坐标为(4,0);∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②如图3-3所示,当OM=OE时,∵E是AC的中点,∠AOC=90°,20cmAC=,∴110cm2OM OE AE AC====,∴此时M的坐标为(0,10);如图3-4所示,当=10cmOE ME=时,∴此时M点与A点重合,∴M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,∵OE=AE,EF⊥OA,∴1=6cm2OF OA=,∴8cm EF,设cm OM ME n ==,则()6cm MF OM OF n =-=-,∵222ME EF FM =+,∴()22286n n =+-, 解得253n =, ∴M 点的坐标为(253,0); 综上所述,当M 的坐标为(0,10)或(12,0)或(253,0)时,,△MOE 是等腰三角形.【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.5、(1)证明见解析;(2)EF=【分析】(1)由题意知BE DF ∥,OD OB =,通过BOE DOF ≌得到BE DF =,证明四边形BEDF 平行四边形.(2)四边形BEDF 为菱形,DB EF ⊥,DB =BE BF x ==,8CF AE x ==-;在Rt BCF 中用勾股定理,解出BF 的长,在Rt BOF 中用勾股定理,得到OF 的长,由2EF OF =得到EF 的值.【详解】(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点∴BE DF ∥,OD OB =OBE ODF ∴∠=∠在BOE △和DOF △中OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BOE DOF △△≌(ASA ) ∴BE DF =∴四边形BEDF 是平行四边形.(2)解:∵四边形BEDF 为菱形,∴BE BF =,DB EF ⊥又∵8AB =,4BC =∴BD ==BO =设BE BF x ==,则8CF AE x ==-在Rt BCF 中,()22248x x +-=∴5x =在Rt BOF中,OE =∴2EF OE ==【点睛】本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.。
数学:第 19 章平行四边形综合检测题B (人教新课标八年级下)一、选择题(每题3 分,共 30 分)1,如图 1,在平行四边形 ABCD 中,以下各式不必定正确的选项是( )A. ∠1+∠ 2= 180 °B.∠ 2+ ∠ 3= 180 °C.∠3+∠ 4=180 °D.∠ 2+ ∠ 4= 180 °2,如图 2,在 □ABCD 中, EF//AB ,GH //AD , EF 与 GH 交于点 O ,则该图中的平行四边形的个数共有 ( )A.7 个B.8 个C.9 个D.11 个FDHCA1 DEE DC2OF3 4 AG BABBC图 4图 1图 2图 33,如图 3,在平行四边形 ABCD 中,∠ B=110 °,延伸 AD 至 F ,延伸 CD 至 E ,连结EF ,则∠ E+∠F=()A. 110 °B.30 °C.50 °D.70 °4,对角线相互垂直均分且相等的四边形必定是 ()A .正方形B .菱形D .等腰梯形5,以下说法中,正确的选项是(A. 正方形是轴对称图形且有四条对称轴B. 正方形的对角线是正方形的对称轴C.矩形是轴对称图形且有四条对称轴D. 菱形的对角线相等6,菱形、矩形、正方形都拥有的性质是 ()A. 对角线相等B.对角线相互垂直C.对角线相互均分D.对角线均分一组对角 7,已知:如图 4,菱形 ABCD 中 ,对角线 AC 与 BD 订交于点 O,OE ∥ DC 交 BC AD =6cm ,则 OE 的长为()A.6 cmB.4 cmC.3 cmD.2 cm1mDC平行四边形A1m矩 正20m方 形形图 530mBCA图1图 6B图 8图 7于点 E ,D8,在学习“四边形”一章时,小明的书上有一图因不当心被滴上墨水(如图5),看不清所印的字,请问被墨迹掩盖了的文字应是()A .等边三角形B .四边形C .等腰梯形D .菱形9,如图 6,在宽为 20m ,长为 30m 的矩形地面上修筑两条相同宽的道路,余下部分作为耕地 . 依据图中数据,计算耕地的面积为()C .矩形)A . 600m2B. 551m2C. 550 m 2D. 500m210,如图7,在一个由 4×4个小正方形构成的正方形网格中,暗影部分面积与正方形ABCD 的面积比是()BA.3∶4B.5∶8C.9∶ 16D.1∶2二、填空题(每题 3 分,共24 分)11,如图8, AB∥ DC, AD ∥ BC,假如∠ B =50 °,那么∠ D =___度 .12,已知梯形 ABCD 中 ,AD∥ BC,∠ ABC= 60°,BD= 23 ,AE是梯形的高,且BE=1,则AD =___ .A BCE A H DS1S3A BA BE GS2S4 D图 9D F CCBD E C F图 11图 12图 10C113,一个平行四边形被分红面积为S1、 S2、 S3、 S4的四个小平行四边形(如图 9), 当 CD 沿 AB自左向右在平行四边形内平行滑动时,S1 423· S 与 S · S 与的大小关系是___ .14,如图 10,已知 AB∥ DC , AE⊥ DC, AE= 12, BD= 15, AC= 20, 则梯形 ABCD 的面积为___ .15015,矩形纸片 ABCD 中, AD =4cm , AB= 10cm,按如图11 方式折叠,使点B与点 D 重合,折痕为 EF ,则 DE =___ cm.16,矩形 ABCD 中 ,对角线 AC、 BD 订交于点 O,∠AOB= 2∠BOC.若 AC= 18cm,则 AD=___ cm.17,如图 12,矩形 ABCD 的相邻两边的长分别是3cm 和 4cm,按序连结矩形ABCD 各边的中点,获得四边形EFGH ,则四边形 EFGH 的周长等于___cm,四边形 EFGH 的面积等于___ cm2.18,在直线 l 上挨次摆放着七个正方形(如图 13所示 ).