2013年浙江省温州市中考数学模拟试卷(四)
- 格式:doc
- 大小:161.50 KB
- 文档页数:5
初中毕业生第二次适应性考试(数学试卷)一、选择题(每小题4分,共40分)1.下列各选项中,最小的实数是( ▲ )A .-3B .-1C .0D .3 2.要使二次根式2x -有意义,则x 应满足( ▲ )A .2>xB .2x ≥C .2-≥xD .2x ≠3.某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ▲ ) A .(2,3) B .(-3,-3) C . (2,-3)D .(-4,6)4.为了支援灾区学生,“爱心小组”的七位同学为灾区捐款,捐款金额分别为60,75,60,75,120,60,90 (单位:元).那么这组数据的众数是( ▲ )A .120元B .90元C .75元D . 60元5.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ▲ )A .2B .4C .6D .86.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y += 的图象不经过( ▲ ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.由6个大小相同的正方体搭成的几何体,被小颖拿掉2个后,得到 如图1所示的几何体,图2是原几何体的三视图.请你判断小颖拿掉 的两个正方体原来放在( ▲ )A .1号的前后B .2号的前后C .3号的前后D .4号的左右 8.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向 左或向右两种机会均相等的结果,那么,小球最终到达H 点的xyO图1 图2主视图左视图俯视图概率是( ▲ )A .81 B .61 C .41 D .219.如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点, ∠B =25°,则∠D 等于( ▲ ) A .25° B .50° C .30° D .40°10.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ▲ ) A .140︒ B .130︒ C .110︒ D .70︒二、填空题(每小题5分,共30分)11. 分解因式:x 2-9= ▲ . 12. 若分式12-x 与1互为相反数,则x 的值是 ▲ .13.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB = ▲ . 14.一个滑轮起重装置如图所示.滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约 为 ▲ .(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1º) 15.已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: ▲ . 16.以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是 ▲ .三、解答题(共80分)17.(本题8分)计算:()01260cos 2)21(4π-+︒--+-.18.(本题8分)解方程:312422x x x -=--.19.(本题8分)如图,正方形ABCD 中, E 是CD 上一点,F 在CB 的延长线上,且BF DE =. (1)求证:ADE ∆≌ABF ∆;(2)问:将ADE ∆顺时针旋转多少度后与ABF ∆重合, 旋转中心是什么?20.(本题10分) 从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5︰4︰2︰1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题: ⑴ 补全条形统计图;⑵ 四种家电销售总量为 万台; ⑶ 为跟踪调查农户对这四种家电的使用情况, 从已销售的家电中随机抽取一台..家电,求抽 到冰箱的概率.21.(本题10分)如图所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30º,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45º.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).四种家电销售量条形统计图销售量(万台)冰箱彩电洗衣机空调家电类别1515AC DE22.(本题10分)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?23.(本题12分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,2AE =,4ED =. (1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值;24.(本题14分)如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线c bx x y ++=232经过B 点,且顶点在直线x=25上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是 否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.7ABCODE初中毕业生第二次适应性考试(数学参考答案)一、选择题(本题共10小题,每小题4分,共40分)1. A2. B3. C4. D5. B6. D7. B8. C9. D10. A二、填空题(本题有6小题,每小题5分,共30分)11.(3)(3)x x +- 12. -1 13. 4 14. 57º15. 如32+-=x y ,(答案不惟一,0<k 且0>b 即可) 16. 2×9⎝⎭三.解答题(本题有8小题,共80分)17. (本题8分)解:原式1212)2(2+⨯--+= (每项计算1分)……4分110+-=0=.……4分18. (本题8分)解:去分母,得322x x -=-. ……3分 整理,得35x =.解得 53x =. ……3分 经检验,53x =是原方程的解. 所以原方程的解是53x =. ……2分19.(本题8分)(1)证明:在正方形ABCD 中︒=∠=∠90ABC D ,AB AD =.︒=∠∴90ABF ,ABF D ∠=∠∴. ……3分又BF DE =,∴ADE ∆≌ABF ∆. ……3分 (2)将ADE ∆顺时针旋转90度后与ABF ∆重合,旋转中心是点 A . ……2分 20. (本题10分)解:(1)如图所示; ……3分 (2)180; ……3分(3)解:(55542112P ==+++抽到冰箱).答:抽到冰箱的概率是512.……4分21.(本题10分)解:设AB 、CD 的延长线相交于点E ,∵∠CB E=45º,C E⊥AE ,∴CE=BE.∵CE=26.65-1.65=25,∴BE=25,∴AE=AB+BE=30. ……3分在Rt △ADE 中,∵∠DAE =30º,∴DE =AE ×tan30 º =30×33=10 3 ……3分 ∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) ……4分 答:广告屏幕上端与下端之间的距离约为7.7m.22.(本题10分)解:根据题意,得 (30)(1002)200x x --=, ……4分整理,得 28016000x x -+=.解得 4021==x x . ……3分P =100-2×40=20.答:每件商品的售价应定为40元,每天要销售这种商品20件. ……3分 23.(本题12分)(1)连接AC ,∵点A 是弧BC 的中点,∴∠ABC=∠AC B. 又∵∠AC B=∠AD B,∴∠ABC=∠ADB. 又∵∠BAE=∠BAE, ∴△ABE∽△ABD. ……4分(2)∵△ABE∽△ABD,∴AB2=2×6=12. ∴AB=23.在Rt△ADB中,tan∠ADB=33632=. ……4分 24.(本题14分)解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+. ∴2254()32m =⨯-+, ∴16m =-. ∴所求函数关系式为:22251210()432633y x x x =--=-+. ……4分(2)在Rt △ABO 中,OA =3,OB =4,∴225AB OA OB =+=.∵四边形ABCD 是菱形,∴BC =CD =DA =AB =5. ∴C 、D 两点的坐标分别是(5,4)、(2,0).当5x =时,2210554433y =⨯-⨯+=. 当2x =时, 2210224033y =⨯-⨯+=.∴点C 和点D 在所求抛物线上. ……4分 (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩. 解得:48,33k b ==-.∴4833y x =-. ∵MN ∥y 轴,M 点的横坐标为t ,∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-, ∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大,此时点M 的坐标为(72,12). ……6分。
BA(第7题)浙江省温州市2012-2013学年第二学期阶段学业测试九年级数学试卷2013.5一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1.-2的相反数等于 ( ) A .-2 B .2 C . 21- D .212.下列图形中,为轴对称图形的是 ( )3.一个几何体的三视图如图所示,这个几何体是 ( )A.正方体 B .圆柱 C .球 D .圆锥4.若a >-3,下列不等式不一定成立的是( )A .a+3>0B .-a <3C .a+b >b-3D .a >95.抛物线y = -12(x+1)2+3的顶点坐标( ) A .(1,3) B .(1,-3) C .(-1,3) D .(-1,-3)6.如图,A 、B、C 是⊙O 上的三点,∠BAC=45°, (第6题)则∠BOC 的大小是( )A .90°B .60°C .45°D .22.5°7.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .sin A =B .1tan 2A =C .cos B =D .tan B =8.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) A .3cm B.3cm C.6cm D.9cm9.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的AB CO主视图左视图 俯视图虚线剪开,拼成如下右图的一座“小别墅”, 则图中阴影部分的面积是( ).A .2B .4C .8D .10 10.若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .10和1 C .7和9 D .9和18二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x -6x+9= .12.右图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖 上,则蚂蚁停留在黑色瓷砖上的概率是 . 13.如图,点P 是半径为5的⊙O 内的一点,且OP =3,设AB 是过点P 的 ⊙O 内的弦,且AB ⊥OP ,则弦 AB 长是________.14.小明用一个半径为36cm 的扇形纸板,制作一个圆锥的玩具帽,已知帽子的底面径r 为9cm,则这块扇形纸板的面积为 . (第13题)15.如图,A 、B 是反比例函数y =2x 的图象上的两点.AC 、BD都垂直于x 轴,垂足分别为C 、D ,AB 的延长线交x 轴于点 E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积 与ΔACE 的面积的比值是__________.16.如图1,正方形每条边上放置相同数目的小球,设一条边上的小球数为n ,请用含n 的代数式表示正方形边上的所有小球 数 ;将正方形改为立方体,如图2,每条边上同样 放置相同数目的小球, 设一条边上的小球数仍为n ,请用含 n 的代数式表示立方体上的所有小球数 .三、解答题(本题有8小题,第17、20、21、22题每题10分,第18题6分,第19题8分,第23题12分,第24题14分,共80分)17.(本题10分)(1)计算:30(2)2tan 451)-+-(2))3(331---x x x18.(本题6分)如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是: (写一个即可),并说明理由.第15题图19.(本题8分)我市某社区创建学习型社区,要调查社区居民双休日的学习状况,采用下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内200名在校学生。
