2013江苏高考数学卷(较正版)
- 格式:doc
- 大小:478.50 KB
- 文档页数:7
2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为_________.2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为_________.3.(5分)(2013•江苏)双曲线的两条渐近线方程为_________.4.(5分)(2013•江苏)集合{﹣1,0,1}共有_________个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是_________.,结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为_________.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为_________.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F ﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=_________.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是_________.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为_________.11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为_________.12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为_________.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为_________.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC 匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 和BC 分别与圆O相切于点D 、C ,AC 经过圆心O ,且BC=2OC 。
2013高考数学试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
DE AB AC λλ=+(λ、11、已知()f x 是定义在R12n n a a a a ++>的最大正整数内作答,解答时应写出文字说明、证明或演.(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααββ==(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。
16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。
18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。
现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟。
在甲出发2分钟后,乙从A 乘坐缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C 。
假设缆车速度为130米/分钟,山路AC 的长为1260米,经测量,123cos ,cos 135A C ==。
绝密★启用前2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上.........。
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15、(本小题满分14分) 已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<< 。
(1)若||a b -= a b ⊥ ;(2)设(0,1)c = ,若a b c += ,求βα,的值。
16、(本小题满分14分) 如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
17、(本小题满分14分)如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
2013江苏高考数学试题2、设()22z i =-(i 为虚数单位),则复数z 的模为 。
3、双曲线221169x y -=的两条渐近线的方程为 。
4、集合{}1,0,1-共有 个子集。
5、右图是一个算法流程图,则输出的n 的值为 。
6则成绩较为稳定(方差较小)的那位运动员的方差为 。
7、现有某类病毒记作m n X Y ,其中正整数,m n (7,9m n ≤≤)可以任意选取,则,m n 都取到奇数的概率为 。
8、如图,在三棱柱111A B C ABC -中,,,D E F 分别为1,,AB AC AA 的中点,设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V = 。
9、抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包括三角形内部和边界).若点(),P x y 是区域D 内的任意一点,则2x y +的取值范围为 。
10、设,D E 分别是ABC ∆的边,A B B C 上的点,12,23AD AB BE BC ==,若12DE AB AC λλ=+(12,λλ为实数),则12λλ+的值为 。
11、已知()f x 为定义在R 上的奇函数,当0x >时,()24f x x x =-,则不等式()f x x > 的解集用区间表示为 。
12、在平面直角坐标系xoy 中,椭圆C 的标准方程为22221x y a b+=(0,0a b >>),右焦点FE DB 1C 1A 1CBA为F ,右准线为l ,短轴一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d,若21d ,则椭圆C 的离心率为 。
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
