山东省潍坊市2017年高考仿真试题二(数学)(含答案)word版
- 格式:doc
- 大小:2.88 MB
- 文档页数:9
山东省潍坊市2017届高三数学下学期第二次模拟考试试题 文本试卷共4页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间l20分钟.第I 卷(选择题共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共l0小题。
每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z(1+i )=2i ,则在复平面内z 对应的点的坐标是 (A )(1,1) (B )(1, -l) (C)(—l,1) (D )(-l,-l)2.设全集U=R ,集合A={|21xx >},B={|15x x -≤≤},则B A C U ⋂)(等于(A)[—1,0) (B)(0,5] (C)[-1,0] (D)[0,5]3.已知命题p 、q ,“p ⌝为真”是“p q ∧为假”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 (A ) 22(2)(2)3x y -+±= (B) 22(2)(3)3x y -+±= (C) 22(2)(2)4x y -+±= (D) 22(2)(3)4x y -+±=5.执行如图所示的程序框图,则输出的k 的值是(A ) 3 ( B ) 4 (C )5 (D ) 66。
高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量 为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为(A) 13 (B) 17 (C ) 19 (D ) 217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列, 上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为( )升(A ) (B) (C) (D)8.函数xa y =与sin y ax =(0a >且1a ≠)在同一直角坐标系下的图象可能是9.三棱锥S —ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥AC ,又SA=AB= AC=1, 则球O 的表面积为 (A)32(B) 32π (C ) 3π (D) 12π66766672213676610.设⎩⎨⎧<<--≥-≤+=32,132,4)(2x x x x x x f 或,若函数()y f x k =+的图象与x 轴恰有三个不同交点,则k 的取值范围是(A)(—2,1) (B)[0,1] (C )[—2,0) (D)[-2,1)第Ⅱ卷 (非选择题共100分)注意事项:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上。
2017年中考数学二模试题(潍坊市附答案)2017年潍坊市初中学业水平模拟考试(二)数学试题 2017.5 注意事项: 1.本试卷分第Ⅰ卷和第Ⅱ卷两部分. 第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;满分120分,考试时间120分钟. 2.答卷前务必将试卷密封线内和答题卡上面的项目填涂清楚.所有答案都必须涂写在答题卡的相应位置,答在本试卷上一律无效. 第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是(). A.an•a2=a2n B.a3•a2=a6 C.an•(a2)n=a2n+2 D.a2n-3÷a-3=a2n 2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为(). A.0.2×107 B.2×107 C.0.2×108 D.2×108 3.如图,厂房屋顶人字形(等腰三角形)的钢架的跨度BC=10米,∠B=36o,则中柱AD(D为BC的中点)的长为(). A.5sin36o B.5cos36o C.5tan36o D.10tan36o 4.已知关于x的方程的解是非负数,则m范围是(). A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 5.若关于x的方程x2-2x+cosα=0有两个相等的实数根,则锐角α为(). A.30° B.45° C.60° D.75°6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是().A.40πB.24πC.20 πD. 12π7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(). A.65° B.50° C.40° D.35° 8.如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则的值为(). A. B. C. D. 9.二次函数y=�x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是(). A.点C的坐标是(0,1) B.线段AB的长为2 C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大 10.如图,⊙C过原点,与x轴、y轴分别交于A.D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是(). A.433 B.233 C.43D. 211.如图,在菱形ABCD中,∠B=45o,以点A为圆心的扇形与BC,CD 相切. 向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率是(). A.1-32π16 B.2- 3π8 C.1- 3π8 D.3π8 12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(). A. B. C. D.第Ⅱ卷(非选择题共84分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上. 二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13. 分解因式:x2-y2-3x-3y=__________ 14.计算的结果是__________________.15.如图,已知函数y=ax+b与函数y=kx-3的图象相交于P(4,-6),则不等式ax+b≤kx-3<0的解集是_______________.16计算:. 17.如图,已知正方形ABCD的对角线交于点O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF 等于.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3……,则S1+S2+S3+……+S20= _______________.三、解答题(本大题共7小题,共66分. 解答要写出文字说明、证明过程或演算步骤) 19.(本题满分8分)某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一二图示测得数据 CD=6.9m,∠ACG=22°,∠BCG=13°, EF=10m,∠AEB=32°,∠AFB=43° 参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40 sin13°≈0.22,cos13°≈0.97,tan13°≈0.23 sin32°≈0.53,cos32°≈0.85,tan32°≈0.62 sin43°≈0.68,cos43°≈0.73,tan43°≈0.93 请你选择其中的一种方案,求教学楼的高度(结果保留整数)20.(本题满分8分)目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率. 21.(本题满分8分)小明早晨从家里出发匀速步行去上学.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA�AB所示.(1)试求折线段OA�AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)22.(本题满分10分) LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LE D灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表: LED灯泡普通白炽灯泡进价(元) 45 25 标价(元) 60 30(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元? 23. (本题满分10分)如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明;若不是,请说明理由. 24. (本题满分10分)如图,在Rt△ABC中,∠C=90o,sinA= ,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF. (1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式. 25.(本题满分12分)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=�x2+ x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,是否存在t,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2017年潍坊市初中学业水平模拟考试(二)数学试题参考答案及评分标准一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填在题后的小括号内,每小题选对得3分. 错选、不选或多选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B C C C C B A D B A B 二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13. (x+y)(x�y�3);14. 23+1;15. -4<x≤4;16. ;17. 5;18.195π三、解答题(本大题共7小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.解方案一,解法如下:在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵tan∠BCG=BGCG ,∴CG=6.9tan13o≈6.90.23=30,……………………………3分在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=AGCG,∴AG=30×tan22°≈30×0.40=12,…………………6分∴AB=AG+BG=12+6.9≈19(米).……………………………………7分答:教学楼的高度约19米.……………………………………8分方案二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=ABFB,∴FB=ABtan43o≈AB0.93,……………………………3分在Rt△ABE 中,∠ABE=90°,∠AEB=32°,∵tan∠AEB=ABEB,∴EB=ABtan32o≈AB0.62,……………………………6分∵EF=EB�FB 且EF=10,∴AB0.62�AB0.93=10,……………………7分解得AB=18.6≈19(米).答:教学楼的高度约19米.………………………………………8分 20. 解:(1)共调查的中学生家长数是:40÷20%=200(人);………………1分(2)扇形C所对的圆心角的度数是:360°×(1�20%�15%�60%)=18°;…………………………………………2分 C类的人数是:200×(1�20%�15%�60%)=10(人),…………………3分补图如下:……………………4分(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;………………5分(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种………………7分∴P(2人来自不同班级)=812=23.…………………………………………8分 21. 解:(1)线段OA对应的函数关系式为:s=112t(0≤t≤12)…………1分线段AB对应的函数关系式为:s=1(12<t≤20);……………………2分(2)图中线段AB的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;……………………4分(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20�10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D(16,1),小明花20�12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B(20,1).……………………………………………6分妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD�DB就是所作图象.…………………………………………8分 22. 解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为(300-x)个,根据题意得:(60-45)x+(0.9×30-25)(300-x)=3200 ………………………………2分解得,x=200 300-200=100 答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个. ………4分(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120�a)个,这批灯泡的总利润为W元,根据题意得W=(60�45)a+(30�25)(120�a)…………………………………5分=10a+600 …………………………………6分∵10a+600≤[45a+25(120�a)]×30% …………………………………7分解得a≤75,…………………………………8分∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,………………… ………………9分此时购进普通白炽灯泡(120�75)=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.…………………………………………………………………10分23. 解:(1)CD=BE;理由如下………………………1分∵△ABC和△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=60°,…2分∵∠BAE=∠BAC-∠EAC=60°-∠EAC,∠DAC=∠DAE-∠EAC=60°-∠EAC,∴∠BAE=∠DAC,……………………………………………3分∴△ABE≌△ACD,……………………………………………4分∴CD=BE;………………………………………………………5分(2)△AMN是等边三角形;理由如下:………………………6分∵△ABE≌△ACD,∴∠ABE=∠ACD,∵M、N分别是BE、CD的中点,∴BM=12BE=12CD=CN,…………7分∵AB=AC,∠ABE=∠AC D,∴△ABM≌△ACN,………………………………………………8分∴AM=AN,∠MAB=∠NAC,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,………9分∴△AMN是等边三角形,……………………………………………10分24. (1)连接OD.∵OA=OD,∴∠OAD=∠ODA. -------------------------2分∵EF是BD的中垂线,∴DF =BF.∴∠FDB=∠B. ------------------------------------------------3分∵∠C=90°,∴∠OAD+∠B=90°.∴∠ODA+∠FDB=90°.∴∠ODF=90°.----------------------------4分又∵OD 为⊙O的半径,∴DF为⊙O的切线.-----------------------------------5分 (2)法一:连接OF.在Rt△ABC中,∵∠C=90°,sinA= ,AB=10,∴AC=6,BC =8. -----------------------------------------7分∵AO=x,DF=y,∴OC=6-x,CF=8-y,在Rt△COF中,OF2=(6-x)2+(8-x)2 在Rt△ODF中,OF2=x2+y2 ∴(6-x)2+(8-x)2=x2+y2.-----------------------------------------9分∴y=-34x+254(0<x≤6)---------------------------------------10分法二:过点O做OM⊥AD于点M.在Rt△OAM中,∵AO=x,sinA= ,∴AM=35x.----------- ------------------------------7分∵OA =OD,OM⊥AD,∴AD= 65x.∴BD=10-65x. ∵EF是BD的中垂线,∴BE=5-35x ∵cosB= BE BF = BC AB,∴5-35xy =810.-----------------------------------------9分∴y=-34x+254(0<x≤6)---------------------------------------10分 25. 解:(1)抛物线y=� x2+ x+4中:令x=0,y=4,则B(0,4);………………………………………………2分令y=0,0=�x2+ x+4,解得x1=�1、x2=8,则A(8,0);∴A(8,0)、B(0,4).…………………………………………………4分(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,�4).由A(8,0)、B(0,4),得:直线AB:y =�x+4;…………………5分依题意,知:OE=2t,即E(2t,0);∴P(2t,�2t2+7t+4)、Q(2t,�t+4), PQ=(�2t2+7t+4)�(�t+4)=�2t2+8t;……………………………………6分S=S△ABC+S△PAB= ×8×8+ ×(�2t2+8t)×8=�8t2+32t+ 32=�8(t�2)2+64;∴当t=2时,S有最大值,且最大值为64.…………………………………8分(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△PAM 若是直角三角形,只能是∠PAM=90°;即有△PAE∽△AME,所以,即……………9分由A(8,0)、C(0,�4),得:直线AC:y= x�4;所以,M(2t,t-4),得:PE=�2t2+7t+4,EM=4�t,AE=8�2t ∴(�2t2+7t+4)(4�t)=(8�2t)2,………………………………………10分故(�2t2+7t+4)(4�t)=4(4�t)2 �2t2+7t+4=4(4�t)即有2t2-11t+12=0,解之得:或(舍去)∴存在符合条件的.…………………………12分。