动态综合型问题一、选择题1、(2013·曲阜市实验中学中考模拟)如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为弧AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是( )A . 15B . 20C .15+.15+答案:C2、(2013年深圳育才二中一摸)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线DC ED BE --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是cm /秒.设P 、Q 同时出发秒时,△BPQ 的面积为y cm 2.已知y 与的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①5==BE AD ;②53cos =∠ABE ;③当50≤<t 时,252t y =;④当429=t 秒时,△ABE ∽△QBP ;其中正确的结论是( ).A .①②③ B.②③ C. ①③④ D.②④ 答案:C3、 (2013年河北三摸)如图,在正方形ABCD 中,AB =3㎝.动点M 自A 点出发沿AB 方向以每秒1㎝的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3㎝的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (㎝2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是答案:B 二、解答题CAB D MN1、(2013吉林镇赉县一模)如图,在梯形ABCD 中,BC ∥AD ,∠A +∠D =90°,tanA =2,过点B 作BH ⊥AD 于H ,BC =BH =2,动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作EF ⊥AD 交折线D C B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1,设运动时间是x 秒(x >0). (1)当点E 和点C 重合时,求运动时间x 的值; (2)当x 为何值时,△BCD 1是等腰三角形;(3)在整个运动过程中,设△FED 1或四边形EFD 1C 1与梯形ABCD 重叠部分的面积为S ,求S 与x 的函数关系式.答案:2、(2013江苏东台实中)已知Rt △ABC ,∠ACB =90°,AC =BC =4,点O 是AB 中点,点P 、Q 分别从点A 、C 出发,沿AC 、CB 以每秒1个单位的速度运动,到达点C 、B 后停止。
2013年温州市中考数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥ ) 一、选择题(本题有 小题,每小题 分,共 分。
每小题只有一个选项是正确的,不选、多选、错选均不给分) 计算3)2(⨯-的结果是✌ 小明对九( )班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是✌ 羽毛球 乒乓球 排球 篮球 下列各图形中,经过折叠能围成一个立方体的是 下列各组数可能是一个三角形的边长的是✌ , , , , , , , , 若分式43+-x x 的值为 ,则x 的值是 ✌ 3=x 0=x 3-=x 4-=x 已知点 ( , )在反比例函数)0(≠=k xky 的图象上,则k 的值是 ✌ 31 31- 如图,在⊙ 中, ⊥弦✌于点 ,✌, ,则 的长是✌ 3 5 15 17 如图,在△✌中,∠ °,✌, ,则♦♓⏹✌的值是✌43 34 53 54 如图,在△✌中,点 ,☜分别在✌,✌上, ☜∥ ,已知✌☜,43=DB AD ,则☜的长是 ✌ 在△✌中,∠ 为锐角,分别以✌,✌为直径作半圆,过点 ,✌, 作,如图所示,若✌,✌,421π=-S S ,则43S S -的值是✌429π 423π 411π 45π二、填空题(本题有 小题,每小题 分,共 分) 因式分解:m m 52- ♉♉♉♉♉♉♉♉♉♉ 在演唱比赛中, 位评委给一位歌手的打分如下: 分, 分, 分, 分, 分,则这位歌手的平均得分是♉♉♉♉♉分 如图,直线a ,b 被直线c 所截,若a ∥b ,∠ °,∠ °,则∠ ♉♉♉♉♉♉♉♉♉♉度 方程0122=--x x 的根是♉♉♉♉♉♉♉♉♉♉ 如图,在平面直角坐标系中,△✌的两个顶点✌, 的坐标分别为( , ),( , ), ⊥x 轴,将△✌以y 轴为对称轴作轴对称变换,得到△✌❼❼❼(✌和✌❼, 和 ❼, 和 ❼分别是对应顶点),直线b x y +=经过点✌, ❼,则点 ❼的坐标是♉♉♉♉♉♉♉♉♉♉ 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
某某市2013年学业模拟考试数学试卷参考公式:二次函数cbx ax y ++=2)0(≠a 图象的顶点坐标是)44,2(2ab ac a b --。
卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2的相反数是()A . -2B .2C .-21D .212.下列计算正确的是()A .02=0B.9 =3 C.3-1= -3D. 2 +3= 53.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )5.下列从左边到右边的变形,是因式分解的是( )A.29)3)(3(x x x -=+- ; B.))((23n m n m m mn m -+=-; C.)1)(3()3)(1(+--=-+y y y y ; D.z yz z y z z y yz +-=+-)2(2242; 6.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD , 若∠CAB=35°,则∠ADC 的度数为( )1 2A .B . 1 2C . 12D .12第10题图xyOCD ABA .35° B.45° C.55° D.65°7.三角形在方格纸中的位置如图所示,则αcos 的值是( )A .53 B .310 C .54D . 510 8.一次函数y =-3 x +2的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限9 如图,矩形ABCD 中,AB=8, AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG.同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过_____ 秒时。
直线MN 和正方形AEFG 开始有公共点?A .53B .12C .43D .2310. 如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y =k x( x >0)上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为( )A .(3,32) B .(4,21) C .(6,94) D .(5,52) 二、填空题(本大题有6小题,每题5分,共30分) 11.函数y=12x -中自变量的取值X 围是. 12. 一组数据5,5,6,x ,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是。
2013年浙江省温州市中考数学模拟试卷及答案(word解析版)浙江省温州市2013年中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)2.(4分)(2013•温州模拟)2010年5月1日,举世瞩目的上海世博会正式开园.截至当天19:00,约有20.4万名中外游客进世博园区参观,参观人数用科学记数法表示为()3.(4分)(2013•温州模拟)函数的图象经过点A(﹣2,3),则k的值为()4.(4分)(2013•温州模拟)如图几何体的主视图是()7.(4分)(2013•温州模拟)如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为()8.(4分)(2013•温州模拟)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()9.(4分(2013•温州模拟))为响应团中央“号召全国每位团员,少先队员捐一瓶水”的倡议,我校师生积极开展了“情系西南灾区”的捐款活动.某班6名同学捐款的数额分别是(单位:10.(4分)(2013•温州模拟)如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ,△DKM,△CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()二、填空题(本题共6小题,每小题5分,共30分)211.(5分)(2013•温州模拟)分解因式:a+3ab=.12.(5分)(2013•温州模拟)如图,圆锥的底面半径为2cm,高为2的侧面积是8π cm. cm,那么这个圆锥13.(5分)(2013•温州模拟)若二次函数y=x﹣3x+2m的最小值是2,则m=2 .14.(5分)(2013•温州模拟)如图,三个半径都为3cm的圆两两外切,切点分别为D、E、F,则EF的长为 3 cm.15.(5分)(2013•温州模拟)某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为75 度.16.(5分)(2013•温州模拟)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,E是AC上的一点(AE>CE),且DE=BE,则AE的长为.三、解答题(本题有8小题,共80分)17.(10分)(2013•温州模拟)(1)计算:;(2)解方程组.18.(8分)(2013•温州模拟)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.19.(8分)(2013•温州模拟)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形①﹣1不是或图①﹣2是,②中的图形是.20.(8分)(2013•温州模拟)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到 10 元购物券,至多可得到 50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.21.(10分)(2013•温州模拟)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.22.(10分)(2013•温州模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD 于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径OA=5,弦AC的长是6.①求DE的长;②请直接写出的值.23.(12分)(2013•温州模拟)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?24.(14分)(2013•温州模拟)如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,﹣3),B是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.①直接写出直线AB的解析式;②当CD=PD时,求m的值;③求△ACP的面积S.(用含m的代数式表示)(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.。