.6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 【答案】2 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .63208.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .1:249.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .[—2,12 ]10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .1211.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .(﹣5,0) ∪(5,﹢∞)12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .3313.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所值为 .1或1014.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0,所以,b a ⊥. (2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12 .所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12 sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥. 证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点. 又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC . (2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .所以,AF ⊥平面SBC .又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB .又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;A BSG F E(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2).设切线为:3+=kx y ,d =11|233|2==+-+r k k ,得:430-==k or k .故所求切线为:343+-==x y or y .(2)设点M (x ,y ),由MO MA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x ,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D . 又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125 .18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
2013 年一般高等学校招生全国一致考试(江苏卷)数学 Ⅰ 注意事项绝密 ★启用前考生在答题前请仔细阅读本注意事项及各题答题要求: 1.本试卷共4 页,均为非选择题 (第 1 题~第 20 题,共 20 题).本卷满分为160 分.考试时间为 120分钟 .考试结束后,请将本试卷和答题卡一并交回 .2.答题前,请您务势必自己的姓名、考试证号用 0.5 毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点 .3.请仔细查对监考员在答题卡上所粘贴的条形码上的姓名、准考据号与您自己能否符合.4.作答试题一定用 5.如需作图,须用0.5 毫米黑色墨水的署名笔在答题卡的指定地点作答,2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.在其余地点作答一律无效.一、填空题:本大题共 14 小题,每题5 分,共 70 分.请把答案直接填写在答题卡相应地点上.........1.函数 y3sin(2x) 的最小正周期为 ▲.4分析: T=2=22.设 z (2 i)2 (i 为虚数单位 ),则复数 z 的模为▲.分析: Z 3 4i , Z 3224 =53.双曲线x 2y 2 的两条渐近线的方程为▲.1619 分析: y=3 x44.会合1,0,1 共有▲个子集 .开始分析: 238 (个)n1, a2n n 15.右图是一个算法的流程图,则输出的n 的值是▲a 20Ya 3a 2分析:经过了两次循环, n 值变成 3N输出 n结束(第 5题)6.抽样统计甲,乙两位射击运动员的 5 次训练成绩 (单位:环 ),结果以下:运动员第 1 次第 2 次第 3 次第 4 次第 5 次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳固(方差较小 )的那位运动员成绩的方差为▲.解析:易知均值都是90,乙方差较小,s2 1nn21 2 2 2 2 2x x 92 9089 90 90 90 91 90 88 90 2i5i 17.现有某类病毒记作X m Y n,此中正整数m,n(m 7, n 9) 能够随意选用,则m, n 都取到奇数的概率为▲.分析:m 能够取的值有:1,2,3,4,5,6,7 共7 个n 能够取的值有:1,2,3,4,5,6,7,8,9 共 9 个因此总合有 7 9 63 种可能切合题意的 m 能够取1,3,5,7 共 4 个切合题意的 n 能够取1,3,5,7,9共 5 个因此总合有 4 5 20 种可能切合题意因此切合题意的概率为20638.如图,在三棱柱A1 B1C1 ABC 中,D , E, F分别是 AB, AC, AA1的中点,设三棱锥 F ADE 的体积为 V1,三棱柱 A1 B1C1 ABC 的体积为 V2,则 V1 :V2 ▲.分析:V1 1S ADE h1 11S ABC1h21V2 C13 34 2 24B1因此 V1 :V2 124 A1F CE BA D。
2013年江苏省高考数学试卷及答案(Word解析版)2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为.【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为.【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为.【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是.【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为.【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为.【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是.【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z2 .画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ?的边BC AB ,上的点,AB AD 21= ,BC BE 32=,若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为.【答案】12【解析】)(32213221++=+=+= 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 .11.已知)(x f 是定义在R 上的奇函数。