已知斜搁置的三个正方形的面积分别是 1、2、3,正搁置的四个正方形的面积挨次是S1*******、 S、S、S,则 S+S +S +S =___ .231S3S4S S21l三、解答题(共40 分)图 1319,如图 14,等腰梯形 ABCD 中, AD ∥ BC, AD=3, AB= 4, BC= 7.求∠ B 的度数 .20,如图 15,四边形 ABCD 是平行四边形,对角线AC、 BD 交于点 O,过点 O 画直线EF 分别交 AD、 BC 于点 E、 F.求证: OE= OF.A DA E DEO DCOB C B C A B图 14F图 17图 1621,如图 17,在 □ABCD 中,∠ ABC =5∠ A ,过点 B 作 BE ⊥DC 交 AD 的延伸线于点 E ,O 是垂足,且 DE =DA = 4cm ,求:( 1) □ABCD 的周长;( 2)四边形 BDEC 的周长和面积(结果可保存根号) .22,如图 18,□ABCD 的对角线 AC 的垂直均分线与边AD 、 BC 分别订交于点 E 、 F.求证:四边形 AFCE 是菱形 .AEDOBFC图 18图 19图 2123,如图 20,正方形 ABCD 中, P 是 CD 边上一点, DF ⊥ AP ,BE ⊥ AP.求证: AE = DF . 24,如图 19,在矩形 ABCD 中, P 是形内一点,且 PA = PD.求证 : PB =PC .25,( 2008年芜湖市)如图,在梯形ABCD 中, AD ∥ BC , AB DCAD ,C 60° AEBD于点 E ,F 是 CD 的中点, DG 是梯形 ABCD的高.,(1)求证 : 四边形 AEFD 是平行四边形 ;(2)设 AEx ,四边形 DEGF 的面积为 y ,求 y 对于 x 的函数关系式.图 20参照答案:一、 1, D ; 2, C ; 3,D ;4, A ; 5, A ; 6, C ;7, C ; 8, D ; 9, B ; 10, B.二、 11,50; 12,2; 13,S 1·S 4= S 2·S 3;14,150;15,18, 4.429 ; 16, 9;17,10、 6;5三、 19,过 A 点作 AE ∥CD ,有 □AECD , 则△ ABE 为等边三角形 . 即∠ B=60°;20,由于四边形 ABCD 是平行四边形, 因此 AD ∥ BC ,AO = CO ,即∠ EAO =∠ FCO ,又∠ AOE =∠ COF ,则△ AOE ≌△ COF ,故 OE =OF ;21,在 □ABCD 因此∠ A = 30°,而 AB ∥DC , BE ⊥ DC ,因此中,由于∠ ABC = 5∠ A ,又∠ A+ ∠B = 180°, BE ⊥ AB ,在 Rt △ ABE 中,∠ ABE = 90°,AE =2AD = 8cm ,∠ A = 30°,因此 BE = 1AE = 4cm ,由勾股定理, 得 AB = AE 2 BE 22=4 3 (cm),因此□ABCD的周长=(8 3 +8)cm;(2)由于BC∥AD,BC=AD,而AD = DE ,因此 DE = BC 且 DE ∥ BC,即四边形 BDEC 是平行四边形,又BE⊥ DC,因此□12);BDEC 是菱形,因此四边形 BDEC 的周长=4DE = 16(cm),面积=DC ·BE= 8(cm2322,易证△ AOE≌△ COF ,因此 OE= OF ,因此四边形 AFCE 是平行四边形,又AC⊥ EF,因此四边形 AFCE 是菱形; 23,证△ ABE≌△ DAF 即得; 24,证△ PBA≌△ PCD 即得;25,【答案】:( 1)证明:∵AB DC,∴梯形 ABCD为等腰梯形.∵∠C=60°,∴BAD ADC 120o,又∵ AB AD ,∴ABD ADB 30o.∴ DBC ADB 30o.∴ BDC90o.由已知 AE BD ,∴AE∥DC.又∵ AE 为等腰三角形ABD的高,∴E是BD的中点,∵F是 DC的中点,∴EF∥BC.∴EF∥AD.∴四边形AEFD是平行四边形.(2)解:在Rt△AED中,ADB30o,∵AE x ,∴AD 2 x .DC AD2x ,∴DG3x .在 Rt△DGC中∠C=60°,而且AD2x ,又∵DG BC,∴DG EF,由( 1)知:在平行四边形AEFD中EF1∴四边形DEGF的面积EF gDG ,2∴ y12xg 3x3x2 ( x 0) .2。
第19章?四边形?测试题一、选择题〔每题4分,共40分〕1.能判定四边形ABCD为平行四边形的题设是〔〕.〔A〕AB∥CD,AD=BC 〔B〕∠A=∠B,∠C=∠D〔C〕AB=CD,AD=BC 〔D〕AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是〔〕.〔A〕以60cm为一条对角线,20cm、34cm为两条邻边;〔B〕以6cm、10cm为对角线,8cm为一边;〔C〕以20cm、36cm为对角线,22cm为一边;〔D〕以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是〔〕〔A〕对角线互相平分〔B〕对角线相等〔C〕对角线平分一组对角〔D〕对角线互相垂直4.在以下说法中不正确的选项是〔〕〔A〕两条对角线互相垂直的矩形是正方形;〔B〕两条对角线相等的菱形是正方形;〔C〕两条对角线垂直且相等的平行四边形是正方形;〔D〕两条对角线垂直且相等的四边形是正方形5.以下说法不正确的选项是〔〕〔A〕对角线相等且互相平分的四边形是矩形;〔B〕对角线互相垂直平分的四边形是菱形;〔C〕一组对边平行且不等的四边形是梯形;〔D〕一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是〔〕〔A〕AB=CD,AD=BC 〔B〕AB//CD〔C〕AB=CD,AD∥BC 〔D〕AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是〔〕〔A〕AO=CO,BO=DO 〔B〕AO=CO=BO=DO〔C〕AO=CO,BO=DO,AC⊥BD〔D〕AO=BO=CO=DO,AC⊥BD8.