2013年温州市中考数学模拟试题卷参考公式:二次函数y=ax 2+bx+c (a ≠0)的图象的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 一、选择题(本大题有10小题,每小题4分,共40分。
)1、在0,1,2, 3.5---这四个数中,最小的负整数是( ▲ )A 、0B 、1-C 、2-D 、 3.5-2、如图,直线a ,b 被直线c 所截,已知a ∥b ,∠1=35°,则∠2的度数为( ▲ )A 、35°B 、55°C 、145°D 、165°3、已知点M ()2,3-在双曲线k y x=上,则下列各点一定在该双曲线上的是( ▲ ) A 、()3,2- B 、()2,3-- C 、()2,3 D 、()3,24、图1所示的物体的左视图(从左面看得到的视图)是( ▲ )图1 A 、 B 、 C 、 D 、 (第2题)5、抛物线()2y x 11=--+的顶点坐标是( ▲ )A 、()1,1B 、()1,1-C 、()1,1-D 、()1,1-6、在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如表所示:则这些运动员成绩的中位数是( ▲ )A 、1.66B 、1.67C 、1.68D 、1.757、已知⊙O 1和⊙O 2内切,它们的半径分别为2cm 和5cm ,则O 1O 2的长是( ▲ )A 、2cmB 、3cmC 、5cmD 、7cm8、如图是某校九年级部分男生做俯卧撑的成绩进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ▲ )A 、100,55%B 、100,80%C 、75,55%D 、75,80%9、如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( ▲ )A 、35°B 、55°C 、65°D 、70°(第8题) (第9题) (第10题)10、如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将△BCE 沿着CE 折叠至△FCE ,若CF 、CE 恰好与正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为( ▲ )A 、53B 、5C 、833D 、以上都不对 二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:()2x 14--= ▲12、母线长为3cm ,底面直径为4cm 的圆锥侧面展开图的面积是 ▲ cm 213、若一次函数y kx b =+(k ,b 都是常数,k ≠0)的图象如图所示,则不等式kx b 0+>的解为 ▲(第13题) (第14题) (第16题)14、如图,已知D 为BC 上一点,∠B =∠1,∠BAC=78°,则∠2= ▲15、目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 ▲ .16、5个正方形如图摆放在同一直线上,线段BQ 经过点E 、H 、N ,记△RCE 、△GEH 、 △MHN 、△PNQ 的面积分别为s 1,s 3,s 2,s 4,已知s 1+s 3=17,则s 2+s 4= ▲三、解答题(本题有8小题,共80分,各小题都必须写出解答过程)17、(本题10分)(1)计算:()00822cos 45+--(2)解方程:(选择其中一小题解答)①212x 1x 1=-- ②22x 0-=18、(本题7分)数学课上,老师让甲、乙、丙三位同学分别计算当x=1-、2、4时,二次函数2y x mx n =++的函数值,甲、乙两同学正确算得当x=1-时,y=6;当x=2时,y=3;丙同学由于看错了n 而算得当x=4时,y=5。
2013年浙江省温州市外国语学校中考数学三模试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分).B.4.(4分)(2003•常德)如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是()E=322×8.(4分)如图是一些相同的小正方体构成的几何体,则它的俯视图为()B.10.(4分)(2013•江东区模拟)如图是一张简易活动餐桌,现测得OA=OB=30cm,OC=OD=50cm,现要求桌面离地面的高度为40cm,那么两条桌腿的张角∠COD的大小应为()解:=,=,MO=CO二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2009•同安区模拟)不等式的解集是0<x≤.解:≤≤.12.(5分)(2005•长沙)甲、乙两人进行射击比赛,在相同条件下各射击10次.他们的平均成绩均为7环,10次射击成绩的方差分别是:S甲2=3,S乙2=1.2.成绩较为稳定的是乙.13.(5分)(2010•翔安区模拟)已知在Rt△ABC中,∠C=90°,AC=1,BC=3,那么tanA=3.tanA==314.(5分)(2007•兰州)下列是三种化合物的结构式及分子式,请按其规律,写出后一种化合物的分子式为C4H10.15.(5分)(2005•茂名)《广东省工伤保险条例》规定:职工有依法享受工伤保险待遇的权利,某单位一名职工因公受伤住院治疗了一个月(按30天计),用去医疗费5000元,伙食费500元,工伤保险基金按规定给他补贴医疗费4500元,其单位按因公出差标准(每天30元)的百分之七十补助给他做伙食费,则在这次工伤治疗中他自己只需支付370元.16.(5分)(2009•宾阳县二模)如图,点E、F分别是矩形ABCD的边AB、BC的中点,连AF、CE交于点G,则=.AFC=S=.最后可求得SSS=SSS故答案为:.三、解答题(共80分)17.(10分)(1)计算:tan60°(2)解方程:.=3+;18.(8分)(2006•旅顺口区)如图,在平行四边形ABCD中,BE⊥AC于点E,DF⊥AC于点F.求证:AE=CF.(说明:写出证明过程中的重要依据)19.(8分)(2009•宾阳县二模)在如图所示5×5的正方形网格中画出一个格点△ABC,使AB=,BC=.(画出一个三角形即可,不必写画图步骤,并在图上标出相应的字母.)是直角边长为2,3的两个直角三角形的斜边长,是直角边长为1,3的两个直角三角形的20.(10分)如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.(1)求该班有多少名学生?(2)补上步行分布直方图的空缺部分;(3)在扇形统计图中,求骑车人数所占的圆心角度数;(4)若全年级有500人,估计该年级步行人数.21.(8分)如图,直线y1=2x+b与x轴、y轴交于点A、B,与双曲线(x<0)交于点C、D,已知点C的坐标为(﹣1,4).(1)求直线和双曲线的解析式;(2)利用图象,说出x在什么范围内取值时,有y1>y2.4=;,﹣22.(10分)(2006•浙江)有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.=23.(12分)(2005•南京)某水果店有200个菠萝,原计划以2.6元/千克的价格出售,现在为了满足市场需要,水果店决定将所有的菠萝去皮后出售.以下是随机抽取的5个菠萝去皮前后相应的质量统计表(单个菠萝去皮前的总质量和去皮后的总质量.(2)根据(1)的结果,要使去皮后这200个菠萝的销售总额与原计划的销售总额相同,那么去皮后的菠萝的售价应是每千克多少元?个菠萝去皮前的平均质量为(去皮后的平均质量为(24.(14分)如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以过点C垂直于BC的直线为y轴,建立如图②的平面直角坐标系.(1)求直线AE的解析式;(2)将Rt△EFC沿x轴的负半轴平行移动,如图③.设OC=x(0<x≤9),Rt△EFC与Rt△ABO的重叠部分面积为s;求当x=1与x=8时,s的值;(3)在(2)的条件下s是否存在最大值?若存在,求出这个最大值及此时x的值;若不存在,请说明理由.,表示出各三角形的面积,,,,再将,解得,,即:.S=此时,S=,,,S=∴当,综合得:当时,存在的最大值,同解法一③可得:最大,最大值为;最大,最大值为;,则当时,;最大,最大值为;综合得:当时,存在的最大值,。
2013年浙江省初中毕业生学业考试(温州市卷)数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0)一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选、多选、错选均不给分)1. 计算3)2(⨯-的结果是A. -6B. -1C. 1D. 6 2. 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是A. 羽毛球B. 乒乓球C. 排球D. 篮球 3. 下列各图形中,经过折叠能围成一个立方体的是4. 下列各组数可能是一个三角形的边长的是A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,11 5. 若分式43+-x x 的值为0,则x 的值是 A. 3=x B. 0=x C. 3-=xD. 4-=x6. 已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k 的值是A. 3B. -3C.31 D. 31- 7. 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是A.3 B. 5 C. 15 D. 178. 如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是A.43 B. 34 C. 53 D. 549. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,已知AE=6,43=DB AD ,则EC 的长是A. 4.5B. 8C. 10.5D. 1410. 在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示,若AB=4,AC=2,421π=-S S ,则43S S -的值是A. 429πB. 423πC. 411πD. 45π二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:m m 52-=__________12. 在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是_____分 13. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=__________度 14. 方程0122=--x x 的根是__________15. 如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________16. 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