1∑(x-x)2,其中x= n 1∑x。
n一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应...4)的最小正周期为2013年普通高等学校招生全国统一考试(江苏卷)参考公式:样本数据x,x,L,x的方差s2=12nni=1ini=1i棱锥的体积公式:V=1Sh,其中S是锥体的底面积,h为高。
3棱柱的体积公式:V=Sh,其中S是柱体的底面积,h为高。
......位置上。
1、函数y=3sin(2x+π▲。
2、设z=(2-i)2(i为虚数单位),则复数z的模为▲。
3、双曲线x2y2-=1的两条渐近线的方程为▲。
1694、集合{-1,0,1}共有▲个子集。
5、右图是一个算法的流程图,则输出的n的值是▲。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲乙87899190909189889392则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲。
7、现有某类病毒记作为X Y,其中正整数m,n(m≤7,n≤9)可以任意选m n取,则m,n都取到奇数的概率为▲。
8、如图,在三棱柱A1B1C1-ABC中,D、E、F分别为AB、AC、A A1的中点,uuur uuur uuur2 F }中, a = , a + a =3 ,则满足a + a + L + a > a a L a 的2二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说设三棱锥 F -ADE 的体积为V 1 ,三棱柱 A 1B 1C 1 -ABC 的体积为V 2 ,则V 1 : V 2 =▲。
9、抛物线 y = x 2 在 x = 1 处的切线与坐标轴围成三角形区域为 D(包含三角形内部与边界)。
若点 P(x ,y)是区域 D 内的任意一点,则 x + 2 y 的取值范围是▲。
1 210 、 设 D 、 E 分 别 是 △ ABC 的 边 AB 、 BC 上 的 点 , 且 AD = AB, BE = BC 。
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d =,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P ,A 之间的最短距离为a 的所有值为__________.14.(2013江苏,14)在正项等比数列{a n }中,512a =,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.。
2013年普通高等学校招生全国统一测试(江苏卷)参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。
1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。
2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。
3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。
4、集合{-1,0,1}共有 ▲ 个子集。
5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。
7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。
8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F -ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V =运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892▲ 。
9、抛物线2y x =在1x =处的切线和坐标轴围成三角形区域为D(包含三角形内部和边界)。
若点P(x ,y)是区域D 内的任意一点,则2x y +的取值范围是 ▲ 。
10、设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。
若12DE AB AC λλ=+(1λ、2λ均为实数),则1λ+2λ的值为 ▲ 。
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】函数3sin(2)4y x π=-的最小正周期为_______.【答案】π【解析】函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==.(2)【2014年江苏,2,5分】设2(2i)z =-(i 为虚数单位),则复数z 的模为_______. 【答案】5【解析】()222i 44i i 3i 54z =--+-====.(3)【2014年江苏,3,5分】双曲线221169x y -=的两条渐近线的方程为_______.【答案】34y x =±【解析】由题意可知所求双曲线的渐近线方程为34y x =±.(4)【2014年江苏,4,5分】集合{}1,0,1-共有 _______个子集. 【答案】8【解析】由于集合{}1,0,1-有3个元素,故其子集个数为328=.(5)【2014年江苏,5,5分】右图是一个算法的流程图,则输出的n 的值是_______. 【答案】3【解析】第一次循环后:82a n ←←,;第二次循环后:263a n ←←,;由于2620>,跳出循环,输出3n =.(6)【的那位运动员成绩的方差为 .【答案】2【解析】由题中数据可得=90x 甲,=90x 乙.()()()()()22222287909190909089909015394s -+-+-⎡⎤=⎣+-+-⎦=甲,()()()()()22222289909090919088909015292s -+-+-⎡⎤=⎣+-+-⎦=乙,由22>s s 甲乙,可知乙运动员成绩稳定.故应填2.