2017年山东省潍坊市诸城市高考数学模拟试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=() A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)3.二项式(x﹣)6的展开式中x﹣2的系数为()A.6 B.15 C.20 D.284.已知圆C:(x﹣1)2+(y﹣3)2=2被y轴截得的线段AB与被直线y=3x+b所截得的线段CD的长度相等,则b等于()A.±B.±C.±2D.±5.甲、乙两名运动员的5次测试成绩如图所示,设s1,s2分别表示甲、乙两名运动员成绩的标准差,、分别表示甲、乙两名运动员测试成绩的平均数,则有()A.,s1<s2B.,s1<s2C.,s1>s2D.,s1>s26.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.π C.D.2π8.已知实数x,y满足,若z=4x﹣y的最大值是最小值的15倍,则m等于()A.5 B.C.7 D.159.若函数f(x)=sin(2x+φ)(|φ|<)的图象关于直线x=对称,且当x1,x2∈(﹣,﹣),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于()A.B.C.D.10.在平面直角坐标系xOy中,抛物线y2=﹣2px(p>0)的焦点F 与双曲线x2﹣8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为() A.3B.4C.3D.3二、填空题:本大题共5小题,每小题5分,共25分.11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.记[x]表示不超过x的最大整数,执行如图所示的程序框图,则输出S的值为.13.在平行四边形ABCD中,AB=3,AD=2,∠BAD=60°,=t(0≤t≤1),且•=﹣1,则t= .14.在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题:本答题共6小题,共75分.。
M N=(.(0,2)+∞,函数(0,1)(1,)B.p5.一个几何体的三视图如图所示,则该几何体的体积是()ArrayA112 B80 C72 D644A B C D.运行如图所示的程序框图,则输出的结果为.12.观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )...(sin )3477773----++++=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )...(sin )4599993----++++=⨯⨯;…照此规律,.已知向量(1,1)a -,(6,4)b =-,若()a ta b ⊥+,则实数.已知双曲线E :221(0)x y a a b-=>,若矩形ABCD 15.给出下列四个命题:①命题“x ∀∈R ,20x >”的否定是“x ∃∈R ,20x ≤”; ②函数()y f x =的定义域为(,1)(1,)-∞-+∞,其图象上任一点(,)P x y 满足221x y =-,则函数()y f x =可能是奇函数;③若[,]01a b ∈,,则不等式2214a b +<成立的概率是π4④函数22log (2)y x ax =-+在[2,)+∞恒为正,则实数a 的取值范围是5(,)∞. a ba b 的单调递增区间; 轴右侧的第一个最高点的坐标为1﹣AEF 的体积.16.解:(Ⅰ)()=3sin πcos π2sin(π)6f x a b a x x x ==+=+,πππ2ππ2π262k x k -≤+≤+,解得212233k xk -≤≤+,∵]2[0x ∈,时,10x ≤≤或42x≤≤,(Ⅱ)由题意得1(,2)3P ,4(,2)3Q .根据距离公式||3OP ==,||3OQ ==,||PQ =37213423317.解:(Ⅰ)∵2()3sin(π)sin (sin cos )1sin21sin22f x x x x x x x x =---=-+=-+πsin212sin(2)13x x x =+=-,令πππ2π22πk x k ≤≤+--,求得π5πππk x k ≤≤+-,(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x =-+的图象;再把得到的图象向左平移π个单位,得到函数()2sin 1y g x x ==的图象,18.(Ⅰ)∵1BB ABC ⊥面,AE ABC ⊂平面, ∴1AE BB ⊥,∵E 是正三角形ABC 的边BC 的中点, ∴AE BC ⊥,又∵11BC B BCC ⊂平面,111B B B BCC ⊂平面,1BC BB B =,∴11AE B BCC ⊥平面,∵AE AEF ⊂平面, ∴11AEF B BCC ⊥平面平面. (Ⅱ)∵三棱柱所有的棱长均为2,∴AE =,∴11113222*********B EF S =⨯⨯⨯-⨯⨯-⨯⨯=△-, 由(Ⅰ)知11AE B BCC ⊥平面 ∴111333322B AEF A B EF V V --===19.解:(Ⅰ)238n S n n =+, ∴2n ≥时,165n n n a S S n ==+--,1n =时,1111a S ==,∴65n a n =+;∵1n n n a b b +=+,∴11n n a b bn =+--, ∴111n n n n a a b b +=----. ∴26d =, ∴3d =, ∵112a b b =+, ∴11123b =+, ∴14b =,∴43(1)31n b n n =+-=+;(Ⅱ)11(1)(66)6(1)2(2)(33)n n n n n nn a n c n n b n ++++===+++, ∴622322)[(1]2n T n n =++⋯++①,∴2622232[]32(1)21n T n n n n =++⋯++++②,①-②可得6222223[]2(1)21n T n n n =+++⋯+-++-1266(1)21n n +=+⨯+- (6)21322n n n n =-+=+-,22n n +.(Ⅰ)由题意可得221213a b+=,且222ab c =-, 解得a =,1b =,(Ⅱ)若直线的斜率不存在,M ,N 为椭圆的上下顶点,即有||2AM =,||1AN =,不满足题设条件;设直线l :3(0)2y kx k =+≠,与椭圆方程2213x y +=联立,消去y ,可得2215(13)904k x kx +++=,判别式为2215814(13)04k k +>-,化简可得2512k >,① 设11(,)M x y ,22(,)N x y ,可得122913kx x k+=-+, 212122293()331313k y y k x x k k+=++=-=++, 由||||AM AN =,(0,1)A -,可得=整理可得,12121212(2)()0y y x x y y x x -++++=-,12()y y ≠ 即为22293(2)01313k k k k-++=++,可得223k =,即k =代入①成立.21.解:(Ⅰ)1()2(1)f x a x x'=-+,∵函数()f x 在区间[2]4,上单调递减,∴1()2(1)0f x a x x'=-+≤在区间[2]4,上恒成立, 即212a x x≤-+在[2]4,上恒成立,…只需2a 不大于21x x-+在[2]4,上的最小值即可.当24x ≤≤时,2111[,]212x x ∈---+,…∴122a ≤-,即14a ≤-,故实数a 的取值范围是1(,]4-∞-.…(Ⅱ)因()f x 图象上的点都在10x y x ≥⎧⎨-≤⎩所表示的平面区域内,即当,)[1x ∈+∞时,不等式()f x x ≤恒成立, 即2(1)ln 10a x x x -+-+≤恒成立, 设2()(1)ln 1(1)g x a x x x x =+-+≥-, 只需()0max g x ≤即可.…由212(21)1()2(1)1ax a x g x a x x x-++'=-+-=,(i )当0a =时,,当1x >时,()0g x '<,函数()g x 在(1,)+∞上单调递减, 故()(1)0g x g ≤=成立.(ii )当0a >时,由212(1)()2(21)12()a x x ax a x a g x xx---++'==,令()0g x '=,得11x =或212x a=, ①若112a ≤,即12a ≥时,在区间[1)+∞,上,()0g x '≥, 函数()g x 在[1)+∞,上单调递增,函数()g x 在[1)+∞,上无最大值,不满足条件;②若112a <,即102a <<时, 函数()g x 在1[1,)2a 上单调递减,在区间1[,)2a+∞上单调递增,同样()g x 在[1)+∞,无最大值,不满足条件.(iii )当0a <时,由12(1)()2()a x x a g x x--'=,因1)[x ∈+∞,,故()0g x '≤, 则函数()g x 在[1)+∞,上单调递减, 故()(1)0g x g ≤=成立.综上所述,实数a 的取值范围是(0],-∞.…山东省潍坊市青州市2017年高考数学(文科)模拟试卷解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】1D:并集及其运算.【分析】先求出集合M,N,再根据并集的定义求出即可.【解答】解:集合M={x|x2﹣4x<0}=(0,4),N={x||x|≤2}=[﹣2.2].∴M∪N=[﹣2,4),故选:B2.【考点】A5:复数代数形式的乘除运算.【分析】根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可.【解答】解:∵z===1+i,∴=1﹣i,故选:B3.【考点】2K:命题的真假判断与应用;4N:对数函数的图象与性质.【分析】根据指数函数的单调性及幂函数图象和性质,分析命题p,q的真假,可得答案.【解答】解:当x=2时,loga(x﹣1)=loga1=0恒成立,故命题p:∀a∈(0,1)∪(1,+∞),函数f(x)=loga(x﹣1)的图象过点(2,0),为真命题;∀x∈N,x3≥x2恒成立,故命题q:∃x∈N,x3<x2为假命题,故选:B4.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.【考点】L!:由三视图求面积、体积.【分析】根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据,结合正方体的体积公式和棱锥的体积公式,即可得到答案.【解答】解:根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据可知:正方体及四棱锥的底面棱长均为4,四棱锥高3则V正方体=4×4×4=64=16故V=64+16=80故选B6.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案.【解答】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据图象的变换规则逐步得出函数解析式,利用正弦函数的单调性即可得解.【解答】解:∵将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数解析式为:y=cos(πx);再把图象上所有的点向右平移1个单位长度,得到函数的解析式为:g(x)=cos[π(x﹣1)];∴可得:,∵由2k≤≤2kπ+,k∈Z,解得:4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是:[4k+1,4k+3],k∈Z,由2kπ﹣≤≤2k,k∈Z,解得:4k﹣1≤x≤4k+1,k∈Z,可得函数g(x)的单调递增区间是:[4k﹣1,4k+1],k∈Z,对比各个选项,只有A正确.故选:A.8.【考点】HS:余弦定理的应用;HP:正弦定理.【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可.【解答】解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C9.【考点】3O:函数的图象.【分析】由于f(x)=x2+cosx,得f′(x)=x﹣sinx,由奇函数的定义得函数f′(x)为奇函数,其图象关于原点对称,排除BD,取x=代入f′()=﹣sin=﹣1<0,排除C,只有A适合.【解答】解:由于f(x)=x2+cosx,∴f′(x)=x﹣sinx,∴f′(﹣x)=﹣f′(x),故f′(x)为奇函数,其图象关于原点对称,排除BD,又当x=时,f′()=﹣sin=﹣1<0,排除C,只有A适合,故选:A.10.【考点】K4:椭圆的简单性质;K8:抛物线的简单性质;KC:双曲线的简单性质.【分析】根据题意先分别表示出e1,e2和e3,然后求得e1e2的取值范围,检验选项中的结论即可.【解答】解:依题意可知e1=,e2=,e3=1∴e1e2=•=<1,A,B,D不正确.故选C.二、填空题:本大题共5小题,每小题5分,共25分.11.【考点】EF:程序框图.【分析】程序运行的功能是求S=1﹣2+3﹣4+…+(﹣1)k﹣1•k,根据计算变量n判断程序终止运行时的k值,利用并项求和求得S.【解答】解:执行程序框图,有k=1,S=0满足条件n<2015,S=1,k=2;满足条件n<2015,S=﹣1,k=3;满足条件n<2015S=2,k=4;满足条件n<2015S=﹣2,k=5;满足条件n<2015S=3,k=6;满足条件n<2015S=﹣3,k=7;满足条件n<2015S=4,k=8;…观察规律可知,有满足条件n<2015S=1006,k=2012;满足条件n<2015S=﹣1006,k=2013;满足条件n<2015S=1007,k=2014;满足条件n<2015,S=﹣1007,k=2015;不满足条件n<2015,输出S的值为﹣1007.故答案为:﹣1007.12.【考点】F1:归纳推理.【分析】由题意可以直接得到答案.【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n(n+1),故答案为:n(n+1)13.【考点】9T:数量积判断两个平面向量的垂直关系.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.14.【考点】KC:双曲线的简单性质.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.15.【考点】2K:命题的真假判断与应用.【分析】①根据含有量词的命题的否定进行判断.②根据函数奇偶性的定义和性质结合双曲线的图象进行判断.③根据几何概型的概率公式进行判断.④利用不等式恒成立,利用参数分离法进行求解判断即可.【解答】解:①命题“∀x∈R,x2>0”的否定是“∃x∈R,x2≤0”;故①正确,②函数y=f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),其图象上任一点P(x,y)满足x2﹣y2=1,则函数y=f(x)可能是奇函数;正确,当点P的坐标满足y=时,函数f(x)为奇函数.故②正确,③若a,b∈[0,1],则不等式成立的概率是.如图.所以③错误④因为函数y=log2(x2﹣ax+2)在[2,+∞)上恒为正,所以在[2,+∞)上x2﹣ax+2>1恒成立,即:在[2,+∞)上恒成立,令,因为x≥2,所以,所以g(x)在[2,+∞)上为增函数,所以:当x=2时,g(x)的最小值为g(2)=,所以.则实数a的取值范围是(﹣∞,).故④正确,故答案为:①②④三、解答题:本大题共6小题,共75分.16.【考点】GL:三角函数中的恒等变换应用;9R:平面向量数量积的运算.【分析】(I)利用数量积运算性质、和差公式可得,再利用单调性即可得出.(I I)由题意得P,Q.根据距离公式及其余弦定理即可得出.17.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;GL:三角函数中的恒等变换应用.【分析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值.18.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.(I)由BB1⊥平面ABC可知BB1⊥AE,又AE⊥BC可得AE⊥平面BCC1B1,从而平面AEF⊥平面B1BCC1;【分析】(II)由(1)知AE为棱锥A﹣B1EF的高.于是V=V=.19.【考点】8E:数列的求和;8H:数列递推式.【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.20.【考点】K4:椭圆的简单性质.【分析】(I)由离心率公式和点满足椭圆方程,及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)讨论直线的斜率不存在和存在,设出直线的方程为y=kx+(k≠0),与椭圆方程联立,运用韦达定理,再由|AM|=|AN|,运用两点的距离公式,化简整理可得k的方程,解方程可得k,进而得到所求直线方程.21.【考点】6B:利用导数研究函数的单调性;52:函数零点的判定定理.【分析】(Ⅰ)求出函数的导数,分离参数,问题转化为在[2,4]上恒成立,根据函数的单调性求出a的范围即可;(Ⅱ)问题等价于a(x﹣1)2+lnx﹣x+1≤0恒成立,设g(x)=a(x﹣1)2+lnx﹣x+1(x≥1),只需g(x)max≤0即可,根据函数的单调性求出g(x)的最大值,从而求出a的范围.。