浙江省温州市2013年中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)(2013•温州模拟)3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2013•温州模拟)2010年5月1日,举世瞩目的上海世博会正式开园.截至当天19:00,约有20.4万名中外游客进世博园区参观,参观人数用科学记数法表示为()A.20.4×104人B.2.04×105人C.20.4×105人D.2.04×106人考点:科学记数法—表示较大的数..专题:应用题.分析:根据科学记数法的表示方法,将20.4万化为整数,再将其用科学记数法表示即可得到答案.解答:解:将20.4万=204 000用科学记数法表示为2.04×105人.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2013•温州模拟)函数的图象经过点A(﹣2,3),则k的值为()A.﹣6 B.6C.D.考点:反比例函数图象上点的坐标特征..分析:根据反比例函数图象上点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可以直接写出答案.解答:解:∵函数的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,故选:A.点评:此题主要考查了反比例函数图象上点的坐标特征,关键是掌握反比例函数图象上点的坐标特征.4.(4分)(2013•温州模拟)如图几何体的主视图是()A.B.C.D.考点:简单组合体的三视图..专题:压轴题.分析:找到从正面看所得到的图形即可解答:解:从正面可看到从左往右三列小正方形的个数为:2,1,1,故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)(2013•温州模拟)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+1考点:完全平方式..分析:完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.解答:解:符合的只有a2+2a+1.故选D.点评:本题主要考的是完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.6.(4分)(2013•温州模拟)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集..专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:不等式移项,得2x>6,系数化1,得x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选A.点评:在数轴上表示不等式的解集时,>向右,<向左,有等于号的画实心原点,没有等于号的画空心圆圈.7.(4分)(2013•温州模拟)如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为()A.72°B.120°C.144°D.150°考点:扇形统计图..专题:图表型.分析:先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.解答:解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故选C.点评:本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.8.(4分)(2013•温州模拟)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理..专题:计算题.分析:直角三角形中,正弦值是角的对边与斜边的比值;先求出斜边AB的值,然后,即可解答.解答:解:∵Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=5;∴sinA==.故选C.点评:本题考查了锐角三角函数值的求法及勾股定理的应用,熟记公式才能正确运用.9.(4分(2013•温州模拟))为响应团中央“号召全国每位团员,少先队员捐一瓶水”的倡议,我校师生积极开展了“情系西南灾区”的捐款活动.某班6名同学捐款的数额分别是(单位:元):5,5,5,10,10,20.则这组数据的中位数和众数分别是()元.A.5,5 B.10,5 C.10,7.5 D.5,7.5考点:众数;中位数..专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:众数是一组数据中出现次数最多的数,在这一组数据中5是出现次数最多的,故众数是5;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是5和10,那么由中位数的定义可知,这组数据的中位数是7.5.故选D.点评:本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.命题立意:本题以给地震灾区捐款为背景,考核了统计概率的相关知识.本题在考核数学知识的基础上向学生渗透爱心教育,是一道很不错的题目.10.(4分)(2013•温州模拟)如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ,△DKM,△CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A.8B.10 C.12 D.考点:矩形的性质;三角形的面积;相似三角形的判定与性质..专题:压轴题.分析:由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出S1,从而可以求出S2.解答:解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴,,∴△BPQ∽△DKM∽△CNH∴,∴,=∴S2=4S1,S3=9S1∵S1+S3=20,∴S1=2,∴S2=8,故A答案正确.故选A.点评:本题考查了矩形的性质,相似三角形的判定与性质,三角形的面积公式.二、填空题(本题共6小题,每小题5分,共30分)11.(5分)(2013•温州模拟)分解因式:a2+3ab= a(a+3b).考点:因式分解-提公因式法..分析:提取公因式a,余下的式子为(a+3b),不能再分解.解答:解:a2+3ab=a(a+3b).故答案为:a(a+3b).点评:本题主要考查了提公因式法分解因式,准确找出公因式是解题的关键.12.(5分)(2013•温州模拟)如图,圆锥的底面半径为2cm,高为cm,那么这个圆锥的侧面积是8πcm2.考点:圆锥的计算..专题:计算题.分析:先根据勾股定理计算出母线长为4,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长4π,扇形的半径等于圆锥的母线长4,然后根据扇形的面积公式计算即可.解答:解:∵圆锥的底面半径为2cm,高为cm,∴圆锥的母线长==4,∴这个圆锥的侧面积=•2π•2•4=8π.故答案为8π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式和勾股定理.13.(5分)(2013•温州模拟)若二次函数y=x2﹣3x+2m的最小值是2,则m= .考点:二次函数的最值..专题:函数思想.分析:利用配方法将二次函数方程y=x2﹣3x+2m转化为顶点式方程,然后求该函数的最小值即可.解答:解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.点评:本题考查了二次函数的最值.求二次函数的最值,就是求二次函数的顶点的纵坐标.14.(5分)(2013•温州模拟)如图,三个半径都为3cm的圆两两外切,切点分别为D、E、F,则EF的长为 3 cm.考点:相切两圆的性质..分析:三个圆半径相等且两两外切,则EF为ABC的中位线,EF=BC.解答:解:连接EF,∵⊙A、⊙B、⊙C半径相等且两两外切,∴△ABC为等边三角形,边长为6cm,又切点E、F为AB、AC的中点,∴EF=BC=3cm.故答案为3.点评:本题考查了相切了圆的性质,三角形中位线定理.关键是判断三角形的形状,判断中位线.15.(5分)(2013•温州模拟)某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为75 度.考点:一元一次方程的应用..分析:先判断出3月份用电量一定超过60度,再根据“某用户3月份交电费66元”得到等量关系:60×0.8+超过60度的用电量×1.2=66,设3月份该用户用电量为x度,从而列出方程求解即可.解答:解:∵某用户3月份交电费66元,0.8×60=48元,66>48,∴3月份用电量超过60度.设3月份该用户用电量为x度,由题意,得:60×0.8+(x﹣60)×1.2=66,解得:x=75,答:3月份该用户用电量为75度.故答案为75.点评:本题考查用一元一次方程解决实际问题,判断出用电量在60度以上是解决本题的突破点,根据3月份的电费是66元列出方程是解决本题的关键.16.(5分)(2013•温州模拟)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,E是AC上的一点(AE>CE),且DE=BE,则AE的长为.考点:勾股定理;含30度角的直角三角形;等腰直角三角形..专题:压轴题.分析:根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,过点D作DF⊥AC于F,根据等腰直角三角形的性质求出DF=CF=AC,设CE=x,表示出EF,然后分别用勾股定理表示出DE2、BE2,再列出方程求解即可.解答:解:∵AB=2,∠BAC=30°,∴BC=AB=×2=,根据勾股定理,AC===3,过点D作DF⊥AC于F,∵△ACD是等腰直角三角形,∴DF=CF=AC=,设CE=x,则EF=﹣x,在Rt△DEF中,DE2=DF2+EF2=()2+(﹣x)2,在Rt△BCE中,BE2=BC2+CE2=2+x2,∵DE=BE,∴()2+(﹣x)2=2+x2,解得x=,所以,AE=AC﹣CE=3﹣=.故答案为:.点评:本题考查了勾股定理的应用,直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的性质,作辅助线,利用勾股定理表示出DE、BE然后列出方程是解题的关键.三、解答题(本题有8小题,共80分)17.(10分)(2013•温州模拟)(1)计算:;(2)解方程组.考点:实数的运算;零指数幂;负整数指数幂;解二元一次方程组;特殊角的三角函数值..专题:计算题.分析:(1)分别根据负整数指数幂、0指数幂的计算法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.解答:解:(1)原式=﹣2﹣+1=﹣1﹣;(2),解法1:①+②得5x=10,解得x=2;把x=2代入①,得4﹣y=3,解得y=1,故方程组的解是.解法2:由①得y=2x﹣3.③把③代入②,得3x+2x﹣3=7,解得x=2,把x=2代入③得y=1.故方程组的解是.点评:本题考查的是实数运算及解二元一次方程组,熟知实数混合运算的法则及解二元一次方程组的加减消元法和代入消元法是解答此题的关键.18.(8分)(2013•温州模拟)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.考点:矩形的性质;全等三角形的判定与性质..专题:证明题.分析:(1)根据矩形的性质可以得到全等条件证明△ADM≌△BCM;(2)利用全等三角形的性质可以解决.解答:证明:(1)∵M是CD的中点,∴DM=CM;∵有矩形ABCD,∴AD=BC∠D=∠C=90°;∴在△ADM和△BCM中,∴△ADM≌△BCM;(SAS)(2)∵△ADM≌△BCM,∴AM=BM,∴∠MAB=∠MBA.点评:此题把全等三角形的判定和性质与矩形的性质结合起来,难度不大.19.(8分)(2013•温州模拟)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形①﹣1不是或图①﹣2是,②中的图形是.