(7)【2014年江苏,7,5分】现有某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为________.【答案】2063【解析】由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若1m =时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7963⨯=种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.(8)【2014年江苏,8,5分】如图,在三棱柱111A B C ABC -中,,,D E F 分别是1,,AB AC AA 的中点,设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V =_______. 【答案】1:24【解析】由题意可知点F 到面ABC 的距离与点1A 到面ABC 的距离之比为1:2,1:4ADE ABC S S =V V :.因此12131:242AED ABCAF S AF S V V ∆∆=⋅=⋅:. (9)【2014年江苏,9,5分】抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是________.【答案】12,2⎡⎤-⎢⎥⎣⎦【解析】由题意可知抛物线2y x =在1x =处的切线方程为21y x =-.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线20x y +=平移到过点1,02A ⎛⎫⎪⎝⎭时,2x y +取得最大值12.当直线20x y +=平移到过点1(0)B -,时,2x y +取得最小值2-. 因此所求的2x y +的取值范围为12,2⎡⎤-⎢⎥⎣⎦.(10)【2014年江苏,10,5分】设,D E 分别是ABC ∆的边,AB BC 上的点,12AD AB =,23BE BC =,若12DE AB AC λλ=+u u u r u u u r(12,λλ为实数),则12λλ+的值为________. 【答案】12【解析】由题意作图如图.∵在ABC ∆中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴116λ=-,223λ=.故1212λλ+=.(11)【2014年江苏,11,5分】已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为________. 【答案】5,0)5()(∞U -,+【解析】∵函数()f x 为奇函数,且0x >时,()24f x x x =-,则()22400040f x x x x x x x x =⎧->⎪=⎨⎪--<⎩∴原不等式等价于204x x x x >⎧⎨->⎩或204x x x x <⎧⎨-->⎩,由此可解得5x >或50x -<<. (12)【2014年江苏,12,5分】在平面直角坐标系xOy 中,椭圆C 的标准方程为22221(0,0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若21d =,则椭圆的离心率为________.【解析】设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即0bx cy bc +-=.于是可知1bc d a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =.∴()22246a a c c -=.∴42610e e +-=.∴213e =.∴e(13)【2014年江苏,13,5分】平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图像上一动点,若点,P A 之间最短距离为a 的所有值为________.【答案】1-【解析】设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则222222111()=2=2x a a x a x a x x A x P ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=.令12t x x =+≥,则()()2222222222PA t at a t a a t =-+-=-+-≥.结合题意可知(1)当2a ≤,2t =时,2PA 取得最小 值.此时()22228a a -+-=,解得1a =-,3a =(舍去).(2)当2a >,t a =时,2PA 取得最小值.此时228a -=,解得a =a =(舍去).故满足条件的实数a 1-.(14)【2014年江苏,14,5分】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为_______. 【答案】12【解析】设正项等比数列{}n a 的公比为q ,则由()26753a a a q q +=+=可得2q =,于是62n n a -=,则1251(12)13221232n n n a a a --=-+=-++⋯.∵512a =,2q =,∴61a =, 111210261a a a a a ==⋯==.∴12111a a a ⋯=.当n 取12时,7612121211121213222a a a a a a a a ++⋯+=->⋯==成立;当n 取13时,86713121312111213121322132·22a a a a a a a a a a ++⋯+=-⋯===<.当13n >时,随着n 增大12n a a a ++⋯+将恒小于12n a a a ⋯.因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()cos sin a αα=,r ,()cos sin b ββ=,r,0βαπ<<<.(1)若a b -=r r a b ⊥r r;(2)设()01c ,=r ,若a b c +=r r r ,求α,β的值.解:(1)解法一:由||a b -=r r 22||()2a b a b -=-=r r r r ,即2222a a b b -⋅+=r r r r .又2222||||1a b a b ====r r r u u r ,所以222a b -⋅=,0a b ⋅=r r ,故a b ⊥r r . 解法二:(cos cos ,sin sin )a b αβαβ-=--r r ,由||a b -=r r22||()2a b a b -=-=r r r r , 即:22(cos cos )(sin sin )2αβαβ-+-=,化简,得:2(cos cos sin sin )0αβαβ+-=, cos cos sin sin 0a b αβαβ⋅=+-=r r ,所以a b ⊥r r . (2)(cos cos ,sin sin )a b αβαβ+=++r r ,可得:cos cos 0(1)sin sin 1(2)αβαβ+=⎧⎨+=⎩L L L L解法一:AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1)平面EFG //平面ABC ; (2)BC SA ⊥. 