2017年山东省潍坊市实验中学高考数学二模试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|3x﹣x2>0},集合B={x|x<1},则A∩(∁U B)等于()A.(﹣3,1]B.(﹣∞,1]C.[1,3)D.(3,+∞)2.(5分)若z=1﹣i,则复数z+在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知,则sinαcosα等于()A.B.C.D.4.(5分)的值为()A.B.πC.D.15.(5分)已知α,β是两个不同平面,直线l⊂β,则“α∥β”是“l∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.847.(5分)某几何体的三视图如图所示,在该几何体的体积是()A.B.C.D.8.(5分)设m,n,t都是正数,则三个数()A.都大于4B.都小于4C.至少有一个大于4D.至少有一个不小于49.(5分)如图,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=()A.B.C.D.210.(5分)已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为()A.B.﹣1C.+1D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.(5分)如图是一个算法流程图,则输出的k的值是.12.(5分)将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点(,0),则ω的最小值是.13.(5分)二项式展开式中,前三项系数依次组成等差数列,则展开式中的常数项等于.14.(5分)在约束条件下,当3≤m≤5时,目标函数z=3x+2y的最大值的取值范围是(请用区间表示).15.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是(请写出所有正确的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知=(2λsin x,sin x+cos x),=(cos x,λ(sin x﹣cos x))(λ>0),函数f(x)=•的最大值为2.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,cos A=,若f(A)﹣m>0恒成立,求实数m的取值范围.17.(12分)如图,在三棱柱ABC﹣A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.(Ⅰ)证明:BC1∥平面OA1C;(Ⅱ)若AB=2,A1C=,求二面角A﹣BC﹣A1的余弦值.18.(12分)某公司的两个部门招聘工作人员,应聘者从T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.(I)求丙、丁未签约的概率;(II)记签约人数为X,求X的分布列和数学期望EX.19.(12分)对于数列{a n}、{b n},S n为数列{a n}的前n项和,且S n+1﹣(n+1)=S n+a n+n,a1=b1=1,b n+1=3b n+2,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.20.(13分)已知椭圆C1:的离心率为,且与y轴的正半轴的交点为,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.(1)求椭圆C1与抛物线C2的标准方程;(2)过(1,0)的两条相互垂直直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.21.(14分)已知函数g(x)=x2+ln(x+a),其中a为常数.(1)讨论函数g(x)的单调性;(2)若g(x)存在两个极值点x1,x2,求证:无论实数a取什么值都有.2017年山东省潍坊市实验中学高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|3x﹣x2>0},集合B={x|x<1},则A∩(∁U B)等于()A.(﹣3,1]B.(﹣∞,1]C.[1,3)D.(3,+∞)【解答】解:由A中不等式变形得:x(x﹣3)<0,解得:0<x<3,即A=(0,3),∵B=(﹣∞,1),∴∁U B=[1,+∞),则A∩(∁U B)=[1,3),故选:C.2.(5分)若z=1﹣i,则复数z+在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z=1﹣i,则复数z+=1﹣+=1﹣+=1﹣+=.对应点(,)在第四象限.故选:D.3.(5分)已知,则sinαcosα等于()A.B.C.D.【解答】解:由,两边平方可得:1﹣2sinαcosα=,解得sinαcosα=.故选:A.4.(5分)的值为()A.B.πC.D.1【解答】解:=﹣cos x=﹣cosπ+cos=1.故选:D.5.(5分)已知α,β是两个不同平面,直线l⊂β,则“α∥β”是“l∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵α,β是两个不同平面,直线l⊂β,则“α∥β”⇒“l∥α”,反之不成立.∴α,β是两个不同平面,直线l⊂β,则“α∥β”是“l∥α”的充分不必要条件.故选:A.6.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.7.(5分)某几何体的三视图如图所示,在该几何体的体积是()A.B.C.D.【解答】解:如图所示,该几何体为四棱锥,其中P A⊥底面ABCD,作BE⊥CD,垂足为E 点,底面由直角梯形ABED与直角三角形BCE组成.则V==.故选:B.8.(5分)设m,n,t都是正数,则三个数()A.都大于4B.都小于4C.至少有一个大于4D.至少有一个不小于4【解答】解:假设三个数都小于4,∵m,n,t都是正数,则m+≥4,n+≥4,t+≥4,则三个数的和不小于12,与小于12矛盾.因此假设不成立,∴三个数中至少有一个不小于4.故选:D.9.(5分)如图,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=()A.B.C.D.2【解答】解:,,;∴===;∴由平面向量基本定理得:;解得;∴.故选:B.10.(5分)已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为()A.B.﹣1C.+1D.【解答】解:设直线F2A的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴A(2,1),∴双曲线的实轴长为AF2﹣AF1=2(﹣1),∴双曲线的离心率为=+1.故选:C.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.(5分)如图是一个算法流程图,则输出的k的值是3.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.12.(5分)将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点(,0),则ω的最小值是2.【解答】解:将函数y=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象对应的函数为y=sinω(x﹣).再由所得图象经过点(,0),可得sinω(﹣)=sinω=0,∴ω=kπ,k∈z.故ω的最小值是2.故答案为:2.13.(5分)二项式展开式中,前三项系数依次组成等差数列,则展开式中的常数项等于7.【解答】解:展开式的通项为前三项的系数为1,,∴解得n=8所以展开式的通项为令=0得r=2所以展开式的常数项为故答案为:714.(5分)在约束条件下,当3≤m≤5时,目标函数z=3x+2y的最大值的取值范围是[7,8](请用区间表示).【解答】解:由⇒交点为A(2,0),B(4﹣m,2m﹣4),C(0,m),C'(0,4),当3≤m<4时可行域是四边形OABC,此时,7≤z≤8当4≤m≤5时可行域是△OAC'此时,z max=8故答案为:[7,8].15.(5分)对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是①②③(请写出所有正确的序号)【解答】解:①f(x)=,x∈[0,1]时,f(x)∈[0,1],所以①存在同域区间;②f(x)=x2﹣1,x∈[﹣1,0]时,f(x)∈[﹣1,0],所以②存在同域区间;③f(x)=|x2﹣1|,x∈[0,1]时,f(x)∈[0,1],所以③存在同域区间;④f(x)=log2(x﹣1),判断该函数是否有同域区间,即判断该函数和函数y=x是否有两个交点;而根据这两个函数图象可以看出不存在交点,所以该函数不存在同域区间.故答案为:①②③.三、解答题:本大题共6小题,共75分.16.(12分)已知=(2λsin x,sin x+cos x),=(cos x,λ(sin x﹣cos x))(λ>0),函数f(x)=•的最大值为2.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,cos A=,若f(A)﹣m>0恒成立,求实数m的取值范围.【解答】解:(Ⅰ)函数=λsin2x﹣λcos2x=2λ(sin2x﹣cos2x)=2λsin(2x﹣),因为f(x)的最大值为2,所以解得λ=1,则.由,可得:,,所以函数f(x)的单调减区间为,k∈Z.(Ⅱ)由.可得2b2﹣ab=b2+c2﹣a2,即b2+a2﹣c2=ab,解得,即.因为,∴,.因为恒成立,则恒成立,即m≤﹣1.17.(12分)如图,在三棱柱ABC﹣A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.(Ⅰ)证明:BC1∥平面OA1C;(Ⅱ)若AB=2,A1C=,求二面角A﹣BC﹣A1的余弦值.【解答】证明:(Ⅰ)连接OC,OA1,A1B.∵CA=CB,∴OC⊥AB.∵CA=AB=AA1,∠BAA1=∠BAC=60°,故△AA1B、△ABC都为等边三角形,∴OA1⊥AB,CO⊥AB,∴OA、OA1、OC两两垂直,以O为原点,OA、OA1、OC所在直线分别为x,y,z轴,建立空间直角坐标系,设CA=CB=AA1=2,则B(﹣1,0,0),C1(﹣1,,),O(0,0,0),A1(0,,0),C(0,0,),=(0,),=(0,),=(0,0,),设平面OA1C的法向量=(1,0,0),∵=0,且BC1⊄平面OA1C,∴BC1∥平面OA1C.解:(Ⅱ)∵AB=2,A1C=,∴B(﹣1,0,0),C(0,0,),A1(0,),=(1,0,),=(1,),设平面BCA1的法向量=(x,y,z),则,取x=,得,平面ABC的法向量=(0,0,1),设二面角A﹣BC﹣A1的平面角为θ,则cosθ===.∴二面角A﹣BC﹣A1的余弦值为.18.(12分)某公司的两个部门招聘工作人员,应聘者从T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.(I)求丙、丁未签约的概率;(II)记签约人数为X,求X的分布列和数学期望EX.【解答】解:(I)分别记事件甲、乙、丙、丁考试合格为A,B,C,D.由题意知A,B,C,D相互独立,且,.记事件“丙、丁未签约”为F,由事件的独立性和互斥性得:P(F)=1﹣P(CD)…(3分)=…(4分)(II)X的所有可能取值为0,1,2,3,4.…(5分),,,,.所以,X的分布列是:…(12分)X的数学期望…(13分)19.(12分)对于数列{a n}、{b n},S n为数列{a n}的前n项和,且S n+1﹣(n+1)=S n+a n+n,a1=b1=1,b n+1=3b n+2,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.【解答】解:(1)由S n+1﹣(n+1)=S n+a n+n,∴S n+1﹣S n=a n+2n+1,∴a n+1﹣a n=2n+1,∴a2﹣a1=2×1+1,a3﹣a2=2×2+1,a4﹣a3=2×3+1,…a n﹣a n﹣1=2(n﹣1)+1,n≥2,以上各式相加可得:a n﹣a1=2×(1+2+3+…+n﹣1)+(n﹣1),∴a n=2×+(n﹣1)+1=n2,n≥2,∴a n=n2,n≥2,当n=1时,a1=1显然成立,故a n=n2,n∈N*;∵b n+1=3b n+2,即b n+1+1=3(b n+1),b1+1=2,∴数列{b n+1}是以2为首项,以3为公比的等比数列,b n+1=2×3n﹣1,∴b n=2×3n﹣1﹣1;(2)由(1)可知:c n===,∴T n=c1+c2+…+c n=+++…+,T n=+++…+,∴T n=2++++…+﹣,=2+﹣,=﹣,∴T n=﹣,数列{c n}的前n项和T n,T n=﹣.20.(13分)已知椭圆C1:的离心率为,且与y轴的正半轴的交点为,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.(1)求椭圆C1与抛物线C2的标准方程;(2)过(1,0)的两条相互垂直直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.(1)设半焦距为c(c>0),由题意得,∴,【解答】解:∴椭圆C1的标准方程为.设抛物线C2的标准方程为y2=2px(p>0),则,∴p=4,∴抛物线C2的标准方程为y2=8x.(2)由题意易得两条直线的斜率存在且不为0,设其中一条直线l1的斜率为k,直线l1方程为y=k(x﹣1),则另一条直线l2的方程为,联立得k2x2﹣(2k2+8)x+k2=0,△=32k2+64>0,设直线l1与抛物线C2的交点为A,B,则,同理设直线l2与抛物线C2的交点为C,D,则,|CD|==4∴四边形的面积==,令,则t≥4(当且仅当k=±1时等号成立),.∴当两直线的斜率分别为1和﹣1时,四边形的面积最小,最小值为96.21.(14分)已知函数g(x)=x2+ln(x+a),其中a为常数.(1)讨论函数g(x)的单调性;(2)若g(x)存在两个极值点x1,x2,求证:无论实数a取什么值都有.【解答】解:(1)∵g(x)=x2+ln(x+a),∴函数的定义域为(﹣a,+∞)∴g′(x)=2x+,令2x+>0,2x2+2ax+1>0,当4a2﹣8≤0时,即﹣≤a≤时,g′(x)≥0,即函数g(x)在(﹣a,+∞)单调递增,当4a2﹣8>0时,即a>,或a<﹣时,令g′(x)=0,解得x=,或x=,①若a>,当g′(x)>0时,即x>,或﹣a<x<,函数g(x)单调递增,当g′(x)<0时,即<x<,函数g(x)单调递减,②若a<﹣,g′(x)>0,即函数g(x)在(﹣a,+∞)单调递增,综上所述:当a≤时,即函数g(x)在(﹣a,+∞)单调递增,当a>时,函数g(x)在(,+∞)或(﹣a,)上单调递增,在(,)上单调递减,(2)由(1)可知,当a>时,函数g(x)在(,+∞)或(﹣a,)上单调递增,在(,)上单调递减,x1+x2=﹣a;x1•x2=,==a2﹣﹣ln2,g()=g(﹣)=+ln;故﹣g()=(a2﹣﹣ln2)﹣(+ln)=﹣ln﹣ln2﹣;令f(a)=﹣ln﹣ln2﹣,则f′(a)=a﹣=,∵a>,∴>0;∴f(a)=﹣ln﹣ln2﹣在(,+∞)上增函数,且f()=0,故﹣ln﹣ln2﹣>0,故无论实数a取什么值都有.。
2017年高考模拟考试理科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设复数12,z z 在复平面内对应的点关于实轴对称,若1131i z i +=-,则12z z +等于 A .4i B .4i - C .2 D .-22、已知命题p q ∧是假命题,p q ∨是真命题,则下列命题一定是真命题的是A .pB .()()p q ⌝∧⌝C .qD .()()p q ⌝∨⌝3、若集合2{|0},{|(0,1)},x M x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是A .M N M =B .M N R =C .R M C N ϕ=D .R C M N R =4、函数()12log cos ()22f x x x ππ=-<< 的图象大致是5、已知二次函数()22f x ax x c =-+的值域为[0,)+∞,则91a c+的最小值为A .3B .6C .9D .126、《算学启蒙》值中国元代数学家朱世杰撰写的一部数学启蒙读物,包括面积、体积、比例、开方、高次方程等问题,《算学启蒙》中有关于“松竹并生”的问题: “松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”,如图是源于其思想的一个程序框图,若输入,a b 分别为8,2,则输出的n 等于A .4B .5C .6D .77、已知圆221:(6)(5)4C x y ++-=,圆222:(2)(1)1,,C x y M N -+-=分别为圆1C 和2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .7B .8C .10D .138、一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为9π,则它的表面积是A .27πB .36πC .45πD .54π9、某化肥厂用三种原料生产甲乙两种肥料,生产1吨甲种肥料和生产1吨乙种肥料所需三种原料的吨数如右表所示:已知生产1吨甲种肥料产生的利润2万元,生产1吨乙种肥料产生的利润为3万元,现有A 种原料20吨,B 种原料36吨,C 种原料32吨,在此基础上安排生产,则生产甲乙两种肥料的利润之和的最大值为A .17万元B .18万元C .19万元D .20万元10、已知函数()2,0,0x x x e f x x x e⎧+<⎪⎪=⎨⎪≥⎪⎩,若123123()()()()f x f x f x x x x ==<<,则21()f x x 的取值范围是A .(1,0)-B .(2,1)--C .(,0)-∞D .(1,)+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..11、已知ABC ∆,04,45AB AC BAC ==∠=,则ABC ∆外接圆的直径为12、某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为ˆˆ4yx a =-+,当产品销量为76件时,产品定价大致 为 元.13、已知ABC ∆是正三角形,O 是ABC ∆的中心,D 和E 分别是边AB 和AC 的中点,若OA xOD yOE =+ ,则x y +=14、若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从0,1,2, 3,4,5,6,7,这个数字中任取3个,组成无重复数字的三位数,其中“伞数”有 个(用数字作答)15、抛物线22(0)x my m =>的焦点为F ,其准线与双曲线22221(0)x y n m n -=>有两个交点,A B ,若0120AFB ∠=,则双曲线的离心率为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)已知向量)),(2cos ,)(02)6m wx n wx y w π=+=<< ,且//m n ,函数()y f x =的图象过点5(12π. (1)求w 的值及函数()f x 的最小正周期;(2)将()y f x =的图象向右平移6π个单位,得到函数()y g x =的图象,已知()2g α= 求cos(2)3πα-的值.18、(本小题满分12分)在如图所示的几何体ABCDEF 中,四边形ABCD 是等腰梯形,0//,60,AD BC ABC ∠= 11,2AB BC DE ==⊥平面,//,2,,ABCD BF DE DE BF M N =分别是的中点. (1)求证:BD ⊥平面MAN ;(2)已知直线BE 与平面ABCD 所成的角为045,求二面角A BE C --的余弦值.18、(本小题满分12分)市政府为调查市民对本市某项调控措施的态度,随机抽取了500名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)从月收入在[)60,70的20人中随机抽取3人,求3人中至少2人对对该措施持赞成态度的概率;(2)根据用样本估计总体的思想,以样本中事件发生的频率作为相应事件发生的概率,在本市随机采访3人,用X 表示3人中对该项措施持赞成态度的人数,求X 的分布列和数学期望.19、(本小题满分12分)数列{}n a 的前项和记为1,n S a t =,点1(,)n n a S +在直线112y x =-上n N +∈. (1)当实数t 为何值时,数列{}n a 是等比数列?并求数列{}n a 的通项公式;(2)若()[][](f x x x =表示不超过x 的最大整数),在(1)的结论下, 令321(log )1,n n n n n n b f a c a b b +=+=+,求{}n c 的前n 项和n T .20、(本小题满分13分) 已知椭圆2222:1(0)x y E a b a b+=>>,其上顶点B 与左焦点F 所在的直线的倾斜角为3π,O 为坐标原点OBF,三角形的周长为3(1)求椭圆E 的方程;(2)设椭圆E 的右顶点为A ,不过点A 的直线l 与椭圆E 相交于P 、Q 两点,若以PQ 为直径的圆经过点A ,求证:直线l 过定点,并求出该定点坐标.21、(本小题满分14分)已知函数()2(1)xf x x e =-,且()f x 在0x x =处取得极小值,函数()1lng x kx x =+-.(1)若曲线()y g x =在点(,())e g e 处切线恰好经过点00(,())P x f x ,取实数k 的值;(2)讨论函数的极值;(3)已知函数(){}min{(),()|(min ,F x f x g x p q =表示,p q 中最小值),若在(0,)+∞上函数()F x 恰有三个零点,求实数k 的取值范围.。
2017年高考模拟考试
理科数学
2017. 3 本试卷共5页,分第I卷(选择题)和第n卷(非选择题)两部分.共150分.考试时间120分钟.
第I卷(选择题共50分)
注意事项:
1.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在规定的位置上。
2 •第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是
符合题目要求的.
[1]
1 .设集合A= {x x = 2n, n N , B= g x x2兰
2 ',贝V A Q B=
I J
A.〔2
B.〈2,4?