考点:利用旋转设计图案;几何体的展开图;利用轴对称设计图案..分析:(1)根据轴对称图形与中心对称的定义即可作出,首先确定对称轴,即可作出所要作的正方形;(2)利用折叠的方法进行验证即可.解答:解:(1)如图(画对一个得3分).(2)图①﹣1不是正方体的表面展开图或图①﹣2是正方体的表面展开图,图②是正方体的表面展开图.故答案为:①﹣1不是或图①﹣2是,是.点评:考查了利用旋转设计图案,利用轴对称设计图案和正方体的展开图,掌握轴对称的性质:沿着一直线折叠后重合.中心对称的性质:绕某一点旋转180°以后重合.20.(8分)(2013•温州模拟)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10 元购物券,至多可得到50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.考点:列表法与树状图法..专题:压轴题.分析:(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.解答:解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):第二次第一次0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣(以下过程同“解法一”)点评:本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2013•温州模拟)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.考点:二次函数综合题..专题:综合题.分析:(1)已知了抛物线的顶点坐标,可将其解析式设为顶点坐标式,然后将原点坐标代入上式,即可求得待定系数的值,从而确定该抛物线的解析式.(2)由于△MON和△AOB同底不等高,因此它们的面积比等于高的比,即M点的纵坐标的绝对值是A点纵坐标绝对值的3倍,由于A是抛物线顶点,因此点M必在x轴下方,将其纵坐标代入抛物线的解析式中,即可确定M点的坐标.解答:解:(1)由题意,可设抛物线的解析式为y=a(x﹣2)2+1,(2分)∵抛物线过原点,∴a(0﹣2)2+1=0,a=﹣;(2分)∴抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+x.(1分)(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,∴△MOB的高是△AOB高的3倍,即M点的纵坐标是﹣3,(3分)∴﹣3=﹣x2+x,即x2﹣4x﹣12=0,(1分)解之,得x1=6,x2=﹣2,(2分)∴满足条件的点有两个:M1(6,﹣3),M2(﹣2,﹣3).(1分)点评:此题主要考查了二次函数解析式的确定、图形面积的求法、函数图象上点的坐标意义等知识,难度不大,能够将图形的面积比转化为M点的纵坐标是解决(2)题的关键.22.(10分)(2013•温州模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径OA=5,弦AC的长是6.①求DE的长;②请直接写出的值.考点:切线的判定;矩形的判定与性质..专题:证明题.分析:(1)连接OD,由AD是∠BAC的平分线得∠EAD=∠DAO,而∠DAO=∠ADO,则∠EAD=∠ADO,根据平行线的判定得到OD∥AE,而DE⊥AC,所以OD⊥DE,然后根据切线的判定定理即可得到结论;(2))①过O作OH⊥AC交AC于H,根据垂径定理得AH=CH=AC=3,再利用勾股定理可计算出OH=4,由于∠ODE=∠DEH=∠OHE=90°,可得到四边形ODEH是矩形,根据矩形性质得DE=OH=4;②由OD∥AE可得到△ODF∽△AEF,则=,然后把OD与AE的值代入即可.解答:解:(1)连接OD,如图,∵AD是∠BAC的平分线,∴∠EAD=∠DAO,∵AO=DO,∴∠DAO=∠ADO,∴∠EAD=∠ADO,∴OD∥AE,又∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)①过O作OH⊥AC交AC于H,如图,则AH=CH=AC=3,在Rt△AOH中,AH=3,OA=5,∴OH==4,∵∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴DE=OH=4;②∵OD∥AE,∴△ODF∽△AEF,∴=,而OD=5,AE=AH+HE=AH+OD=3+5=8,∴=.点评:本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、矩形的判定与性质以及三角形相似的判定与性质.23.(12分)(2013•温州模拟)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?考点:分式方程的应用;一元一次不等式组的应用;一次函数的应用..分析:(1)首先设一月Iphone4手机每台售价为x元,则二月Iphone4手机每台售价为(x﹣500)元,根据关键语句“卖出相同数量的Iphone4手机”可得:=,再解方程即可;(2)设购进Iphone4手机m台,则购进Iphone4s手机(20﹣m)台,根据关键语句“预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机”得:74000≤Iphone4每台进价×数量+Iphone4s每台进价×数量≤76000,有由不等关系列出不等式,解不等式即可;(3)设总获利W元,根据题意得等量关系:W=每台Iphone4手机获利×台数+每台Iphone4s手机获利×台数,由等量关系可得方程W=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m),整理以后使m 的系数等于0即可.解答:解:(1)设一月Iphone4手机每台售价为x元,由题意得:=,解得x=4500.经检验x=4500是方程的解.答:故一月Iphone4手机每台售价为4500元;(2)设购进Iphone4手机m台,由题意得,74000≤3500m+4000(20﹣m)≤76000,解得:8≤m≤12.∵m只能取整数,∴m取8、9、10、11、12,共有5种进货方案,答:共有5种进货方案;(3)二月Iphone4手机每台售价是:4500﹣500=4000(元),设总获利W元,则W=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(100﹣a)m+8000.100﹣a=0,解得:a=100,答:当a=100时,(2)中所有的方案获利相同.点评:此题主要考查了分式方程的应用,一元一次不等式组的应用,一次函数的应用,是一道综合题,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程与不等式组.24.(14分)(2013•温州模拟)如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,﹣3),B 是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.①直接写出直线AB的解析式;②当CD=PD时,求m的值;③求△ACP的面积S.(用含m的代数式表示)(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.考点:相似形综合题..专题:压轴题.分析:(1)①当t=7时,即CB=7,由OC=3,OA=2OB求出A,B两点的坐标,再设直线AB的解析式为y=kx+b,将A,B两点的坐标代入,运用待定系数法即可求出直线AB的解析式;②过P作PH⊥OA于H,当CD=PD时,根据AAS可得△COD≌△PHD,则PH=OC,即m=3;③先由PH∥OB,得△APH∽△ABO,根据相似三角形对应边成比例得出=,求出AH=2m,则OH=8﹣2m,再根据三角形面积公式得出S△BCP=28﹣7m,则S=S△ABC﹣S△BCP=7m;(2)由于B是射线CO上的一个动点,所以根据B点的不同位置分两种情况进行讨论:①点B运动在y轴的正半轴上;②点B运动在OC上.又动点P在直线AB上,直线AB总有经过第二、四象限,所以在每一种情况下,P点所在的位置又有三种可能的情况:①点P分别在第一、二、四象限;②点P分别在第二、三、四象限.解答:解:(1)①当t=7时,CB=7,∵OC=3,∴OB=CB﹣OC=7﹣3=4,∴OA=2OB=8,∴A点坐标为(8,0),B点坐标为(0,4).设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=﹣x+4;②如图,过P作PH⊥OA于H.在△COD与△PHD中,,∴△COD≌△PHD,∴CO=PH,∴m=3;③∵PH∥OB,∴△APH∽△ABO,∴=,=,∴AH=2m,OH=8﹣2m,∴S△BCP=×7×(8﹣2m)=28﹣7m,∴S=S△ABC﹣S△BCP=28﹣(28﹣7m)=7m;(2)①当点B运动在y轴的正半轴上时.a、当点P在第一象限时,如图1,若四边形OCAP是等腰梯形,则PA=OC=3.∵∠AHP=90°,OA=2OB,∴PH=PA•sin∠PAH=3×=,即m1=.∵∠BCA=∠BAC,∴BA=BC=t.在Rt△AOB中,AB=OB,即t=(t﹣3),∴t1==;b、当点P在第二象限时,如图2,四边形AOPC为凹四边形,不可能为等腰梯形;c、当点P在第四象限时,如图3,四边形AOPC中有一个角为直角,不可能为等腰梯形;②当点B运动在OC上时.a、当点P在第二象限时,如图4,四边形OACP为凹四边形,不可能为等腰梯形;b、当点P在第三象限时,如图5,四边形OACP为凹四边形,不可能为等腰梯形;c、当点P在第四象限时,如图6,若四边形OACP为等腰梯形,则AP=OC=3,∵∠AHP=90°,OA=2OB,∴PH=PA•sin∠PAH=3×=,即m2=﹣.∵∠BCA=∠BAC,∴BA=BC=t.在Rt△AOB中,AB=OB,即t=(3﹣t),∴t2==.综上所述,满足要求的m、t的值分别为或.知识像烛光,能照亮一个人,也能照亮无数的人。
相似形一、选择题1、(2013江苏东台实中)在直角三角形中,各边都扩大2倍,则锐角A的正弦值()A、缩小2倍B、扩大2倍C、不变D、不能确定答案:C2、(2013²温州市中考模拟)如图,在△ABC中,DE∥BC,AD=2,AB=6,DE=3,则BC的长为BACEDA.9 B.6 C.4 D.3答案:A3、(2013²湖州市中考模拟试卷3)如果两个相似三角形的相似比是1∶2,那么它们的面积比是( ).C. 1∶4D. 2∶1答案:C4、6.(2013年河北二摸)两个相似三角形的面积比是9∶16,则这两个三角形的相似比是A.9∶16 B.3∶4 C.9∶4 D.3∶16答案:B二、填空题1、(2013²湖州市中考模拟试卷1)在比例尺为1:2000的地图上测得A、B两地间的图上距离为5cm,则A、B两地间的实际距离为________m.答案:1002、(2013²湖州市中考模拟试卷7)22的比例中项是 .答案:±13、(2013年河南西华县王营中学一摸)如图,已知△ABC的面积是3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与D E相交于点F,则△AEF的面积等于__________(结果保留根号).答案:433-三、解答题1、(2013安徽芜湖一模)如图,已知:直线y=-x+3交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线y=-x+3上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.(本小题满分12分)解:(1):由题意得,A (3,0),B (0,3)∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c =++得方程组⎪⎩⎪⎨⎧=++==++03039c b a c c b a 解得:⎪⎩⎪⎨⎧=-==341c b a ∴抛物线的解析式为243y x x =-+ …………………………… (4分) (2)由题意可得:△ABO 为等腰三角形,如图所示, 若△ABO ∽△AP 1D ,则1DP OBAD AO =∴DP 1=AD =4 , ∴P 1(1,4)-若△ABO ∽△ADP 2 ,过点P 2作P 2 M ⊥x 轴于M ,AD =4, ∵△ABO 为等腰三角形, ∴△ADP 2是等腰三角形,由三线合一可得:DM =AM =2= P 2M ,即点M 与点C 重合∴P 2(1,2) ……………………(8分) (3)如图设点E (,)x y ,则||2||21y y AD S ADE =⋅⋅=∆①当P 1(-1,4)时,S 四边形AP 1CE =S 三角形ACP 1+S 三角形ACE ||2214221y ⋅⨯+⨯⨯== 4y + ∴24y y =+ ∴4y = ∵点E 在x 轴下方 ∴4y =-代入得: 2434x x -+=-,即 0742=+-x x∵△=(-4)2-4³7=-12<0 ∴此方程无解②当P 2(1,2)时,S 四边形AP 2CE =S 三角形ACP 2+S 三角形ACE = 2y + ∴22y y =+ ∴2y =∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=-即 0542=+-x x ,∵△=(-4)2-4³5=-4<0∴此方程无解综上所述,在x 轴下方的抛物线上不存在这样的点E 。