解:(1)因为AS AB =,AF SB ⊥于F ,所以F 是SB 的中点.又E 是SA 的中点,所以//EF AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC .同理可证//EG 平面ABC .又EF EG E =I ,所以平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC 于SB ,又AF ⊂平面SAB ,AF SB ⊥,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF BC ⊥.又因为AB BC⊥,AF AB A =I ,AF AB ⊂、平面SAB ,所以BC ⊥平面SAB .又因为SA ⊂平面SAB ,所以BC SA ⊥.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围. 解:(1)由题设,圆心C 是直线24y x =-和1y x =-的交点,解得点2(3)C ,,于是切线的斜率必存在.设过3(0)A ,的圆C 的切线方程为3y kx =+1=,解得0k =或34-, 故所求切线方程为3y =或34120x y +-=.(2)因为圆心在直线24y x =-上,所以圆C 的方程为()()22221x a y a -+--⎤⎣⎦=⎡.设点()M x y ,, 因为2MA MO =22230x y y ++-=,即()2214x y ++=, 所以点M 在以1(0)D -,为圆心,2为半径的圆上.由题意,点()M x y ,在圆C 上,所以圆C 与圆D 有 公共点,则2121CD -≤≤+,即13≤.由251280a a -+≥,得R a ∈;由25120a a -≤,得0125a ≤≤.所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. (18)【2014年江苏,18,16分】如图,游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到 C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.解:(1)在ABC ∆中,因为3os 1c 12A =,cos 35C =,所以sin 513A =,sin 45C =.从而()()sin sin sin sin cos cos sin 531246313513565B AC A C A C A C π=-+=+=+⨯⨯⨯==⎡⎤⎣⎦. 由正弦定理sin sin AB ACC B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=.所以索道AB 的长为1040 m . (2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了()10050 m t +,乙距离A 处130m t ,所以由余弦定理得()()()()2222121005013021301005020037705013d t t t t t t =++-⨯⨯+⨯=-+, 因10430001t ≤≤,即08t ≤≤,故当3537t =(min)时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=,得12605sin 500m 63sin 1365AC BC A B =⨯=⨯=. 乙从B 出发时,甲已走了()50281550⨯++=(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. (19)【2014年江苏,19,16分】设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2n n nSb n c=+,N n *∈,其中c 为实数.(1)若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(2)若{}n b 是等差数列,证明:0c =. 解:由题设,(1)2n n n S na d -=+. (1)由0c =,得12n n S n b a d n -==+.又因为124b b b ,,成等比数列,所以1224b b b =,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 化简得220d ad -=.因为0d ≠,所以2d a =.因此,对于所有的*N m ∈,有2m S m a =.从而对于所有的k ,*N n ∈,有()2222nk k S nk a n k a n S ===. (2)设数列{}n b 的公差是1d ,则()111n b b n d =+-,即()1121nb n nS n cd =+-+,*N n ∈,代入n S 的表达式,整理 得,对于所有的*N n ∈,有()111321111122d d n b d a d n cd n c d b ⎛⎫⎛⎫-+--++ ⎪ =⎪⎭⎭-⎝⎝.令112A d d =-,1112B d d b a =--+,()11D c d b =-,则对于所有的*N n ∈,有321An Bn cd n D ++=.(*)在(*)式中分别取1234n =,,,,得1111842279364164A B cd A B cd A B cd A B cd ++=++=++=++, 从而有11173019502150A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③,由②,③得0A =,15cd B =-,代入方程①,得0B =,从而10cd =.即1102d d -=,11102b d a d -+=-=0,10cd =.若d 1=0,则由1102d d -=,得0d =,与题设矛盾,所以10d ≠.又因为10cd =,所以0c =.(20)【2014年江苏,20,16分】设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数. (1)若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的范围; (2)若()g x 在()1,-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 解:(1)令f ′(x )=()110axf x a x x-'=-=<,考虑到()f x 的定义域为(0)+∞,,故0a >,进而解得1x a ->,即()f x 在1()a -+∞,上是单调减函数.