C. 2 3,4
D.〈1,2,3,4?
2•已知复数z满足(1 —i)z=i,则复数z在复平面内的对应点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3. 已知命题P:对任意x€ R,总有2x x2; q:“ ab是“ a>l, b>l”的充分不必要条件.则下列命题为真命题的是
A. p q
B. _p q
C. p _q
D. _p _q
4. 已知函数f x]=log a x 0 a < 1,则函数y = f x 1的图象大致为
5.运行右边的程序框图,如果输出的数是13,那么输入的正整数n的值是。
2017-2018学年山东省潍坊市高考数学二模试卷(理科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x||x|≤1},B={x|log2x≤1},则∁U A∩B等于()A.(0,1] B. C.(1,2] D.(﹣∞,﹣1)∪2.设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1 D.33.已知p:∀x>0,x+≥4:q:∃x0∈R+,2x0=,则下列判断正确的是()A.p是假B.q是真C.p∧(¬q)是真D.(¬p)∧q是真4.已知m、n是两条不同的直线,α、β是两个不同的平面,则下列中正确的是()A.若m⊥α,n⊥β,且m⊥n,则α⊥βB.若m∥α,n∥β,且m∥n,则α∥βC.若m⊥α,n∥β,且m⊥n,则α⊥βD.若m⊥α,n∥β,且m∥n,则α∥β5.若,且,则tanα=()A.B.C.D.6.已知定义在R上的函数y=f(x)满足f(x+2)=2f(x),当x∈时,,则函数y=f(x)在上的大致图象是()A.B.C. D.7.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.8.某公司新招聘5名员工,分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案种数是()A.6 B.12 C.24 D.369.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.410.已知函数,若函数f(x)的零点都在(a<b,a,b∈Z)内,则b﹣a的最小值是()A.1 B.2 C.3 D.4二、填空题:本大题共5小题,每小题5分,共25分.11.某校对高三年级1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是.12.当输入的实数x∈时,执行如图所示的程序框图,则输出的x不小于103的概率是.13.已知G为△ABC的重心,令,,过点G的直线分别交AB、AC于P、Q两点,且,,则= .14.抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为.15.定义在(0,+∞)上的函数f(x)满足:对∀x∈(0,+∞),都有f(2x)=2f(x);当x∈(1,2]时,f(x)=2﹣x,给出如下结论:①对∀m∈Z,有f(2m)=0;②函数f(x)的值域为其中所有正确结论的序号是:.(请将所有正确的序号填上)三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知向量,把函数f(x)=化简为f(x)=Asin(tx+ϕ)+B的形式后,利用“五点法”画y=f(x)在某一个周期内的图象时,列表并填入的部分数据如表所示:x ①tx+ϕ 0 2πf(x) 0 1 0 ﹣1 0(Ⅰ)请直接写出①处应填的值,并求ω的值及函数y=f(x)在区间上的值域;(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,已知,c=2,a=,求.17.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(Ⅰ)证明:平面BDM⊥平面ADEF;(Ⅱ)判断点M的位置,使得平面BDM与平面ABF所成锐二面角为.18.已知等比数列数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令,T n为数列{c n}的前n项和,求T2n.19.某公司采用招考的方式引进人才,规定考生必须在B、C、D三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用.已知考生在每个测试点的测试结果只有合格与不合格两种,且在每个测试点的测试结果互不影响.若考生小李和小王一起前来参加招考,小李在测试点B、C、D测试合格的概率分别为,,,小王在上述三个测试点测试合格的概率都是.(Ⅰ)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;(Ⅱ)假设小李选择测试点B、C进行测试,小王选择测试点B、D进行测试,记ξ为两人在各测试点测试合格的测试点个数之和,求随机变量ξ的分布列及数学期望Eξ.20.已知椭圆E的中心在坐标原点O,其焦点与双曲线C:的焦点重合,且椭圆E 的短轴的两个端点与其一个焦点构成正三角形.(Ⅰ)求椭圆E的方程;(Ⅱ)过双曲线C的右顶点A作直线l与椭圆E交于不同的两点P、Q.①设M(m,0),当为定值时,求m的值;②设点N是椭圆E上的一点,满足ON∥PQ,记△NAP的面积为S1,△OAQ的面积为S2,求S1+S2的取值范围.21.设f(x)=alnx+bx﹣b,g(x)=,其中a,b∈R.(Ⅰ)求g(x)的极大值;(Ⅱ)设b=1,a>0,若|f(x2)﹣f(x1)|<||对任意的x1,x2∈(x1≠x2)恒成立,求a的最大值;(Ⅲ)设a=﹣2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在s,t(s≠t),使f (s)=f(t)=g(x0)成立,求b的取值范围.2015年山东省潍坊市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x||x|≤1},B={x|log2x≤1},则∁U A∩B等于()A.(0,1] B. C.(1,2] D.(﹣∞,﹣1)∪考点:交、并、补集的混合运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,找出A补集与B的交集即可.解答:解:由A中不等式解得:﹣1≤x≤1,即A=,由B中不等式变形得:log2x≤1=log22,解得:0<x≤2,即B=(0,2],∴∁U A=(﹣∞,﹣1)∪(1,+∞),则(∁U A)∩B=(1,2],故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1 D.3考点:复数的基本概念.专题:计算题.分析:利用复数的运算法则把a﹣(a∈R)可以化为(a﹣3)﹣i,再利用纯虚数的定义即可得到a.解答:解:∵=(a﹣3)﹣i是纯虚数,∴a﹣3=0,解得a=3.故选D.点评:熟练掌握复数的运算法则和纯虚数的定义是解题的关键.3.已知p:∀x>0,x+≥4:q:∃x0∈R+,2x0=,则下列判断正确的是()A.p是假B.q是真C.p∧(¬q)是真D.(¬p)∧q是真考点:的真假判断与应用.专题:简易逻辑.分析:利用基本不等式求最值判断p的真假,由指数函数的值域判断q的真假,然后结合复合的真值表加以判断.解答:解:当x>0,x+≥,当且仅当x=2时等号成立,∴p为真,¬P为假;当x>0时,2x>1,∴q:∃x0∈R+,2x0=为假,则¬q为真.∴p∧(¬q)是真,(¬p)∧q是假.故选:C.点评:本题考查了的真假判断与应用,考查了复合的真假判断,考查了利用基本不等式求最值,是中档题.4.已知m、n是两条不同的直线,α、β是两个不同的平面,则下列中正确的是()A.若m⊥α,n⊥β,且m⊥n,则α⊥βB.若m∥α,n∥β,且m∥n,则α∥βC.若m⊥α,n∥β,且m⊥n,则α⊥βD.若m⊥α,n∥β,且m∥n,则α∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用线面垂直的性质,面面垂直的判定以及面面平行的判定定理分别分析选择.解答:解:若m⊥α,n⊥β,且m⊥n,则α⊥β,故A正确若m∥α,n∥β,且m∥n,则α与β平行或相交,故B错误若m⊥α,n∥β,且m⊥n,则α与β平行或相交,所以C错误.若m⊥α,m∥n,则n⊥α,又由n∥β,则α⊥β,故D错误;故选:A点评:本题考查直线与直线的位置关系及直线与平面的位置关系的判断、性质.解决此类问题的关键是熟练掌握空间中线面、面面得位置关系,以及与其有关的判定定理与性质定理.5.若,且,则tanα=()A.B.C.D.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由条件利用诱导公式、二倍角公式,同角三角函数的基本关系求得3tan2α+20tanα﹣7=0,解方程求得tanα的值.解答:解:若,且,则cos2α﹣sin2α=(cos2α+sin2α),∴cos2α﹣sin2α﹣2sinαcosα=0,即 3tan2α+20tanα﹣7=0.求得tanα=,或 tanα=﹣7(舍去),故选:B.点评:本题主要考查同角三角函数的基本关系,诱导公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.6.已知定义在R上的函数y=f(x)满足f(x+2)=2f(x),当x∈时,,则函数y=f(x)在上的大致图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由题意求出函数f(x)在上的解析式,问题得以解决.解答:解:∵f(x+2)=2f(x),∴f(x)=2f(x﹣2),设x∈,则x﹣2∈,∴f(x)=,当x∈,f(x)=﹣2x2+12x﹣16,图象过点(3,2),(4,0)的抛物线的一部分,故选:A点评:本题考查了函数的解析式的求法和函数的图象的识别,属于基础题,7.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.8.某公司新招聘5名员工,分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案种数是()A.6 B.12 C.24 D.36考点:计数原理的应用.专题:排列组合.分析:分类讨论:①甲部门要2个电脑编程人员和一个英语翻译人员;②甲部门要1个电脑编程人员和一个英语翻译人员,分别求得这2个方案的方法数,再利用分类计数原理,可得结论解答:解:由题意可得,有2种分配方案:①甲部门要2个电脑编程人员,则有3种情况;两名英语翻译人员的分配有2种可能;根据分步计数原理,共有3×2=6种分配方案.②甲部门要1个电脑编程人员,则有3种情况电脑特长学生,则方法有3种;两名英语翻译人员的分配方法有2种;共3×2=6种分配方案.由分类计数原理,可得不同的分配方案共有6+6=12种,故选:B.点评:本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法9.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4考点:直线与圆的位置关系.专题:直线与圆.分析:根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.解答:解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.点评:本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.10.已知函数,若函数f(x)的零点都在(a<b,a,b∈Z)内,则b﹣a的最小值是()A.1 B.2 C.3 D.4考点:函数的单调性与导数的关系;函数零点的判定定理.专题:计算题;函数的性质及应用;导数的综合应用.分析:首先可判断f(0)=1>0,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;再判断f(x)在(0,+∞)上单调递增,在(﹣∞,﹣1)上单调递增,从而说明没有零点,从而解得.解答:解:∵,∴f(0)=1>0,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故在上有零点;f′(x)=1﹣x+x2﹣x3+ (x2014)易知f′(1)=1,当x>0且x≠1时,f′(x)=1﹣x+x2﹣x3+…+x2014==>0,故f(x)在(0,+∞)上单调递增,且f(0)>0;故f(x)在(0,+∞)上没有零点,当x<﹣1时,f′(x)=1﹣x+x2﹣x3+…+x2014==>0,故f(x)在(﹣∞,﹣1)上单调递增,且f(﹣1)<0,故f(x)在(﹣∞,﹣1)上没有零点;综上所述,函数的零点都在区间上,故选A.点评:本题考查了导数的综合应用及函数的零点的判断,属于基础题.二、填空题:本大题共5小题,每小题5分,共25分.11.某校对高三年级1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是760 .考点:分层抽样方法.专题:应用题;概率与统计.分析:先计算出样本中高三年级的女学生人数,再根据分层抽样的性质计算出该校高三年级的女生的人数.解答:解:根据题意,设样本中高三年级的女生人数为x,则(x+10)+x=200,解得x=95,所以该校高三年级的女生人数是1600×200=760.故答案为:760.点评:本题考查分层抽样,先计算中样本中高三年级的男女学生的人数是解决本题的关键,属基础题.12.当输入的实数x∈时,执行如图所示的程序框图,则输出的x不小于103的概率是.考点:程序框图.专题:图表型;算法和程序框图.分析:由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于103得到输入值的范围,利用几何概型的概率公式求出输出的x不小于103的概率.解答:解:设实数x∈,经过第一次循环得到x=2x+1,n=2,经过第二循环得到x=2(2x+1)+1,n=3,此时输出x,输出的值为4x+3,令4x+3≥103得x≥25,由几何概型得到输出的x不小于103的概率为P==.故答案为:.点评:解决程序框图中的循环结构时,一般采用先根据框图的流程写出前几次循环的结果,根据结果找规律,属于基础题.13.已知G为△ABC的重心,令,,过点G的直线分别交AB、AC于P、Q两点,且,,则= 3 .考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:显然,根据G点为重心,从而可以用表示,而和共线,从而,而已知,从而会最后得到关于的式子:,从而得到,两式联立消去x即可求出答案.解答:解:如图,=;∴;G为△ABC的重心;∴,;∴;整理得,;∴;消去x得,;∴.故答案为:3.点评:考查向量加法、减法的几何意义,共线向量基本定理,重心的性质:重心到顶点距离是它到对边中点距离的2倍,以及向量加法的平行四边形法则,向量的加法、减法运算,平面向量基本定理.14.抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为y2=16x .考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,结合三角形的面积求出半径,再由M的坐标相等求得p,则抛物线方程可求.解答:解:如图,由题意可知,圆的圆心M在抛物线上,又圆的面积为36π,∴半径|OM|=6,则|MF|=,即,又,∴,解得:p=8.∴抛物线方程为:y2=16x.故答案为:y2=16x.点评:本题考查了抛物线的几何性质,考查了数学结合的解题思想方法,训练了抛物线焦半径公式的应用,是中档题.15.定义在(0,+∞)上的函数f(x)满足:对∀x∈(0,+∞),都有f(2x)=2f(x);当x∈(1,2]时,f(x)=2﹣x,给出如下结论:①对∀m∈Z,有f(2m)=0;②函数f(x)的值域为时,f(x)=2﹣x,∴∀x∈(1,2],f(x)≥f(2)=0,又∵∀x∈(0,+∞),f(2x)=2f(x),∴∀x∈(0,+∞),f(x)≥f(2)=0,∴②正确;对于③,∵f(2n+1)=2n+1﹣2n﹣1,假设存在n使f(2n+1)=9,即存在x1,x2,﹣=10,又2x变化如下:2,4,8,16,32,显然不存在满足条件的值,∴③错误;对于④,根据②知,当x⊆(2k,2k+1)时,f(x)=2k+1﹣x为减函数,∴函数f(x)在区间(a,b)上单调递减的充分条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1),④正确.综上,正确的是①②④.故答案为:①②④.点评:本题考查了抽象函数及其应用问题,考查了利用赋值法证明等式的问题,此类题的特征是根据题中所给的相关性质灵活赋值以达到求值或者证明的目的,是综合性题目.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知向量,把函数f(x)=化简为f(x)=Asin(tx+ϕ)+B的形式后,利用“五点法”画y=f(x)在某一个周期内的图象时,列表并填入的部分数据如表所示:x ①tx+ϕ 0 2πf(x) 0 1 0 ﹣1 0(Ⅰ)请直接写出①处应填的值,并求ω的值及函数y=f(x)在区间上的值域;(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,已知,c=2,a=,求.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin(2),由T=2()=π,可求ω,由x∈,可求2x﹣的范围,即可求得f(x)的值域.(Ⅱ)由f()=sin(A+)=1,根据A+的范围,可解得A,由余弦定理解得b,cosB,利用平面向量数量积的运算即可得解.