2013年中考数学适应检测试卷(温州有答案)温州市实验中学2013年初中毕业生学业考试第一次适应性考试数学试题卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!参考公式:抛物线的顶点坐标是.卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在下列实数中,最小的数是(▲)A.0B.C.2D.2.温州市拟在温州汽车东站、汽车西站间建造约10公里的空中轨道,总造价预计需要人民币2000000000元,将这个造价用科学记数法表示应为(▲)A.2×107元B.2×108元C.2×109元D.2×1010元3.如图所示的是零件三通的立体图,则这个几何体的主视图是(▲)ABCD4.如图,在△ABC中,∠C=Rt∠,AB=5,BC=3,则sinA的值是(▲)A.B.C.D.5.不等式3x≤6的解在数轴上表示为(▲)6.九(1)班班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,阅读数量变化率最大的两个月是(▲)A.1月与2月B.4月与5月C.5月与6月D.6月与7月7.下列运算中,计算正确的是(▲)A.B.C.D.8.反比例函数的图象上有两个点为,,则y1与y2的关系是(▲)A.B.C.D.不能确定9.如图,,的半径分别为1cm,2cm,圆心距为5cm.如果由图示位置沿直线向右平移2cm,则此时该圆与的位置关系是(▲)A.外离B.相交C.外切D.内含10.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=;②A1E=CF;③DF=FC;④BE=BF.其中正确的有(▲)A.②③④B.①③④C.①②④D.①②③卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2-1=▲.12.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该二次函数的图象的对称轴是直线x=▲.13.如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=▲度.14.如图,在△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连结CD.若AC=,则图中长度等于1cm的线段有▲条.15.我县开展“四边三化”工作,某街道产生m立方米的拆违垃圾需要清理,某工程队承包了清理工作,计划每天清理60立方米,考虑到还有其他地方的垃圾需要清理,该工程队决定增加人手以提高50%的清理效率,则完成整个任务的实际时间比原计划时间少用了▲天(用含m的代数式表示).16.如图,Rt△ABC中,∠B=Rt∠,点D在边AB上,过点D作DG∥AC 交BC于点G,分别过点D,G作DE∥BC,FG∥AB,DE与FG交于点O.当阴影面积等于梯形ADOF的面积时,则阴影面积与△ABC的面积之比为▲.三、解答题(本题有8小题,共80分)17.(本题10分)(1)计算:;(2)先化简,再求值:(m-n)(m+n)+(m+n)2-2m2,其中.18.(本题8分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:BE与DF有怎样的位置关系和数量关系?对你的猜想加以证明.猜想:证明:19.(本题8分)图①,图②(图在答题卷上)均为的正方形网格,点A,B,C在格点(小正方形的顶点)上.(1)在图①中确定格点D,并画出一个以A,B,C,D为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E,并画出一个以A,B,C,E为顶点的四边形,使其为中心对称图形.20.(本题8分)小刚和小明两位同学玩“石头,剪刀,布”游戏.游戏规则为:两人同时出拳,其中石头胜剪刀、剪刀胜布、布胜石头;若两人出拳相同,则为平局.(1)一次出拳小刚出“石头”的概率是多少?(2)如果用A,B,C分别表示小刚出的石头,剪刀,布,用A1,B1,C1分别表示小明的石头,剪刀,布,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图法加以说明;(3)你认为这个游戏对小刚和小明公平吗?为什么?21.(本题10分)我县各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有▲名学生;(2)补全条形统计图;(3)求扇形统计图中“篮球”部分所对应的圆心角的度数;(4)若该校九年级有360名学生,请计算出该校九年级“其他”部分的学生人数.22.(本题10分)如图,在△ABC中,∠C=90°,∠ACB的平分线交AB 于点O,以O为圆心的⊙O与AC相切于点D.(1)求证:⊙O与BC相切;(2)当AC=3,BC=6时,求⊙O的半径.23.(本题12分)我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如右图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为▲元,这批蘑菇的销售量是▲千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?24.(本题14分)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A 出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S 关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.2013年初中毕业生学业考试第一次适应性考试数学参考答案一、选择题(每小题4分,共40分)题号12345678910答案DCBBBDAACC二、填空题(每小题5分,共30分)11.(m+1)(m-1)12.213.42°14.415.16.三.解答题(8小题共80分)17.(1)解:……………3分(每化对一个给1分)…………………2分(2)解:原式=…………………2分=………………………1分当时,原式=………………………2分18.解:猜想BE∥DF,BE=DF…………2分证明:∵四边形ABCD是平行四边形∴BC=AD,∠1=∠2又CE=AF,∴⊿BCE≌⊿DAF……3分∴BE=DF,∠3=∠4…………2分∴BE∥DF……………………1分19.解:(1)有以下答案供参考:……………4分(2)有以下答案供参考:……………4分20.解:(1)P(一次出牌小刚出“石头”牌)=;……2分(2)树状图:……3分或列表:由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种.所以,P(一次出牌小刚胜小明)=.……1分(3)由树状图(树形图)或列表可求得:P(一次出牌小明胜小刚)=.P(一次出牌小刚胜小明)=P(一次出牌小明胜小刚),即两人获胜的概率相等,这个游戏对小刚和小明公平.……2分21.解:(1)50………………2分(2)(3)………………2分(4)名答:“其他”部分学生人数有72名.…………2分(不答不扣分)22.解:(1)证明:如图,连结OD,作OE⊥BC于点E,…………1分∵⊙O与AC相切于点D,∴OD⊥AC.…………1分∵OC是∠ACB的平分线,∴OD=OE.…………1分∴⊙O与BC相切…………2分(2)解:∵OD⊥AC,∠ACB=90°,∴OD∥CB,∴△AOD∽△ABC,1分解法1∴即……………………2分∴∴即圆的半径为2.……2分解法2∴设半径为x,∵OC是∠ACB的平分线,∴∠DCO=45°∴CD=OD=x,∴AD=AC-CD=3-x,……………………2分解得x=2,即圆的半径为2.……………………2分23.解:(1)………………4分(2)……………………1分化简得解得x1=100,……………1分x2=400(舍去)……………1分胡经理销售将这批蘑菇存放100天后,一次性出售所得的销售总金额达到100000元.……………1分(3)设最大利润为,由题意得,……………2分∵x≤110,∴当=110时,W最大值=16500……………1分答:存放110天后出售这批香菇可获得最大利润16500元. (1)分24.解:(1)在矩形ABCD中,……2分(2)如图①,过点P作PH⊥AB于点H,AP=t,AQ=3-t,由△AHP∽△ABC,得,∴PH=,……2分,…………2分.…………1分(3)①如图②,线段PQ的垂直平分线为l经过点A,则AP=AQ,即3-t=t,∴t=1.5,∴AP=AQ=1.5,…………………………1分延长QP交AD于点E,过点Q作QO∥AD交AC于点O,则,,∴PO=AO-AP=1.由△APE∽△OPQ,得.……2分②(ⅰ)如图③,当点Q从B向A运动时l经过点B,BQ=CP=AP=t,∠QBP=∠QAP∵∠QBP+∠PBC=90°,∠QAP+∠PCB=90°∴∠PBC=∠PCBCP=BP=AP=t∴CP=AP=AC=×5=2.5∴t=2.5.………2分(ⅱ)如图④,当点Q从A向B运动时l经过点B,BP=BQ=3-(t-3)=6-t,AP=t,PC=5-t,过点P作PG⊥CB于点G由△PGC∽△ABC,得,BG=4-=由勾股定理得,即,解得.………2分。