同理,()f x 在1(0)a -,上是单调增函数.由于()f x 在(1)+∞,上是单调减函数,故1()(1)a -∞∞⊆++,,,从而11a -≤,即1a ≥.令()0x g x e a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在(1)+∞,上有最小值,所以ln 1a >,即a e >.综上,有()a e ∈+∞,.(2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()0x g x e a '=->,解得x a e <,即ln x a >.因为()g x 在()1-+∞,上是单调增函数,类似(1)有ln 1a ≤-,即10a e -<≤.结合上述两种情况,有1a e -≤. ①当0a =时,由()10f =以及()10f x x'=>,得()f x 存在唯一的零点; ②当0a <时,由于()()10a a a f e a ae a e =-=-<,()10f a =->,且函数()f x 在[1]a e ,上的图象不间断, 所以()f x 在(1)a e ,上存在零点.另外,当0x >时,()10f x a x'=->,故()f x 在(0)+∞,上是单调增 函数,所以f (x )只有一个零点.③当10a e -<≤时,令()10f x a x'=-=,解得1x a -=.当10x a -<<时,()0f x '>,当1x a ->时,()0f x '<,所以,1x a -=是()f x 的最大值点,且最大值为()1ln 1f a a -=--.当ln 10a --=,即1a e -=时,()f x 有一个零点x e =.当ln 10a -->,即10a e -<<时,()f x 有两个零点.实际上,对于10a e -<<,由于()1110f e ae --=--<,()10f a ->,且函数()f x 在11[]e a --,上的图象不间断,所以()f x 在11()e a --,上存在零点.另外,当1()0x a -∈,时, ()10a xf x =->',故()f x 在1(0)a -,上是单调增函数,所以()f x 在1(0)a -,上只有一个零点.下面考虑()f x 在1()a -+∞,上的情况.先证()()1210a a f e a a e ---=-<.为此,我们要证明:当x e >时,2x e x >.设()2x h x e x =-,则()2x h x e x '=-,再设()()2x l x h x e x ='=-,则()2x l x e '=-.当1x >时,()220x l x e e '=->->,所以()()l x h x ='在(1)+∞,上是单调增函数.故当2x >时,()()22240x h x e x h e '=->'=->,从而()h x 在(2)+∞,上是单调增函数,进而当x e >时,()()220x e h x e x h e e e =->=->.即当x e >时,2x e x >.当10a e -<<,即1a e ->时,()()111210a a a f e a ae a a e -----=-=-<,又()10f a ->,且函数()f x 在11[]a a e --,上的图象不间断,所以()f x 在11()a a e --,上存在零点.又当1x a ->时,()0f x a '=-<,故()f x 在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当0a ≤或1a e -=时,()f x 的零点个数为1,当10a e -<<时,()f x 的零点个数为2.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 和BC 分别与圆O 相切于点D C AC 、,经过圆心O ,且2BC OC =.求证:2AC AD =.解:连结OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以90ADO ACB ∠=∠=︒.又因为A A ∠=∠,所以Rt Rt ADO ACB ∆∆∽.所以BC ACOD AD=. 又22BC OC OD ==,故2AC AD =. (21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵1012,0206-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B ,求矩阵1-A B . 解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,故100a b c =-==,,,12d =,从而A 的逆矩阵为1 1 010 2--⎡⎤⎢⎥⎢⎥⎣⎦=A ,所以1 1 010 2--⎡⎤⎢⎥⎢⎥⎣=⎦A B 1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得1t x =-,代入2y t =,得到直线l 的普通方程为220x y --=.同理得到曲线C 的普通方程为22y x =.联立2212y x y x =(-)⎧⎨=⎩,解得公共点的坐标为(2)2,,1,12⎛⎫- ⎪⎝⎭. (21-D )【2014年江苏,21-D ,10分】(选修4-4:不等式选讲)已知0a b ≥>,求证:332222a b ab a b -≥-. 解:()()()()()()()()332222222222222a b ab a b a a b b a b a b a b a b a b a b ---=-+-=-+=-++.因为0a b ≥>,所以0a b -≥,0a b +>,20a b +>,从而()()()20a b a b a b -++≥,即332222a b ab a b -≥-. 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1ABA 所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则()000A ,,,()200B ,,,()020C ,,()110D ,,,14(0)0A ,,,14(0)2C ,,,所以1(20)4A B =-u u u r ,,,1(11)4C D =--u u u u r,,.