解答:解:(Ⅰ)①处应填…1分f(x)=m•n+=sinωxcosωx﹣cos2ωx+=sin2ωx﹣+=sin2ωx﹣cos2ωx=sin(2)…3分因为T=2()=π,所以由,ω=1.∴f(x)=sin(2x﹣).因为x∈,所以﹣≤2x﹣≤,所以﹣1≤sin(2x﹣)≤,∴f(x)的值域为…6分(Ⅱ)因为f()=sin(A+)=1,因为0<A<π,所以<A+<,所以A+=,A=,由余弦定理a2=b2+c2﹣2bccosA,得()2=b2+22﹣2×,即b2﹣2b﹣3=0,解得b=3或b=﹣1(舍去),∴cosB==.所以=||||cosB=2×=1…12分点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,平面向量数量积的运算,考查了余弦定理的应用,属于中档题.17.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(Ⅰ)证明:平面BDM⊥平面ADEF;(Ⅱ)判断点M的位置,使得平面BDM与平面ABF所成锐二面角为.考点:二面角的平面角及求法;平面与平面垂直的判定.专题:空间角.分析:(Ⅰ)由已知三角形的半径关系得到AD⊥BD,再由面面垂直的性质得到ED⊥面ABCD,进一步得到BD⊥ED,利用线面垂直的判定得到BD⊥面ADEF,由BD⊂面BDM,利用面面垂直的判定得到平面BDM⊥平面ADEF;(Ⅱ)在面DAB内过D作DN⊥AB,垂足为N,则可证得DN⊥CD,以D为坐标原点,DN所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,求出所用点的坐标,结合E,M,C三点共线得到,把M的坐标用含有λ的代数式表示,求出平面BDM的法向量,再由平面ABF的法向量为,由平面BDM 与平面ABF所成锐二面角为求得.则点M的坐标可求,位置确定.解答:(Ⅰ)证明:如图,∵DC=BC=1,DC⊥BC,∴BD=,又∵AD=,AB=2,∴AD2+BD2=AB2,则∠ADB=90°,∴AD⊥BD.又∵面ADEF⊥面ABCD,ED⊥AD,面ADEF∩面ABCD=AD,∴ED⊥面ABCD,则BD⊥ED,又∵AD∩DE=D,∴BD⊥面ADEF,又BD⊂面BDM,∴平面BDM⊥平面ADEF;(Ⅱ)在面DAB内过D作DN⊥AB,垂足为N,∵AB∥CD,∴DN⊥CD,又∵ED⊥面ABCD,∴DN⊥ED,∴以D为坐标原点,DN所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,∴B(1,1,0),C(0,1,0),E(0,0,),N(1,0,0),设M(x0,y0,z0),由,得,∴x 0=0,,则M(0,λ,),设平面BDM的法向量,则,∴,令x=1,得.∵平面ABF的法向量,∴,解得:.∴M(0,),∴点M的位置在线段CE的三等分点且靠近C处.点评:本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力,训练了利用空间向量求二面角的平面角,是中档题.18.已知等比数列数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令,T n为数列{c n}的前n项和,求T2n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)利用等比数列的通项公式即可得出.(II)由(I)可得:c n=.可得T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n),对奇数项与偶数项分别利用“裂项求和”、“错位相减法”即可得出.解答:解:(I)∵S2=2a2﹣2,S3=a4﹣2.∴S3﹣S2=a4﹣2a2=a3,∴,a2≠0,化为q2﹣q﹣2=0,q>0,解得q=2,又a1+a2=2a2﹣2,∴a2﹣a1﹣2=0,∴2a1﹣a1﹣2=0,解得a1=2,∴.(II)由(I)可得:c n=.∴T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n),记M=(c2+c4+…+c2n)=+…+=+…+,则=+…+,∴=+…+﹣=﹣=,∴M=﹣.∴T2n=+M=+M=+﹣.点评:本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.19.某公司采用招考的方式引进人才,规定考生必须在B、C、D三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用.已知考生在每个测试点的测试结果只有合格与不合格两种,且在每个测试点的测试结果互不影响.若考生小李和小王一起前来参加招考,小李在测试点B、C、D测试合格的概率分别为,,,小王在上述三个测试点测试合格的概率都是.(Ⅰ)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;(Ⅱ)假设小李选择测试点B、C进行测试,小王选择测试点B、D进行测试,记ξ为两人在各测试点测试合格的测试点个数之和,求随机变量ξ的分布列及数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)设考生小李在B,C,D各测试点测试合格记为事件B、C、D,且各事件相互独立,已知.求出小李在(B、C),(B、D),(C、D)测试点测试参加面试的概率,由概率的大小得答案;(Ⅱ)记小李在测试点B、C合格为事件B、C,小王在测试点B、D合格为事件B1、D1,由题意得到,求出ξ的所有取值,然后利用相互独立事件和定理重复试验求得概率,列出分布列,然后由期望公式求期望.解答:解:(Ⅰ)设考生小李在B,C,D各测试点测试合格记为事件B、C、D,且各事件相互独立,由题意,.若选择在B、C测试点测试,则参加面试的概率,若选择在B、D测试点测试,则参加面试的概率,若选择在C、D测试点测试,则参加面试的概率.∵P2>P1>P3,∴小李在B、D测试点测试,参加面试的可能性大.(Ⅱ)记小李在测试点B、C合格为事件B、C,小王在测试点B、D合格为事件B1、D1,则,且ξ的所有取值为0,1,2,3,4.P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)=.ξ的分布列为:ξ 0 1 2 3 4P∴数学期望Eξ=.点评:本题考查了离散型随机变量的期望的应用,离散型随机变量的期望表征了随机变量取值的平均值,考查了相互独立事件和独立重复试验,是中档题.20.已知椭圆E的中心在坐标原点O,其焦点与双曲线C:的焦点重合,且椭圆E 的短轴的两个端点与其一个焦点构成正三角形.(Ⅰ)求椭圆E的方程;(Ⅱ)过双曲线C的右顶点A作直线l与椭圆E交于不同的两点P、Q.①设M(m,0),当为定值时,求m的值;②设点N是椭圆E上的一点,满足ON∥PQ,记△NAP的面积为S1,△OAQ的面积为S2,求S1+S2的取值范围.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设方程为,确定c,利用椭圆E的短轴的两个端点与其一个焦点构成正三角形,可得a=2b,利用a2=b2+c2,求出a,b,即可求椭圆E的方程;(Ⅱ)①分类讨论,设l的方程为y=k(x﹣1),代入椭圆方程,利用韦达定理,结合向量的数量积公式,可得结论;②确定S1+S2=S△OPQ,求出|PQ|,可得面积,换元确定面积的范围即可求S1+S2的取值范围.解答:解:(Ⅰ)由题意椭圆的焦点在x轴上,设方程为,其左右焦点为F1(﹣,0),F2(,0),∴c=,∵椭圆E的短轴的两个端点与其一个焦点构成正三角形,∴a=2b,∵a2=b2+c2,∴a=2,b=1,∴椭圆E的方程为;(Ⅱ)①双曲线C右顶点为A(1,0),当直线l的斜率存在时,设l的方程为y=k(x﹣1),代入椭圆方程得(4k2+1)x2﹣8k2x+4k2﹣4=0,设直线l与椭圆E交点P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,∴•=m2﹣m(x1+x2)+x1x2+y1y2==(4m2﹣8m+1)+,当2m﹣=0,即m=时,•=.当直线l的斜率不存在时,直线l的方程为x=1,代入椭圆方程可得x=1,y=±.不妨设P(1,),Q(1,﹣),由M(,0)可得=(,﹣),=(,),∴•=,综上所述,m=时,•为定值;②∵ON∥PQ,∴S△NAP=S△OAP,∴S1+S2=S△OPQ,∵|PQ|=4•,∵原点O到直线PQ的距离为d=(k≠0),∴S△OPQ==令t=4k2+1,则k2=(t>1),∴S==,∵t>1,∴0<<1,∴0<﹣+4<3,∴0<S<.当直线l的斜率不存在时,S△OPQ==,综上所述,S1+S2的取值范围是(0,].点评:本题考查椭圆方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,有难度.21.设f(x)=alnx+bx﹣b,g(x)=,其中a,b∈R.(Ⅰ)求g(x)的极大值;(Ⅱ)设b=1,a>0,若|f(x2)﹣f(x1)|<||对任意的x1,x2∈(x1≠x2)恒成立,求a的最大值;(Ⅲ)设a=﹣2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在s,t(s≠t),使f (s)=f(t)=g(x0)成立,求b的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:函数的性质及应用;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)求出g(x)的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得g(x)的极大值;(Ⅱ)当b=1,a>0时,求出f(x)的导数,以及h(x)=的导数,判断单调性,去掉绝对值可得f(x2)﹣f(x1)<h(x2)﹣h(x1),即f(x2)﹣h(x2)<f(x1)﹣h(x1),F(x)=f(x)﹣h(x),F(x)在递减,求得F(x)的导数,通过分离参数,求出右边的最小值,即可得到a的范围;(Ⅲ)求出g(x)的导数,通过单调区间可得函数g(x)在(0,e]上的值域为(0,1].由题意,当f(x)取(0,1]的每一个值时,在区间(0,e]上存在t1,t2(t1≠t2)与该值对应.a=﹣2时,f(x)=b(x﹣1)﹣2lnx,求出f(x)的导数,由题意,f(x)在区间(0,e]上不单调,所以,0<<e,再由导数求得f(x)的最小值,即可得到所求范围.解答:解:(Ⅰ)g′(x)==,当x>1时,g′(x)<0,g(x)在(1,+∞)递增;当x<1时,g′(x)>0,g(x)在(﹣∞,1)递减.则有g(x)的极大值为g(1)=1;(Ⅱ)当b=1,a>0时,f(x)=alnx+x﹣1,x>0,f′(x)=+1=>0在恒成立,f(x)在递增;由h(x)==,h′(x)=>0在恒成立,h(x)在递增.设x1<x2,原不等式等价为f(x2)﹣f(x1)<h(x2)﹣h(x1),即f(x2)﹣h(x2)<f(x1)﹣h(x1),F(x)=f(x)﹣h(x),F(x)在递减,又F(x)=alnx+x﹣1﹣,F′(x)=+1﹣≤0在恒成立,故h(x)在递增,a≤•﹣x,令G(x)=•﹣x,3≤x≤4,G′(x)=•﹣1=e x﹣1(﹣+1)﹣1=e x﹣1﹣1>e2﹣1>0,G(x)在递增,即有a≤e2﹣3,即a max=e2﹣3;(Ⅲ)g′(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x,当x∈(0,1)时,g′(x)>0,函数g(x)单调递增;当x∈(1,e]时,g′(x)<0,函数g(x)单调递减.又因为g(0)=0,g(1)=1,g(e)=e2﹣e>0,所以,函数g(x)在(0,e]上的值域为(0,1].由题意,当f(x)取(0,1]的每一个值时,在区间(0,e]上存在t1,t2(t1≠t2)与该值对应.a=﹣2时,f(x)=b(x﹣1)﹣2lnx,f′(x)=b﹣=,当b=0时,f′(x)=﹣<0,f(x)单调递减,不合题意,当b≠0时,x=时,f′(x)=0,由题意,f(x)在区间(0,e]上不单调,所以,0<<e,当x∈(0,]时,f'(x)<0,当(,+∞)时,f'(x)>0所以,当x∈(0,e]时,f(x)min=f()=2﹣a﹣2ln,由题意,只需满足以下三个条件:①f(x)min=f()=2﹣b﹣2ln<0,②f(e)=b(e﹣1)﹣2≥1,③∃x0∈(0,)使f(x0)>1.∵f()≤f(1)=0,所以①成立.由②f(x)=b(x﹣1)﹣2lnx→+∞,所以③满足,所以当b满足即b≥时,符合题意,故b的取值范围为[,+∞).点评:本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.。
16.解:(Ⅰ)()=3sin πcos π2sin(π)6f x a b a x x x ==+=+,πππ2ππ2π262k x k -≤+≤+,解得212233k x k-≤≤+,∵]2[0x ∈,时,10x ≤≤或42x ≤≤,(Ⅱ)由题意得1(,2)3P ,4(,2)3Q .根据距离公式||3OP =,||3OQ ==,||PQ372134233=17.解:(Ⅰ)∵2()3sin(π)sin (sin cos )1sin21sin22f x x x x x x x x =---=-+=-+πsin212sin(2)13x x x =+=-+,令πππ2π22πk x k ≤≤+--,求得π5πππk x k ≤≤+-,(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x =-+的图象;再把得到的图象向左平移π个单位,得到函数()2sin 1y g x x ==的图象,18.(Ⅰ)∵1BB ABC ⊥面,AE ABC ⊂平面, ∴1AE BB ⊥,∵E 是正三角形ABC 的边BC 的中点, ∴AE BC ⊥,又∵11BC B BCC ⊂平面,111B B B BCC ⊂平面,1BC BB B =,∴11AE B BCC ⊥平面,∵AE AEF ⊂平面, ∴11AEF B BCC ⊥平面平面. (Ⅱ)∵三棱柱所有的棱长均为2,∴AE =,∴11113222111212222B EF S =⨯⨯⨯-⨯⨯-⨯⨯=△-,由(Ⅰ)知11AE B BCC ⊥平面 ∴111333322B AEF A B EF V V --===.19.解:(Ⅰ)238n S n n =+, ∴2n ≥时,165n n n a S S n ==+--,1n =时,1111a S ==,∴65n a n =+;∵1n n n a b b +=+,∴11n n a b bn =+--, ∴111n n n n a a b b +=----. ∴26d =, ∴3d =, ∵112a b b =+, ∴11123b =+, ∴14b =,∴43(1)31n b n n =+-=+;(Ⅱ)11(1)(66)6(1)2(2)(33)n n n n n nn a n c n n b n ++++===+++, ∴622322)[(1]2n T n n =++⋯++①,∴2622232[]32(1)21n T n n n n =++⋯++++②,①-②可得6222223[]2(1)21n T n n n =+++⋯+-++-1266(1)21n n +=+⨯+- (6)21322n n n n =-+=+-,22n n +.3a 221213a b+=,且222a bc =-, 解得a =,1b =,(Ⅱ)若直线的斜率不存在,M ,N 为椭圆的上下顶点,即有||2AM =,||1AN =,不满足题设条件;设直线l :3(0)2y kx k =+≠,与椭圆方程2213x y +=联立,消去y ,可得2215(13)904k x kx +++=,判别式为2215814(13)04k k +>-,化简可得2512k >,①设11(,)M x y ,22(,)N x y ,可得122913kx x k+=-+, 212122293()331313k y y k x x k k+=++=-=++, 由||||AM AN =,(0,1)A -,可得,整理可得,12121212(2)()0y y x x y y x x -++++=-,12()y y ≠ 即为22293(2)01313k k k k-++=++,可得223k =,即3k =±代入①成立.21.解:(Ⅰ)1()2(1)f x a x x'=-+,∵函数()f x 在区间[2]4,上单调递减, ∴1()2(1)0f x a x x'=-+≤在区间[2]4,上恒成立, 即212a x x≤-+在[2]4,上恒成立,… 只需2a 不大于21x x-+在[2]4,上的最小值即可. 当24x ≤≤时,2111[,]212x x ∈---+,… ∴122a ≤-,即14a ≤-,故实数a 的取值范围是1(,]4-∞-.…(Ⅱ)因()f x 图象上的点都在10x y x ≥⎧⎨-≤⎩所表示的平面区域内,即当,)[1x ∈+∞时,不等式()f x x ≤恒成立, 即2(1)ln 10a x x x -+-+≤恒成立, 设2()(1)ln 1(1)g x a x x x x =+-+≥-, 只需()0max g x ≤即可.…由212(21)1()2(1)1ax a x g x a x x x-++'=-+-=,(i )当0a =时,,当1x >时,()0g x '<,函数()g x 在(1,)+∞上单调递减, 故()(1)0g x g ≤=成立.(ii )当0a >时,由212(1)()2(21)12()a x x ax a x a g x xx---++'==,令()0g x '=,得11x =或212x a=, ①若112a ≤,即12a ≥时,在区间[1)+∞,上,()0g x '≥, 函数()g x 在[1)+∞,上单调递增,函数()g x 在[1)+∞,上无最大值,不满足条件;②若112a<,即102a <<时,函数()g x 在1[1,)2a 上单调递减,在区间1[,)2a+∞上单调递增,同样()g x 在[1)+∞,无最大值,不满足条件.