以下说法不正确的选项是〔 〕〔A 〕只有一组对边平行的四边形是梯形;〔B 〕只有一组对边相等的梯形是等腰梯形;〔C 〕等腰梯形的对角线相等且互相平分;〔D 〕在直角梯形中有且只有两个角是直角9.如图1,在平行四边形ABCD 中,MN 分别是AB 、CD 的中点,BD 分别交AN 、CM 于点P 、Q ,在结论: ①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S△ADP =14S ABCD 中,正确的个数为〔 〕. 〔A 〕1 〔B 〕2 〔C 〕3〔D 〕4(1) (2)10.如图2,在梯形ABCD 中,AD∥CB,AD=2,BC=8,AC=6,BD=8,那么梯形ABCD 的面积为〔 〕.〔A 〕24 〔B 〕20 〔C 〕16 〔D 〕12二、填空题〔每题3分,共30分〕11.在平行四边形ABCD 中,AC 与BD 交于O ,那么其中共有__对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm ,那么其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm ,8cm ,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,那么这个四边形是_____形.15.如图3,等腰梯形ABCD 中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,那么△CDE 的周长是________.16.如图4,在正方形ABCD 的外侧,作等边△ADE,那么∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件〔•尺寸单位为mm〕,那么这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,假设AB=2.4cm,BC=4cm,OE=1.1cm,那么四边形CDFE周长为________.19.等腰梯形的一个锐角等于60 °,•它两底分别为15cm,•49cm,•那么腰长为_______.20.等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD ⊥DC,•且梯形ABCD•的周长为30cm,那么AD=_____.三、计算题〔每题10分,共30分〕21.如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm, DE ⊥BC于E,试求DE的长.四、证明题22.如图,四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.参考答案:1.〔C〕 2.〔C〕 3.〔B〕 4.〔D〕 5.〔D〕6.〔C〕 7.〔D〕 8.〔C〕 9.〔C〕 10.〔A〕11.4 12.40cm 4003cm2 13.5cm 24cm2 14.直角梯形15.15 16.15° 17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.那么AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6〔cm〕.21.过D点作DF∥AC,交BC的延长线于点F,那么四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又AC⊥BD,DF∥AC,•所以BD⊥DF,那么△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12〔BC+CF〕=12〔BC+AD〕=12〔7+3〕=5〔cm〕.22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE〔三角形中位线定理〕∵BE=BC+CE=BC+AD,∴MN=12〔BC+AD〕.。
第十九章平行四边形性质和判定综合习题精选一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.三角形的中位线练习题姓名1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE 的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20mA 、20081B 、20091C 、220081D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF •的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .16.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .17.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.18.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.C19.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .1、 已知在四边形ABCD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点,H 是EF 的中点.求证:EF ⊥GH.3、如图所示,△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD ,点E 是BC 的中点。
第19章平行四边形综合检测题
一、选择题(每题3分,共30分)
1,一块均匀的不等边三角形的铁板,它的重心在( )
A.三角形的三条角平分线的交点
B.三角形的三条高线的交点
C.三角形的三条中线的交点
D.三角形的三条边的垂直平分线的交点
2,如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )
A.1对
B.2对
C.3对
D.4对