因为111111cos ,A B C D A B C D A B C D⋅===u u u r u u u u ru u u r u u u u r u u u r u u u u r ,所以异面直线1A B 与1C D. (2)设平面1ADC 的法向量为1()n x y z =r ,,,因为(1)10AD =u u u r ,,,10()24AC =u u u u r ,,,所以10n AD ⋅=u u r u u u r,110n AC ⋅=u u r u u u u r ,即0x y +=且20y z +=,取1z =,得2x =,2y =-,所以,12()21n =-u u r,,是平面1ADC 的一个法向量.取平面1AA B 的一个法向量为2(010)n =u u r,,,设平面1ADC 与平面 1ABA 所成二面角的大小为θ.由12122||||s 3co θ⋅===n n n n,得sin θ=.因此,平面1ADC 与平面1ABA.(1)求11中元素个数; (2)求集合2000P 中元素个数.解:(1)由数列{}n a 的定义得123456789101223334444a a a a a a a a a a ==-=-====-=-=-=-,,,,,,,,,,,115a =,1234567891011113036226105S S S S S S S S S S S ∴==-=-=====-=-=-=-,,,,,,,,,,,从而11445566111102S a S a S a S a S a ==⨯===-,,,,,所以集合11P 中元素的个数为5. (2)先证:()()*2121()i i S i i i +=-+∈N .①当1i =时,()3213i i S S +==-,()213i i -+=-,故原等式成立; ②假设i m =时成立,即()()2121m m S m m +=-+,则1i m =+时,()()()()()()()()22222(113)21222143253123m m m m S S m m m m m m m m m +++=++-+=-+--=-++=-++.综合①②可得()()2121i i S i i +=-+.于是()()()()()()()2(221121)212121211i i i i S S i i i i i i +++=++=-+++=++. 由上可知()21i i S +是21i +的倍数,而()21(211221)i i j a i j i ++=+=⋯+,,,,所以()()(212)121i i i i j S S j i +++=++是 ()211)2(21i i j a j i ++=⋯+,,,的倍数.又()()()()121121i i S i i ++=++不是22i +的倍数,而()()()12122i i j a i +++=-+()1222j i =⋯+,,,,所以()()()()()()()()1211212221122i i j i i S S j i i i j i +++++=-+=++-+不是()()121i i j a +++ 122()2j i =⋯+,,,的倍数,故当()21l i i =+时,集合l P 中元素的个数为()21321i i ++⋯+-=,于是,当()()21121l i i j j i =++≤≤+时,集合l P 中元素的个数为2i j +. 又()200031231147=⨯⨯++,故集合2000P 中元素的个数为231471008+=.。
2013江苏高考数学试题
2、设()2
2z i =-(i 为虚数单位),则复数z 的模为 5 。
3、双曲线
2
2
116
9
x
y
-
=的两条渐近线的方程为 34
y x =±。
4、集合{}1,0,1-共有 8 个子集。
5、右图是一个算法流程图,则输出的n 的值为 3 。
6
则成绩较为稳定(方差较小)的那位运动员的方差为 2 。
7、现有某类病毒记作m n X Y ,其中正整数,m n (7,9m n ≤≤)可以任意选取,则,m n 都取到奇数的概率为
2063。
8、如图,在三棱柱111A B C A B C -中,
,,D E F 分别为1,,A B A C A A 的中点,设三棱锥F A D E -的体积为1V ,三棱柱
111A B C A B C -的体积为2V ,则12:V V =
124。
9、抛物线2
y x =在1x =处的切线与两坐标轴围成三角形区域为
D (包括三角形内部和边界).若点(),P x y 是区域D 内的任意一点,则2x y +的取值范围
为 [-2,1/2] 。
10、设,D E 分别是A B C ∆的边,A B B C 上的点,12,2
3
A D A
B B E B
C =
=
,若
12D E A B A C λλ=+
(12,λλ为实数),则12λλ+的值为 1/2 。
11、已知()f x 为定义在R 上的奇函数,当0x >时,()2
4f x x x =-,则不等式()f x x > 的解集用区间表示为 (5,0)(5,)-⋃+∞ 。
F
E D
B 1
C 1
A 1
C
B
A
12、在平面直角坐标系xo y 中,椭圆C 的标准方程为
222
2
1x y a
b
+
=(0,0a b >>),右焦点
为F ,右准线为l ,短轴一个端点为B ,设原点到直线B F 的距离为1d ,F 到l 的距离
为2d
,若21d =,则椭圆C 的离心率为
3。
2013江苏高考数学试题
2、设()2
2z i =-(i 为虚数单位),则复数z 的模为 。
3、双曲线
2
2
116
9
x
y
-
=的两条渐近线的方程为 。
4、集合{}1,0,1-共有 个子集。
5、右图是一个算法流程图,则输出的n 的值为 。
6
则成绩较为稳定(方差较小)的那位运动员的方差为 。
7、现有某类病毒记作m n X Y ,其中正整数,m n (7,9m n ≤≤)可以任意选取,则,m n 都取到奇数的概率为 。
8、如图,在三棱柱111A B C A B C -中,
,,D E F 分别为1,,A B A C A A 的中点,设三棱锥F A D E -的体积为1V ,三棱柱
111A B C A B C -的体积为2V ,则12:V V = 。
9、抛物线2
y x =在1x =处的切线与两坐标轴围成三角形区域为
D (包括三角形内部和边界).若点(),P x y 是区域D 内的任意一点,则2x y +的取值范围
为 。
10、设,D E 分别是A B C ∆的边,A B B C 上的点,12,2
3
A D A
B B E B
C =
=
,若
12D E A B A C λλ=+
(12,λλ为实数),则12λλ+的值为 。
F
E
D
B 1
C 1
A 1
C
B
A
11、已知()f x 为定义在R 上的奇函数,当0x >时,()2
4f x x x =-,则不等式()f x x > 的解集用区间表示为 。
12、在平面直角坐标系xo y 中,椭圆C 的标准方程为
222
2
1x y a
b
+
=(0,0a b >>),右焦点
为F ,右准线为l ,短轴一个端点为B ,设原点到直线B F 的距离为1d ,F 到l 的距离为2d
,若21d =
,则椭圆C 的离心率为 。
坐标a的取值范围。