(iii )当0a <时,由12(1)()2()a x x a g x x--'=,因1)[x ∈+∞,,故()0g x '≤, 则函数()g x 在[1)+∞,上单调递减, 故()(1)0g x g ≤=成立.综上所述,实数a 的取值范围是(0],-∞.…山东省潍坊市青州市2017年高考数学(文科)模拟试卷解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】1D:并集及其运算.【分析】先求出集合M,N,再根据并集的定义求出即可.【解答】解:集合M={x|x2﹣4x<0}=(0,4),N={x||x|≤2}=[﹣2.2].∴M∪N=[﹣2,4),故选:B2.【考点】A5:复数代数形式的乘除运算.【分析】根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可.【解答】解:∵z===1+i,∴=1﹣i,故选:B3.【考点】2K:命题的真假判断与应用;4N:对数函数的图象与性质.【分析】根据指数函数的单调性及幂函数图象和性质,分析命题p,q的真假,可得答案.【解答】解:当x=2时,loga(x﹣1)=loga1=0恒成立,故命题p:∀a∈(0,1)∪(1,+∞),函数f(x)=loga(x﹣1)的图象过点(2,0),为真命题;∀x∈N,x3≥x2恒成立,故命题q:∃x∈N,x3<x2为假命题,故选:B4.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.【考点】L!:由三视图求面积、体积.【分析】根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据,结合正方体的体积公式和棱锥的体积公式,即可得到答案.【解答】解:根据三视图我们可以判断,该几何体是由一个正方体和一个四棱锥组成的组合体,根据三视图中标识的数据可知:正方体及四棱锥的底面棱长均为4,四棱锥高3则V正方体=4×4×4=64=16故V=64+16=80故选B6.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案.【解答】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据图象的变换规则逐步得出函数解析式,利用正弦函数的单调性即可得解.【解答】解:∵将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数解析式为:y=cos(πx);再把图象上所有的点向右平移1个单位长度,得到函数的解析式为:g(x)=cos[π(x﹣1)];∴可得:,∵由2k≤≤2kπ+,k∈Z,解得:4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是:[4k+1,4k+3],k∈Z,由2kπ﹣≤≤2k,k∈Z,解得:4k﹣1≤x≤4k+1,k∈Z,可得函数g(x)的单调递增区间是:[4k﹣1,4k+1],k∈Z,对比各个选项,只有A正确.故选:A.8.【考点】HS:余弦定理的应用;HP:正弦定理.【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可.【解答】解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C9.【考点】3O:函数的图象.【分析】由于f(x)=x2+cosx,得f′(x)=x﹣sinx,由奇函数的定义得函数f′(x)为奇函数,其图象关于原点对称,排除BD,取x=代入f′()=﹣sin=﹣1<0,排除C,只有A适合.【解答】解:由于f(x)=x2+cosx,∴f′(x)=x﹣sinx,∴f′(﹣x)=﹣f′(x),故f′(x)为奇函数,其图象关于原点对称,排除BD,又当x=时,f′()=﹣sin=﹣1<0,排除C,只有A适合,故选:A.10.【考点】K4:椭圆的简单性质;K8:抛物线的简单性质;KC:双曲线的简单性质.【分析】根据题意先分别表示出e1,e2和e3,然后求得e1e2的取值范围,检验选项中的结论即可.【解答】解:依题意可知e1=,e2=,e3=1∴e1e2=•=<1,A,B,D不正确.故选C.二、填空题:本大题共5小题,每小题5分,共25分.11.【考点】EF:程序框图.【分析】程序运行的功能是求S=1﹣2+3﹣4+…+(﹣1)k﹣1•k,根据计算变量n判断程序终止运行时的k值,利用并项求和求得S.【解答】解:执行程序框图,有k=1,S=0满足条件n<2015,S=1,k=2;满足条件n<2015,S=﹣1,k=3;满足条件n<2015S=2,k=4;满足条件n<2015S=﹣2,k=5;满足条件n<2015S=3,k=6;满足条件n<2015S=﹣3,k=7;满足条件n<2015S=4,k=8;…观察规律可知,有满足条件n<2015S=1006,k=2012;满足条件n<2015S=﹣1006,k=2013;满足条件n<2015S=1007,k=2014;满足条件n<2015,S=﹣1007,k=2015;不满足条件n<2015,输出S的值为﹣1007.故答案为:﹣1007.12.【考点】F1:归纳推理.【分析】由题意可以直接得到答案.【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n(n+1),故答案为:n(n+1)13.【考点】9T:数量积判断两个平面向量的垂直关系.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.14.【考点】KC:双曲线的简单性质.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.15.【考点】2K:命题的真假判断与应用.【分析】①根据含有量词的命题的否定进行判断.②根据函数奇偶性的定义和性质结合双曲线的图象进行判断.③根据几何概型的概率公式进行判断.④利用不等式恒成立,利用参数分离法进行求解判断即可.【解答】解:①命题“∀x∈R,x2>0”的否定是“∃x∈R,x2≤0”;故①正确,②函数y=f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),其图象上任一点P(x,y)满足x2﹣y2=1,则函数y=f(x)可能是奇函数;正确,当点P的坐标满足y=时,函数f(x)为奇函数.故②正确,③若a,b∈[0,1],则不等式成立的概率是.如图.所以③错误④因为函数y=log2(x2﹣ax+2)在[2,+∞)上恒为正,所以在[2,+∞)上x2﹣ax+2>1恒成立,即:在[2,+∞)上恒成立,令,因为x≥2,所以,所以g(x)在[2,+∞)上为增函数,所以:当x=2时,g(x)的最小值为g(2)=,所以.则实数a的取值范围是(﹣∞,).故④正确,故答案为:①②④三、解答题:本大题共6小题,共75分.16.【考点】GL:三角函数中的恒等变换应用;9R:平面向量数量积的运算.【分析】(I)利用数量积运算性质、和差公式可得,再利用单调性即可得出.(I I)由题意得P,Q.根据距离公式及其余弦定理即可得出.17.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;GL:三角函数中的恒等变换应用.【分析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值.18.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.【分析】(I)由BB1⊥平面ABC可知BB1⊥AE,又AE⊥BC可得AE⊥平面BCC1B1,从而平面AEF⊥平面B1BCC1;(II)由(1)知AE为棱锥A﹣B1EF的高.于是V=V=.19.【考点】8E:数列的求和;8H:数列递推式.【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.20.【考点】K4:椭圆的简单性质.【分析】(I)由离心率公式和点满足椭圆方程,及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)讨论直线的斜率不存在和存在,设出直线的方程为y=kx+(k≠0),与椭圆方程联立,运用韦达定理,再由|AM|=|AN|,运用两点的距离公式,化简整理可得k的方程,解方程可得k,进而得到所求直线方程.21.【考点】6B:利用导数研究函数的单调性;52:函数零点的判定定理.【分析】(Ⅰ)求出函数的导数,分离参数,问题转化为在[2,4]上恒成立,根据函数的单调性求出a的范围即可;(Ⅱ)问题等价于a(x﹣1)2+lnx﹣x+1≤0恒成立,设g(x)=a(x﹣1)2+lnx﹣x+1(x≥1),只需g(x)max≤0即可,根据函数的单调性求出g(x)的最大值,从而求出a的范围.。
2017年高考模拟考试理科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设复数12,z z 在复平面内对应的点关于实轴对称,若1131i z i +=-,则12z z +等于 A .4i B .4i - C .2 D .-22、已知命题p q ∧是假命题,p q ∨是真命题,则下列命题一定是真命题的是A .pB .()()p q ⌝∧⌝C .qD .()()p q ⌝∨⌝3、若集合2{|0},{|(0,1)},x M x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是A .M N M =B .M N R =C .R MC N ϕ=D .R C M N R = 4、函数()12log cos ()22f x x x ππ=-<< 的图象大致是5、已知二次函数()22f x ax x c =-+的值域为[0,)+∞,则91a c+的最小值为A .3B .6C .9D .126、《算学启蒙》值中国元代数学家朱世杰撰写的一部数学启蒙读物,包括面积、体积、比例、开方、高次方程等问题,《算学启蒙》中有关于“松竹并生”的问题: “松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”,如图是源于其思想的一个程序框图,若输入,a b 分别为8,2,则输出的n 等于A .4B .5C .6D .77、已知圆221:(6)(5)4C x y ++-=,圆222:(2)(1)1,,C x y M N -+-=分别为圆1C 和2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .7B .8C .10D .138、一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为9π,则它的表面积是A .27πB .36πC .45πD .54π9、某化肥厂用三种原料生产甲乙两种肥料,生产1吨甲种肥料和生产1吨乙种肥料所需三种原料的吨数如右表所示:已知生产1吨甲种肥料产生的利润2万元,生产1吨乙种肥料产生的利润为3万元,现有A 种原料20吨,B 种原料36吨,C 种原料32吨,在此基础上安排生产,则生产甲乙两种肥料的利润之和的最大值为A .17万元B .18万元C .19万元D .20万元10、已知函数()2,0,0xx x e f x x x e ⎧+<⎪⎪=⎨⎪≥⎪⎩,若123123()()()()f x f x f x x x x ==<<,则21()f x x 的取值范围是A .(1,0)-B .(2,1)--C .(,0)-∞D .(1,)+∞ 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..11、已知ABC ∆,04,45AB AC BAC ==∠=,则ABC ∆外接圆的直径为12、某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为ˆˆ4yx a =-+,当产品销量为76件时,产品定价大致 为 元.13、已知ABC ∆是正三角形,O 是ABC ∆的中心,D 和E 分别是边AB 和AC 的中点, 若OA xOD yOE =+,则x y +=14、若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从0,1,2,3,4,5,6,7,这个数字中任取3个,组成无重复数字的三位数,其中“伞数”有 个(用数字作答)15、抛物线22(0)x my m =>的焦点为F ,其准线与双曲线22221(0)x y n m n -=>有两个交点,A B ,若0120AFB ∠=,则双曲线的离心率为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)已知向量(1,3sin()),(2cos ,)(02)6m wx n wx y w π=+=<<,且//m n ,函数()y f x =的图象过点5(12π. (1)求w 的值及函数()f x 的最小正周期;(2)将()y f x =的图象向右平移6π个单位,得到函数()y g x =的图象,已知()26g α=, 求cos(2)3πα-的值.18、(本小题满分12分)在如图所示的几何体ABCDEF 中,四边形A B C D 是等腰梯形,0//,60,A DBC A B C ∠= 11,2AB BC DE ==⊥平面,//,2,,ABCD BF DE DE BF M N =分别是的中点. (1)求证:BD ⊥平面MAN ;(2)已知直线BE 与平面ABCD 所成的角为045,求二面角A BE C --的余弦值.18、(本小题满分12分)市政府为调查市民对本市某项调控措施的态度,随机抽取了500名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)从月收入在[)60,70的20人中随机抽取3人,求3人中至少2人对对该措施持赞成态度的概率;(2)根据用样本估计总体的思想,以样本中事件发生的频率作为相应事件发生的概率,在本市随机采访3人,用X 表示3人中对该项措施持赞成态度的人数,求X 的分布列和数学期望.19、(本小题满分12分)数列{}n a 的前项和记为1,n S a t =,点1(,)n n a S +在直线112y x =-上n N +∈. (1)当实数t 为何值时,数列{}n a 是等比数列?并求数列{}n a 的通项公式;(2)若()[][](f x x x =表示不超过x 的最大整数),在(1)的结论下, 令321(log )1,n n n n n n b f a c a b b +=+=+,求{}n c 的前n 项和n T .20、(本小题满分13分) 已知椭圆2222:1(0)x y E a b a b +=>>,其上顶点B 与左焦点F 所在的直线的倾斜角为3π,O 为坐标原点OBF,三角形的周长为3.(1)求椭圆E 的方程;(2)设椭圆E 的右顶点为A ,不过点A 的直线l 与椭圆E 相交于P 、Q 两点,若以PQ 为直径的圆经过点A ,求证:直线l 过定点,并求出该定点坐标.21、(本小题满分14分)已知函数()2(1)x f x x e =-,且()f x 在0x x =处取得极小值,函数()1ln g x kx x =+-.(1)若曲线()y g x =在点(,())e g e 处切线恰好经过点00(,())P x f x ,取实数k 的值;(2)讨论函数的极值;(3)已知函数(){}min{(),()|(min ,F x f x g x p q =表示,p q 中最小值),若在(0,)+∞上函数()F x 恰有三个零点,求实数k 的取值范围.。