浙江省温州地区2013年中考模拟数学试卷参考公式:抛物线2y ax bx c =++(a ≠0)的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭.卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.下列各数中,最大的数是( ▲ ) A .-1B .0C .1D .22.在奥运会国家体育场的“鸟巢”钢结构工程施工建设中, 首次使用了我国科研人员自主研制的强度为4600000000帕 的钢材,那么数据4600000000用科学记数法表示为( )A .8106.4⨯B .9106.4⨯C .91046.0⨯D .71046⨯3.右图是某校食堂甲、乙、丙、丁四种午餐受欢迎程度 的扇形统计图,则最受欢迎的午餐是( ▲ )A .甲B .乙C .丙D .丁4.二次函数22(1)3y x =-+的图象的顶点坐标是( ▲ ) A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.某一段时间,小芳测得连续五天的日最低气温的平均气温是1℃,整理得出下表(有一个数据被遮盖).日期 一 二 三 四 五 最低气温1℃-1℃■℃0℃2℃被遮盖的这个数据是( ▲ ) A .1B .2C .3D .46.两圆的半径分别为7cm 和8cm ,圆心距为1cm ,则两圆的位置关系是( ▲ ) A .相离 B .相交 C .内切 D .外切 7.如图,在□ABCD 中,点E 为AD 的中点,连接BE , 交AC 于点F , 则AF :CF=( ▲ )A .1:2B .1:3C .2:3D .2:58.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB=8,BC=10,(第7题)图 2丙25%丁30%乙25%甲20%(第3题)第2题(第13题)则tan∠EFC 的值为( ▲ ) A .34 B .43 C .35 D .459.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2).将△AB O 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线(0)ky x x=>上,则k 的值为( ▲ ) A .2 B .3 C .4 D .610.小明借了同学好多的三角板来玩,他发现用四块含30°角的直角三角板(如图1),可以 拼成一个更大的含30°角的直角三角形,于是他提出一个问题:在图2的基础上至少再 添加( ▲ )个如图1的三角板,可以拼成一个比图2更大的含30°角的直角三角形. A .4 B .5 C .6 D .7卷 Ⅱ二、填空题(本题共6小题,每小题5分,共30分) 11.分解因式:2a a -= ▲ . 12.在函数21-=x y 中,自变量x 的取值范围是 ▲ . (第8题)(第10题)ODCB AAE BC F DQ PM N BCDA(第15题)D OBAC(第9题)xy图1图2(第10题)13.如图,已知二次函数c bx x y ++=2的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一个交点为C ,则AC 的长为 ▲ .14.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD = ▲ 度. 15.如图,∠C=900,∠A=300,BD 平分∠ABC ,若AD=8,则CD=____▲_____.16.如图,Rt△ABC中,∠B=90°,正方形EFDQ 、正方形MNPQ 公共顶点记为点Q ,其余的各个顶点都在Rt△ABC 的边上,若AC=5,BC=3,则EP= ▲ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:01360sin 4212)(++︒--+(2)在三个整式12-x ,122++x x ,x x +2中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简..........,再求当...x .=2..时分式的值......18.(本题6分)图①、图②均为76⨯的正方形网格,点A,B,C 在格点上.(1)在图①中确定格点D ,并画出以A,B,C,D 为顶点的四边形,使其为 轴对称图形;(画一个即可)(2)在图②中确定格点E ,并画出以A,B,C,E 为顶点的四边形,使其为中心对称图形.(画一个即可)19.(本题8分)有A,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2. B 布袋中有三个完全相同的小球,分别标有数字 -1,-2和2.小明从A 布袋中随机取出一 个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y , 这样就确定点Q 的一个坐标为()x y ,.(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线3y x =-上的概率.20.(本题10分)全国各地都在推行新型农村医疗合作制度。
浙江省温州市2013年中考数学试卷(解析版)浙江省温州市2013年中考数学试卷⼀、选择题(本题有10⼩题,每⼩题4分,共40分。
每⼩题只有⼀个选项是正确的,不选,多选,错选,均不给分)1.(4分)(2013?温州)计算:(﹣2)×3的结果是()2.(4分)(2013?温州)⼩明对九(1)班全班同学“你最喜欢的球类项⽬是什么?(只选⼀项)”的问题进⾏了调查,把所得数据绘制成如图所⽰的扇形统计图,由图可知,该班同学最喜欢的球类项⽬是()3.(4分)(2013?温州)下列各图中,经过折叠能围成⼀个⽴⽅体的是()B C D.4.(4分)(2013?温州)下列各组数可能是⼀个三⾓形的边长的是()5.(4分)(2013?温州)若分式的值为0,则x的值是()6.(4分)(2013?温州)已知点P(1,﹣3)在反⽐例函数y=(k≠0)的图象上,则k的值是()D==,解得7.(4分)(2013?温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()B C D.=AB=8.(4分)(2013?温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()B C D.=.9.(4分)(2013?温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()∴,即=10.(4分)(2013?温州)在△ABC中,∠C为锐⾓,分别以AB,AC为直径作半圆,过点B,A,C作,如图所⽰.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()B C D.,,π⼆、填空题(本题有6⼩题,每⼩题5分,共30分)11.(5分)(2013?温州)因式分解:m2﹣5m=m(m﹣5).12.(5分)(2013?温州)在演唱⽐赛中,5位评委给⼀位歌⼿的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌⼿的平均得分是8分.13.(5分)(2013?温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3= 110度.14.(5分)(2013?温州)⽅程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.=1±,=1+﹣,.15.(5分)(2013?温州)如图,在平⾯直⾓坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A 和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).16.(5分)(2013?温州)⼀块矩形⽊板,它的右上⾓有⼀个圆洞,现设想将它改造成⽕锅餐桌桌⾯,要求⽊板⼤⼩不变,且使圆洞的圆⼼在矩形桌⾯的对⾓线上.⽊⼯师傅想了⼀个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N 沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所⽰.图2中的矩形EFGH是切割后的两块⽊板拼接成符合要求的矩形桌⾯⽰意图(不重叠,⽆缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.=′=AB CB三、解答题(本题有8⼩题,共80分,解答需写出必要的⽂字说明,演算步骤或证明过程)17.(10分)(2013?温州)(1)计算:+()+()0(2)化简:(1+a)(1﹣a)+a(a﹣3)+;18.(8分)(2013?温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.19.(8分)(2013?温州)如图,在⽅格纸中,△ABC的三个顶点和点P都在⼩⽅格的顶点上,按要求画⼀个三⾓形,使它的顶点在⽅格的顶点上.(1)将△ABC平移,使点P落在平移后的三⾓形内部,在图甲中画出⽰意图;(2)以点C为旋转中⼼,将△ABC旋转,使点P落在旋转后的三⾓形内部,在图⼄中画出⽰意图.20.(10分)(2013?温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的⾯积.=621.(10分)(2013?温州)⼀个不透明的袋中装有5个黄球,13个⿊球和22个红球,它们除颜⾊外都相同.(1)求从袋中摸出⼀个球是黄球的概率;(2)现从袋中取出若⼲个⿊球,并放⼊相同数量的黄球,搅拌均匀后使从袋中摸出⼀个是黄球的概率不⼩于,问⾄少取出了多少个⿊球?摸出⼀个球摸到黄球的概率为:=由题意,得≥≥.22.(10分)(2013?温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC⾄点D,使DC=CB,延长DA与⊙O的另⼀个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.,(舍去).23.(10分)(2013?温州)某校举办⼋年级学⽣数学素养⼤赛,⽐赛共设四个项⽬:七巧板拼图,趣题巧解,数学应⽤,魔⽅复原,每个项⽬得分都按⼀定百分⽐折算后记⼊总分,下表为甲,⼄,丙三位同学得分情况(单位:分)(1)⽐赛后,甲猜测七巧板拼图,趣题巧解,数学应⽤,魔⽅复原这四个项⽬得分分别按10%,40%,20%,30%折算△记⼊总分,根据猜测,求出甲的总分;(2)本次⼤赛组委会最后决定,总分为80分以上(包含80分)的学⽣获⼀等奖,现获悉⼄,丙的总分分别是70分,80分.甲的七巧板拼图、魔⽅复原两项得分折算后的分数和是20分,问甲能否获得这次⽐赛的⼀等奖?解得:,24.(14分)(2013?温州)如图,在平⾯直⾓坐标系中,直线AB与x轴,y轴分别交于点A (6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的⼀动点,连接CD,DE,以CD,DE为边作?CDEF.(1)当0<m<8时,求CE的长(⽤含m的代数式表⽰);(2)当m=3时,是否存在点D,使?CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯⼀的位置,使得?CDEF为矩形,请求出所有满⾜条件的m的值.∴,即=,﹣m﹣m∴即=的坐标为(﹣m=(﹣﹣m﹣m=∴=﹣;∴,即=,.﹣(﹣﹣.﹣=﹣m.的值是或或﹣或﹣.上⼀页下⼀页。
2013年浙江省初中毕业生学业考试(温州市卷)数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(-2)×3的结果是( )A.-6B.-1C.1D.62.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )九(1)班同学最喜欢的球类项目统计图A.羽毛球B.乒乓球C.排球D.篮球3.下列各图中,经过折叠能围成一个立方体的是( )4.下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,115.若分式-3的值为 0,则x的值是( )A.3B.0C.-3D.-46.已知点P(1,-3)在反比例函数y=(k≠0)的图象上,则k的值是( )A.3B.-3C.3D.-37.如图,在☉O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )A. B. C. D.8.如图,在△ABC中,∠C=90°,AB= ,BC=3,则sin A的值是( )A.3B.3C.3D.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,=3,则EC的长是( )A.4.5B.8C.10.5D.1410.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示,若AB=4,AC=2,S1-S2=,则S3-S4的值是( )A. 29B.23C. D.第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:m2-5m= .12.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是分.13.如图,直线a,b被直线c所截,若a∥b,∠ = 0°,∠2= 0°,则∠3=度.14.方程x2-2x-1=0的解是.15.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(- ,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A'B'C'(A和A',B和B',C 和C'分别是对应顶点).