3,平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )
A.4cm 和6cm
B.6cm 和8cm
C.8cm 和10cm
D.10cm 和12cm
4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )
A.AC =BD ,AB =CD ,AB ∥CD
B.AD //BC ,∠A =∠C
C.AO =BO =CO =DO ,AC ⊥BD
D.AO =CO ,BO =DO ,AB =BC
5,如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )
A.平行四边形 B 、矩形 C 、菱形 D. 正方形
6,如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )
A.S 1 > S 2
B.S 1 = S 2
C.S 1<S 2
D.S 1、S 2 的大小关系不确定
7,矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )
A.3cm 2
B. 4cm 2
C. 12cm 2
D. 4cm 2或12cm 2
8,如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )
B.20m
C.22m
D.24m
9,如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( )
A B . C D .10,如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )
A.36 m
B.48 m
C.96 m
D.60 m
二、填空题(每题3分,共30分)
11,如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.
图6 图4 F E
D
C B A 图5 图3 A
D C B H
E F
G 图2
B D 图1
12,如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP
的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).
13,如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则
PP ′=___.
14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.
15,如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,
则S 1与S 2的关系为___.
16,如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =
8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.
17,如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.
18,将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕
保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.
三、解答题(共40分)
19,如图1,4,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC
于点F 、E ,若AD =2,BC =8.求BE 的长.
20,在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的
两个图形全等;
(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;
(2)请在图15的三个平行四边形中画出满足小强分割方法的直线;
(3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?
…… 第一次对折 第二次对折 第三次对折
图13
图11
A 1
B 1
C 1
D 1 D A B C B 图12 A B C
D
A B C D D C B A 图15
D C B
A 图7 图9 图8
N M Q D C B A F E D C B A 图14
图10 E D C B A
21,如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G .
(1)线段AF 与GB 相等吗?
(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.
22,如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .
(1)试说明线段CD 与F A 相等的理由;
(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).
23,(08上海市)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.
(1)求证:四边形ABCD 是菱形;
(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.
24,已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连结____________;(2)猜想:______=______;(3)证明:
25,如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .
(1)试说明OE =OF ;
(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.
E
B A
O C 图19 D A B F 图20
图21
A B C D E F 图17 图16 B E 图18。