2017高考仿真卷·理科数学(二)(考试时间120分钟试卷满分150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={|2-4<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落在区间[1,400]上的人做问卷A,编号落在区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p函数y=ln(2+3)+的最小值是2;命题q“>2”是“>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.(p)∧(q)C.(p)∧qD.p∧(q)5.已知点A是抛物线C1y2=2p(p>0)与双曲线C2=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.的展开式中含的正整数指数幂的项的个数是()A.1B.2C.3D.47.若数列{a n}是等差数列,则下列结论正确的是()A.若a2+a5>0,则a1+a2>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a3>D.若a1<0,则(a2-a1)( a4-a2)>08.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V正四棱锥P-ABCD=,则球O的表面积是()A.4πB.8πC.12πD.16π9.已知变量,y满足线性约束条件若目标函数=-y仅在点(0,2)处取得最小值,则的取值范围是()A.<-3B.>1C.-1<<1D.-3<<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为,y,,记f(,y,)=,则f(,y,)的最小值为()A.26B.32C.36D.4812.已知集合M={(,y)|y=f()},若对于任意(1,y1)∈M,存在(2,y2)∈M,使得12+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合①M=;②M={(,y)|y=sin +1};③M={(,y)|y=log2};④M={(,y)|y=e-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入=0.1,则输出的m值为.14.已知f()是定义在R上的奇函数,当≥0时,f()=3+m(m为常数),则f(-log35)的值为.15.关于函数f()=2(sin -cos )cos 的下列四个结论①函数f()的最大值为;②把函数f()=sin 2-1的图象向右平移个单位后可得到函数f()=2(sin -cos )·cos 的图象;③函数f()的单调递增区间为,∈;④函数f()的图象的对称中心为,∈.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)某青少年研究中心为了统计某市青少年(18岁以下)2017年春节所收压岁钱的情况进而研究青少年的消费去向,随机抽查了该市60名青少年所收压岁钱的情况,得到如下数据统计表(图①).已知“压岁钱不少于2千元的青少年”与“压岁钱少于2千元的青少年”人数比恰好为2∶3.(1)试确定,y,p,q的值,并补全频率分布直方图(图②);(2)该机构为了进一步了解这60名青少年压岁钱的消费去向,将这60名青少年按“压岁钱不少于2千元”和“压岁钱少于2千元”分为两部分,并且用分层抽样的方法从中抽取10人,若需从这10人中随机抽取3人进行问卷调查.设ξ为抽取的3人中“压岁钱不少于2千元的青少年”的人数,求ξ的分布列和均值;(3)若以频率估计概率,从该市青少年中随机抽取15人进行座谈,若15人中“压岁钱不少于2千元的青少年”的人数为η,求η的均值.5,3]合 计60 1.0图①图②19.(本小题满分12分)在如图所示的多面体中,四边形ABCD 是菱形,ED ∥FB ,ED ⊥平面ABCD ,AD=BD=2,BF=2DE=2.(1)求证AE ⊥CF ;(2)求二面角A-FC-E 的余弦值.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过点P作斜率为的直线l交椭圆C于A,B两点,求证|PA|2+|PB|2为定值.21.(本小题满分12分)已知函数f()=-3+2(∈R),g()满足g'()=(a∈R,>0),且g(e)=a,e为自然对数的底数.(1)已知h()=e1-f(),求曲线h()在点(1,h(1))处的切线方程;(2)若存在∈[1,e],使得g()≥-2+(a+2)成立,求a的取值范围;(3)设函数F()=O为坐标原点,若对于y=F()在≤-1时的图象上的任一点P,在曲线y=F()(∈R)上总存在一点Q,使得<0,且PQ的中点在y轴上,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.已知曲线Cρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5不等式选讲已知函数f()=|-1|+|+1|.(1)求不等式f()≥3的解集;(2)若关于的不等式f()>a2-2+2在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·理科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={|0<<4},N={|-2≤≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落在区间[1,400]上的有20人,编号落在区间[401,750]上的有18人.所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以(p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到该抛物线准线的距离为p.所以点A的坐标为所以双曲线C2的渐近线方程为y=±2.所以=2.所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线C2的离心率为6.B解析的展开式中第r+1项为)12-r=(-1)r当6-为正整数时,可知r=0或r=2,故的展开式中含的正整数指数幂的项的个数是2.7.C解析设等差数列{a n}的公差为d,若a2+a5>0,则a1+a2=(a2-d)+(a5-3d)=(a2+a5)-4d.由于d 的正负不确定,因而a1+a2的符号不确定,故选项A错误.若a1+a3<0,则a1+a2=(a1+a3)-d.由于d的正负不确定,因而a1+a2的符号不确定,故选项B 错误.若0<a1<a2,则d>0.所以a3>0,a4>0.所以-a2a4=(a1+2d)2-(a1+d)(a1+3d)=d2>0.所以a3>故选项C正确.由于(a2-a1)(a4-a2)=d(2d)=2d2,而d有可能等于0,故选项D错误.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以2R2·R=,解得R=2.所以球O的表面积是16π.9.D解析如图,作出题中不等式组所表示的平面区域.由=-y得y=-,要使目标函数=-y仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=+2的下方,故目标函数线的斜率满足-3<<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知PA2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时PA=,AC=所以该几何体的体积V=111.C解析由=2,∠BAC=30°,可得S△ABC=1,即+y+=1.故(+y+)=1+4+9+14+4+6+12=36,当且仅当=,y=,=时等号成立.因此,f(,y,)的最小值为36.12.D解析若对于函数图象上的任意一点M(1,y1),在其图象上都存在点N(2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m值为0.14.-4解析因为f()是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f()=2sin ·cos -2cos2=sin 2-cos 2-1=sin-1,所以其最大值为-1.所以①错误.因为函数f()=sin 2-1的图象向右平移个单位后得到函数f()=sin-1=sin-1的图象,所以②错误.由-+2π≤2-+2π,∈,得函数f()的单调递增区间为,∈,即为,'∈.故③正确.由2-=π,∈,得=,∈,故④正确.16.a n= 解析因为a n-1-a n=(n≥2),所以所以所以,…,所以所以所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=17.解(1)∵A=,∴B+C=∴sin=3sin C.cos C+sin C=3sin C.cos C=sin C.∴tan C=(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=18.解(1)根据题意,有解得故p=0.15,q=0.10.补全的频率分布直方图如图所示.(2)用分层抽样的方法从中抽取10人,则其中“压岁钱不少于2千元的青少年”有10=4人,“压岁钱少于2千元的青少年”有10=6人.故ξ的可能取值为0,1,2,3,且P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,所以ξ的分布列为所以E(ξ)=0+1+2+3(3)以频率估计概率,从该市青少年中随机抽取1人为“压岁钱不少于2千元的青少年”的概率是,则η~B,故随机变量η的均值为E(η)=15=6.19.(1)证明(方法一)由题意知,在△AEF中,AE=,EF=,AF=2∴AE2+EF2=AF2,∴AE⊥EF.在△AEC中,AE=,EC=,AC=2∴AE2+EC2=AC2,∴AE⊥EC.又EF∩EC=E,∴AE⊥平面ECF.又FC⊂平面ECF,∴AE⊥FC.(方法二)∵四边形ABCD是菱形,AD=BD=2,∴AC⊥BD,AC=2故可以O 为坐标原点,以OA ,OB 所在直线为轴、y 轴建立如图所示的空间直角坐标系.由ED ⊥平面ABCD ,ED ∥FB ,BD=2,BF=2,DE=,可知A (,0,0),E (0,-1,),C (-,0,0),F (0,1,2). =(-,-1,),=(,1,2).=(-,-1,)·(,1,2)=-3-1+4=0.∴AE ⊥CF.(2)解 由(1)中方法二可知A (,0,0),E (0,-1,),C (-,0,0),F (0,1,2),则=(-,1,2),=(-2,0,0),=(0,2,),=(-,1,-).设平面AFC 的一个法向量为n 1=(1,y 1,1),由n 1=0,n 1=0,得-1+y 1+21=0,且-21=0.令1=1,得n 1=(0,-2,1).设平面EFC 的一个法向量为n 2=(2,y 2,2),由n 2=0,n 2=0,得2y 2+2=0,且-2+y 2-2=0.令y 2=-1,得n 2=(-,-1,).设二面角A-FC-E 的大小为θ,则cos θ=20.(1)解 因为2a=4,所以a=2.又因为焦点在轴上,所以设椭圆方程为=1.将点代入椭圆方程得b 2=1,所以椭圆方程为+y 2=1.(2)证明 设点P (m ,0)(-2≤m ≤2),可得直线l 的方程是y=,由方程组消去y 得22-2m+m 2-4=0.(*)设A (1,y 1),B (2,y 2),则1,2是方程(*)的两个根.所以1+2=m ,12=所以|PA|2+|PB|2=(1-m )2++(2-m )2+ =(1-m )2+(1-m )2+(2-m )2+(2-m )2=[(1-m )2+(2-m )2]=-2m (1+2)+2m 2]=[(1+2)2-2m (1+2)-212+2m 2]=[m 2-2m 2-(m 2-4)+2m 2]=5.所以|PA|2+|PB|2为定值.21.解 (1)∵h ()=(-3+2)e 1-,∴h'()=(3-42+2)e 1-.∴h(1)=0,h'(1)=-1.∴曲线h()在点(1,h(1))处的切线方程为y=-(-1),即y=-+1. (2)∵g'()=(a∈R,>0),∴g()=a ln +c(c为常数).∴g(e)=a ln e+c=a+c=a.∴c=0.∴g()=a ln .由g()≥-2+(a+2),得(-ln )a≤2-2.∵当∈[1,e]时,ln ≤1≤,且等号不能同时成立,∴ln <,即-ln >0.∴aa设t()=,∈[1,e],则t'()=∵∈[1,e],∴-1≥0,ln ≤1,+2-2ln >0.∴t'()≥0.∴t()在[1,e]上为增函数.∴t()ma=t(e)=a(3)设P(t,F(t))为y=F()在≤-1时的图象上的任意一点,则t≤-1.∵PQ的中点在y轴上,∴点Q的坐标为(-t,F(-t)).∵t≤-1,∴-t≥1.∴P(t,-t3+t2),Q(-t,a ln(-t)).=-t2-at2(t-1)ln(-t)<0,∴a(1-t)ln(-t)<1.当t=-1时,a(1-t)ln(-t)<1恒成立,此时a∈R.当t<-1时,a<,令φ(t)=(t<-1),则φ'(t)=∵t<-1,∴t-1<0,t ln(-t)<0.∴φ'(t)>0.∴φ(t)=在(-∞,-1)内为增函数.∵当t→-∞时,φ(t)=0,∴φ(t )>0.∴a ≤0.综上,可知a 的取值范围是(-∞,0].22.解 (1)曲线C 的直角坐标方程为2=2ay (a>0),直线l 的普通方程为-y+2=0.(2)将直线l 的参数方程与C 的直角坐标方程联立,得t 2-2(4+a )t+8(4+a )=0. (*) 由Δ=8a (4+a )>0,可设点M ,N 对应的参数分别为t 1,t 2,且t 1,t 2是方程(*)的根,则|PM|=|t 1|,|PN|=|t 2|,|MN|=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|.由(*)得t 1+t 2=2(4+a ),t 1t 2=8(4+a )>0,则有(4+a )2-5(4+a )=0,解得a=1或a=-4.因为a>0,所以a=1.23.解 (1)原不等式等价于解得≤-或故原不等式的解集为(2)令g ()=|-1|+|+1|+2-2,则g ()=当∈(-∞,1]时,g ()单调递减;当∈[1,+∞)时,g ()单调递增.故当=1时,g ()取得最小值1. 因为不等式f ()>a 2-2+2在R 上恒成立,所以a 2<1,解得-1<a<1.所以实数a 的取值范围是(-1,1).。
2017年山东省潍坊市实验中学高考数学二模试卷(文科)一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.(5分)设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁U A)∩B等于()A.[﹣1,0)B.(0,5]C.[﹣1,0]D.[0,5]3.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3B.C.(x﹣2)2+(y±2)2=4D.5.(5分)执行如图所示的程序框图,则输出的k的值是()A.3B.4C.5D.66.(5分)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13B.17C.19D.217.(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.升B.升C.升D.升8.(5分)函数y=a|x|与y=sin ax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.9.(5分)三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA =AB=AC=1,则球O的表面积为()A.B.C.3πD.12π10.(5分)设,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是()A.(﹣2,1)B.[0,1]C.[﹣2,0)D.[﹣2,1)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α=.12.(5分)已知某几何体的三视图如图所示,则该几何体的体积为13.(5分)若x、y满足条件,则z=x+3y的最大值是.14.(5分)设a>0,b>0,若是4a和2b的等比中项,则的最小值为.15.(5分)如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.(12分)甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?17.(12分)已知=(2sin x,sin x+cos x),=(cos x,sin x﹣cos x),函数f(x)=•.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2﹣c2=ab,若f(A)﹣m>0恒成立,求实数m的取值范围.18.(12分)如图,底面是等腰梯形的四棱锥E﹣ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=.(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;(Ⅱ)若AE=AB=2,求三棱锥B﹣CDE的体积.19.(12分)已知数列{a n}的前n项和,数列{b n}满足3n﹣1b n=a2n﹣1(I)求a n,b n;(Ⅱ)设T n为数列{b n}的前n项和,求T n.20.(13分)已知函数f(x)=x3﹣x﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.21.(14分)已知双曲线C:=1的焦距为3,其中一条渐近线的方程为x﹣y =0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E 交于A、B两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P满足|P A|=|PB|,求证为定值.2017年山东省潍坊市实验中学高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【解答】解:由z(1+i)=2i,得.∴在复平面内z对应的点的坐标是(1,1).故选:A.2.(5分)设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁U A)∩B等于()A.[﹣1,0)B.(0,5]C.[﹣1,0]D.[0,5]【解答】解:由A中的不等式变形得:2x>1=20,得到x>0,∴A=(0,+∞),∵全集U=R,∴∁U A=(﹣∞,0],∵B=[﹣1,5],∴(∁U A)∩B=[﹣1,0].故选:C.3.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.4.(5分)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3B.C.(x﹣2)2+(y±2)2=4D.【解答】解:∵圆C经过(1,0),(3,0)两点,∴圆心在直线x=2上.可设圆心C(2,b).又∵圆C与y轴相切,∴半径r=2.∴圆C的方程为(x﹣2)2+(y﹣b)2=4.∵圆C经过点(1,0),∴(1﹣2)2+b2=4.∴b2=3.∴.∴圆C的方程为.故选:D.5.(5分)执行如图所示的程序框图,则输出的k的值是()A.3B.4C.5D.6【解答】解:模拟执行程序,可得:k=1,s=1,第1次执行循环体,s=1,不满足条件s>15,第2次执行循环体,k=2,s=2,不满足条件s>15,第3次执行循环体,k=3,s=6,不满足条件s>15,第4次执行循环体,k=4;s=15,不满足条件s>15,第5次执行循环体,k=5;s=31,满足条件s>31,退出循环,此时k=5.