直线y=x+b经过点A,C',则点C'的坐标是.16.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm)后,从点N沿折线NF—FM(NF∥BC,FM∥AB)切割,如图1所示,图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN,AM的长分别是.图1 图2三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:+(-1)+20 ;(2)化简:(1+a)(1-a)+a(a-3).18.(本题8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD= ,求BD的长.19.(本题8分)如图,在方格纸中,△ABC的三个顶点和点P 都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.图甲图乙20.(本题10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连结BD.已知点A的坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD的面积.21.(本题10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球,问至少取出了多少个黑球?是黄球的概率不小于322.(本题10分)如图,AB为☉O的直径,点C在☉O上,延长BC至点D,使DC=CB,延长DA与☉O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.23.(本题10分)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分情况((1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?24.(本题14分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8).点C的坐标为(0,m),过点C作CE⊥AB于点E.点D为x轴上一动点,连结CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含 m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.答案全解全析:1.A (-2)×3=-6,故选A.2.D 因为喜欢篮球的比例为32%,所以该班同学最喜欢的球类项目是篮球,故选D.3.A 只有A经过折叠能够围成一个立方体,故选A.4.C 能够组成三角形的三边长必须满足两边之和大于第三边,故选C.5.A 若分式的值为0,则一定要满足分子为零,同时分母不为零.故选A.6.B 因为点P(1,-3)在反比例函数y=(k≠0)的图象上,所以-3=k,即k=-3,故选B.7.B 因为OC⊥AB,AB= ,所以BC=2,又OC=1,所以OB=222=,故选B.8.C 由正弦定义得sin A==3,故选C.9.B 因为DE∥BC,所以=,即3=,所以EC=8,故选B.10.D 由题图可知S1+S3=2×22× =2 ,S2+S4=2× 2× =2,所以(S1+S3)-(S2+S4)=(S1-S2)+(S3-S4)=2 -2=32,又S1-S2=,所以S3-S4=32-=,故选D.11.答案m(m-5)解析m2-5m=m(m-5).12.答案8.0解析=×( .2+ .3+ . + . + .0)= .0(分).13.答案110解析因为a∥b,所以∠ =∠ (如图),所以∠3=∠ +∠2= 0°.14.答案 x 1=1+ 2=1-解析 由求根公式得x=2 (-2)2- (- )2=2 2 22= ± 15.答案 (1,3)解析 因为BC⊥x 轴,C 与C'关于x 轴对称,且B(-1,0),可设C'的坐标为(1,y),因为直线y=x+b 经过点A,C',所以把点A 的坐标(-2,0)代入y=x+b,得b=2,再把C'点的坐标(1,y)代入直线解析式得y=1+2=3,所以点C'的坐标是(1,3). 16.答案 18 cm,31 cm解析 由于点K 到AB 的距离是130-50=80(cm),BK=100 cm,所以点K 到BC 的距离是 002- 02=60(cm),由此可求得圆的半径为60-44=16(cm),所以圆心到AB 的距离是80+16=96(cm),要使圆心在矩形对角线交点上,所以CN=60- 0 2=18(cm),AM=96-302=31(cm).评析 本题以改造矩形桌面为载体,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题的经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用.17.解析 (1) +( 2-1)+ 2 0=2 =3 2.(2)(1+a)(1-a)+a(a-3) =1-a 2+a 2-3a =1-3a.18.解析 (1)证明:∵AD 平分∠CAB,∴∠CAD=∠EAD.∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°,又∵AD=AD,∴△ACD≌△AED.(2)∵△ACD≌△AED,∴DE=CD= ,∵∠B=30°,∠DEB=90°,∴BD=2DE=2.19.解析(1)(2)20.解析(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1.∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x-1)2+4的对称轴是直线x=1,∴CD= .∵A点坐标为(-1,0),且点A、B关于直线x=1对称, ∴B点坐标为(3,0).∴OB=3,∴S梯形COBD=( 3)32=6.21.解析(1)摸出一个球是黄球的概率P=322=.(2)设取出x个黑球,由题意,得0≥3,解得x≥23,∴x的最小正整数解是9.则至少取出9个黑球.22.证明( )∵AB是☉O直径,∴∠ACB=90°,∴AC⊥BC.∵CD=CB,∴AD=AB,∴∠B=∠D.(2)设BC=x,则AC=x-2,在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=42,解得x1=1+,x2=1-舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE.∵CD=CB,∴CE=CB= +23.解析(1)甲的总分: × 0%+ 9× 0%+ ×20%+ ×30%= 9. (分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.由题意,得20 0 0 0,20 090 0,解得0.3,0. .∴甲的总分:20+ 9×0.3+ ×0. = . > 0,∴甲能获一等奖.24.解析( )∵A( ,0),B(0, ),∴OA= ,OB= ,∴AB= 0.图1∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO.,∴=,即=-∴CE=2 -3m.(2)∵m=3,∴BC= -m=5.CE=2 -3m=3.∴BE= ,∴AE=AB-BE=6,∵点F落在y轴上(如图2),∴DE∥BO,图2∴△EDA∽△BOA,∴ = ,即 - = 0,∴OD= 2 ,∴点D 的坐标为 2 ,0 .(3)取CE 的中点P,过点P 作PG⊥y 轴于点G,则CP= 2CE= 2 -3 0m.图3(Ⅰ)当m>0时,(i)当0<m<8时(如图3),易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=3 .∴CG=CPcos∠GCP=3 × 2 -3 0m =3 2 -9 0m,∴OG=OC+CG=m+3 2 -9 0m= 0m+3 2 .由题意得OG=CP,∴ 0m+3 2 = 2 -3 0m,解得m= .(ii)当m≥ 时,OG>CP,显然不存在满足条件的m 的值.(Ⅱ)当m=0时,点C 与原点O 重合(如图4),满足题意.图4(Ⅲ)当m<0时,(i)当点E 与点A 重合时(如图5),图5易证△COA∽△AOB,∴ = ,即- = ,解得m=-92.图6(ii)当点E 与点A 不重合时(如图6),OG=OC-CG=-m- 3 2 -9 0m=- 0m-3 2 . 由题意,得OG=CP,∴- 0m-3 2 = 2 -3 0m,解得m=-9 3.综上所述,m 的值为 或0或-92或-9 3.评析 本题属于探究性问题,设计新颖,易理解,作答难.特别是第(3)小题,当动点D 在运动过程中不能得到矩形时,需要学生自己去寻找m 的值,对m 的取值范围进行讨论,画出相应图形.该题把观察、操作、探究、计算整合在一起,蕴含着函数、方程、分类、转化等重要的数学思想方法.。
2013年浙江省温州市中考数学模拟试卷(四)一、选择题
.C
±
.C D.
.C D.
9.分式方程的解是()
D
11.若分式无意义,则实数x的值是_________.
12.如图,直线l1∥l2,∠1=120°,则∠2=_________度.
13.若m2﹣2m=1,则2m2﹣4m+2007的值是_________.
14.已知一次函数y=2x+1,则y随x的增大而_________(填“增大”或“减小”).
15.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是_________枚.
16.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,则菱形ABCD的边长是_________.
三、解答题
17.计算:
18.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.
19.如图,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.
求证:△ABE≌△DCE.
20.小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.
(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;
(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由)
21.(8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求的长.(结果保留π)
22.(8分)阅读材料,解答问题.
例用图象法解一元二次不等式:.x2﹣2x﹣3>0
解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.
∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.
观察函数图象可知:当x<﹣1或x>3时,y>0.
∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.
(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是_________;
(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.
23.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
24.如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=x
﹣2,连接AC.
(1)B、C两点坐标分别为B(_________,_________)、C(_________,_________),抛物线的函数关系式为_________;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.。