故选:C.6.(5分)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13B.17C.19D.21【解答】解:∵高三某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为56÷4=14,则5+14=19,即样本中还有一个学生的编号为19,故选:C.7.(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.升B.升C.升D.升【解答】解:设此等差数列为{a n},公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,联立解得a1=,d=.∴a5=+4×=.故选:C.8.(5分)函数y=a|x|与y=sin ax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.【解答】解:当a>1时,函数y=a|x|与y=sin ax(a>0且a≠1)在同一直角坐标系下的图象为:当0<a<1时,函数y=a|x|与y=sin ax(a>0且a≠1)在同一直角坐标系下的图象为:比照后,发现D满足第一种情况,故选:D.9.(5分)三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA =AB=AC=1,则球O的表面积为()A.B.C.3πD.12π【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R=.球的表面积为:4πR2=4π•()2=3π.故选:C.10.(5分)设,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是()A.(﹣2,1)B.[0,1]C.[﹣2,0)D.[﹣2,1)【解答】解:设,画出y=f(x)和y=﹣k的图象,如图所示:由图象得:﹣2≤k<1函数y=f(x)与y=﹣k的图象有3个交点,即函数y=f(x)+k的图象与x轴恰有三个公共点;故选:D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α=﹣.【解答】解:由题意可得,x=3、y=4、r=5,∴cosα==,∴cos2α=2cos2α﹣1=﹣,故答案为:﹣.12.(5分)已知某几何体的三视图如图所示,则该几何体的体积为12【解答】解:由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,∴几何体的体积V=×3×2×4=12.故答案为:12.13.(5分)若x、y满足条件,则z=x+3y的最大值是11.【解答】解:作出不等式组对应的平面区域如图:由z=x+3y得y=,平移直线y=,当直线y=经过点A时,对应的直线的截距最大,此时z也最大,由,解得,即A(2,3),此时z=2+3×3=11,故答案为:1114.(5分)设a>0,b>0,若是4a和2b的等比中项,则的最小值为9.【解答】解:是4a和2b的等比中项,∴4a•2b=,∴2a+b=1.又a>0,b>0,则=(2a+b)=5++≥5+2×=9,当且仅当a=b=时取等号.则的最小值为9.故答案为:9.15.(5分)如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.【解答】解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|F A|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为,∴点B的坐标为B(,),把B(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.(12分)甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?【解答】解:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积π•R2,阴影部分的面积为,则在甲商场中奖的概率为:;如果顾客去乙商场,记3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3)(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种,摸到的是2个红球有(b1,b2),(b1,b3),(b2,b3),共3种,则在乙商场中奖的概率为:P2=,又P1<P2,则购买该商品的顾客在乙商场中奖的可能性大.17.(12分)已知=(2sin x,sin x+cos x),=(cos x,sin x﹣cos x),函数f(x)=•.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2﹣c2=ab,若f(A)﹣m>0恒成立,求实数m的取值范围.【解答】解:(Ⅰ)∵=(2sin x,sin x+cos x),=(cos x,sin x﹣cos x),函数f(x)=•.∴f(x)=sin2x+sin2x﹣cos2x=2sin(2x﹣),∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数f(x)的单调递减区间为:[kπ+,kπ+],k∈Z.(Ⅱ)∵b2+a2﹣c2=ab,∴cos C===,由C∈(0,π),可得:C=,∵f(A)﹣m=2sin(2A﹣)﹣m>0恒成立,即:2sin(2A﹣)>m恒成立,∵A∈(0,),2A﹣∈(﹣,),∴sin(2A﹣)∈(﹣,1],可得:m≤﹣1.18.(12分)如图,底面是等腰梯形的四棱锥E﹣ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=.(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;(Ⅱ)若AE=AB=2,求三棱锥B﹣CDE的体积.【解答】(Ⅰ)证明:取EB的中点G,连接FG,CG,∵F为EA的中点,∴FG∥AB,FG=AB,∵AB∥CD,AB=2CD,∴FG∥CD,FG=CD,∴四边形CDFG为平行四边形,∴DF∥CG,∵DF⊄平面EBC,CG⊂平面EBC,∴DF∥平面EBC;(Ⅱ)解:等腰梯形ABCD中,作CH⊥AB于H,则BH=,在Rt△BHC中,∠ABC=60°,则CH=tan60°=,即点C到AB的距离d=,则点B到CD的距离为,∵EA⊥平面ACD,∴三棱锥B﹣CDE的体积为V E﹣BDC==.19.(12分)已知数列{a n}的前n项和,数列{b n}满足3n﹣1b n=a2n﹣1(I)求a n,b n;(Ⅱ)设T n为数列{b n}的前n项和,求T n.【解答】解:(Ⅰ)∵S n=n2+2n,∴当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣(n﹣1)2﹣2(n﹣1)=2n+1(n≥2),又∵S1=1+2=3即a1=1满足上式,∴数列{a n}的通项公式a n=2n+1;∴3n﹣1b n=a2n﹣1=2(2n﹣1)+1=4n﹣1,∴b n=,(Ⅱ)T n=+++…++,∴T n=+++…++,∴T n=3+4(++…+)﹣=3+4•﹣=5﹣∴T n=﹣20.(13分)已知函数f(x)=x3﹣x﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.【解答】解:(Ⅰ)设φ(x)==x2﹣1﹣(x>0),则φ'(x)=2x+>0,∴φ(x)在(0,+∞)上单调递增;(Ⅱ)∵φ(1)=﹣1<0,φ(2)=3﹣>0,且φ(x)在(0,+∞)上单调递增,∴φ(x)在(1,2)内有零点,又f(x)=x3﹣x﹣=x•φ(x),显然x=0为f(x)的一个零点,∴f(x)在(0,+∞)上有且只有两个零点;(Ⅲ)g(x)=+lnx=lnx+,则g'(x)==,设h(x)=x2﹣(2+a)x+1,则h(x)=0有两个不同的根x1,x2,且有一根在(0,)内,不妨设0<x1<,由于x1x2=1,即x2>e,由于h(0)=1,故只需h()<0即可,即﹣(2+a)+1<0,解得a>e+﹣2,∴实数a的取值范围是(e+﹣2,+∞).21.(14分)已知双曲线C:=1的焦距为3,其中一条渐近线的方程为x﹣y =0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E 交于A、B两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P满足|P A|=|PB|,求证为定值.【解答】(Ⅰ)解:∵双曲线C:=1的焦距为3,∴c=,∴,①∵一条渐近线的方程为x﹣y=0,∴,②由①②解得a2=3,b2=,∴椭圆E的方程为.(Ⅱ)解:∵点P为椭圆的左顶点,∴P(﹣,0),设G(x0,y0),由,得(x0+,y0)=2(﹣x0,﹣y0),∴,解得,∴G(﹣,0),设A(x1,y1),则B(﹣x1,﹣y1),||2+||2=()2++(x1﹣)2+=2+2+=2+3﹣x+=+,又∵x1∈[﹣,],∴∈[0,3],∴,∴的取值范围是[].(Ⅲ)证明:由|P A|=|PB|,知P在线段AB垂直平分线上,由椭圆的对称性知A,B关于原点对称,①若A、B在椭圆的短轴顶点上,则点P在椭圆的长轴顶点上,此时==2()=2.②当点A,B,P不是椭圆的顶点时,设直线l的方程为y=kx(k≠0),则直线OP的方程为y=﹣,设A(x1,y1),由,解得,,∴|OA|2+|OB|2==,用﹣代换k,得|OP|2=,∴==2,综上所述:=2.。
2020届山东省潍坊市2017级高三高考模拟(二模)考试
数学试卷
★祝考试顺利★
2020.5
本试卷共6页.满分150分.考试时间120分钟.
注意事项:
1.答题前,考生先将自己的学校、姓名、班级、座号、考号填涂在相应位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束,考生必须将试题卷和答题卡一并交回.
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}{}{}1,2,3,4,5,6,7,2,3,4,5,2,3,6,7U U A B A C B ===⋂=,则
A. {}1,4
B. {}1,4,5
C. {}4,5
D. {}6,7
2.若复数1a i z i +=
-在复平面内对应的点在第二象限内,则实数a 的值可以是 A.1 B.0 C. 1- D. 2-
3.甲、乙、丙三人中,一人是律师,一个是医生,一人是记者.已知丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是
A.甲是律师,乙是医生,丙是记者
B.甲是医生,乙是记者,丙是律师。
2017年普通高考理科数学仿真试题(二)
本试卷分第I 卷和第Ⅱ卷两部分,共5页,满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应 的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、演算步骤或推证过程.
第I 卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}0≠∈=x f R x A ,集合(){}
0≠∈=x g R x B ,全集U=R ,则集合
()(){}==+02
2
x g x f x
2.已知i 是虚数单位,则=++i
i
121 A.
2
3i
- B.
2
3i
+ C.i -3
D.i +3
3.已知命题:p “[]0,2,12≥-∈∀a x x ”
,命题q :“022,2
=-++∈∃a ax x R x ”.若命题“q p ∧⌝”是真命题,则实数a 的取值范围是 A.a ≤—2或a=1 B.a ≤2或1≤a ≤2
C.a >1
D.—2≤a ≤1 4.阅读如图所示的程序框图,输出的S 值为 A.0
B.
2
3 C.3 D. 2
3-
5.设随机变量ξ服从正态分布N (0,1),若P (ξ>)p =1,则P (—1<ξ<0)=
A.
p +2
1
B.p -1
C.p 21-
D.
p -2
1
6.下图是一个几何体的三视图.已知侧视图是一个等边三角形,根据图中尺寸(单位:cm );可知这个几何体的表面积是
A.2
318cm +
B.
2
2
321cm C.23218cm +
D. 2
326cm +
7.已知函数()x f 是定义在R 上的奇函数,且满足()(),2x f x f -=+当10≤≤x 时,
()x x f 21=
,则使()2
1
-=x f 的x 的值是 A.()Z n n ∈2
B.()Z n n ∈-12
C.()Z n n ∈+14
D.()Z n n ∈-14
8.在ABC ∆
21==,则AB 边的长度为
A.1
B.3
C.5
D.9
9.已知直线0:=++C By Ax l (A ,B 不全为0),两点()()222111,,,y x P y x P ,若
()()C By Ax C By Ax ++⋅++2211>0,C By Ax ++11>C By Ax ++22,则
A.直线l 与直线P 1P 2不相交
B.直线l 与线段P 2P 1的延长线相交
C.直线l 与线段P 1P 2的延长线相交
D.直线l 与线段P 1P 2相交
10.已知y x ,满足⎪⎩⎪
⎨⎧≤++≤+≥,0,4,1c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则
a
c
b a ++ A.2 B.1 C.—1 D.—2
11.第16届亚运会于2010年1月12日在中国广州举行.运动会期间有来自A 大学2名和B
大
学4名共计6名大学生志愿者,现从这6名志愿者中随机抽取2人到体操比赛场馆服务,至少有1名A 大学志愿者的概率是 A.
15
1
B.
5
2 C.
5
3 D.
15
14 12.若函数()()
(a ax x x f a -=3log >0且)1≠a 在区间⎪⎭
⎫
⎝⎛-0,41内单调递增,则实数a 的取值范围是 A.⎪⎭
⎫
⎢⎣⎡1,32 B.⎪⎭
⎫
⎢
⎣⎡1,163 C.
[)(]3,11,163⋃
D.(]3,1
第II 卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分. 13.由函数⎪
⎭
⎫
⎝
⎛
≤≤=2
30cos πx x y 的图象与直线23π=x 及1=y ,所围成的一个封闭图形的面积是________.
14.设()()()10
102
21010
11)1(32-+⋅⋅⋅+-+-+=-x a x a x a a x ,则1021a a a +⋅⋅⋅++的值为
________.
15.给出下面的数表序列:
其中表()⋅⋅⋅=,3,2,1i i 有i 行,表中每一个数“两脚”的两数都是此数的2倍,记表n 中所有的数之和为n a ,例如49,17,5432===a a a ,则=n a __________.
16.已知下列命题:①0=++;②函数()
1-=x f y 的图象向左平移③④个单位后得到的函数图象解析式为()
;x f y =③函数()x f y +=1的图象与函数()x f y -=1的图象与函数()x f y -=1的图象关于y 轴对称;④满足条件60,3==B AC °,AB=1的△ABC 有两个.
其中正确命题的序号是_________.
三、解答题:本大题共6小题,共74分.
17.(本小题满分12分)已知函数()(ωωωωx x x x f 2cos cos sin 3-⋅=>)0的最小正周期为
.3
2π
(I )求ω的值;
(II )设△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,求此时()x f 的值域.
18.(本小题满分12分)如图,已知四棱锥P-ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC=60°,E 、F 分别是BC ,PC 的中点. (I )证明:AE ⊥PD ;
(II )若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为
2
6
,求二面角E-AF-C 的余弦值.
19.(本小题满分12分)一个房间有4扇同样的窗子,其中只有一扇窗子是打开的。
有一只燕子自开着的窗子飞入这个房间,它只能从开着的窗子飞出去,燕子在房子里一次又一次地向着窗户飞去,试图飞出房间.燕子飞向各扇窗子是等可能的.
(I )假定燕子是没有记忆的,求它恰好在第2次试飞时出了房间的概率;
(II )假定这只燕子是有记忆的,它飞向任一窗子的尝试不多于一次,若这只燕子恰好在第n 次试飞时飞出了房间,求试飞次数n 的分布列及其数学期望.
20.(本小题满分12分)已知数列{}n a 的前n 项的平均数的倒数为.1
21
+n (I )求{}n a 的通项公式;
(II )设n
n a n c 21
-
=
,试比较1+n c 与()
*∈N n c n
的大小关系;
(III )设函数()n
a n x x x f 21
42
--
+-=,是否存在最大的实数λ,当λ≤x 时,对于一切正
整数n ,都有()0≤x f 成立?
21.(本小题满分12分)设()()2211,,,y x B y x A 是椭圆(a b
x a y 122
22=+>b >)0上的两点,向
量⎪⎭
⎫
⎝⎛=⎪⎭⎫
⎝⎛=a y b x n a y b x m 2211,,,,且n m ⋅=0,
椭圆离心率23=e ,短轴长为2,O 为坐标原点. (I )求椭圆方程;
(II )若存在斜率为k 的直线AB 过椭圆的焦点F (0,c )(c 为半焦距),求k 的值; (III )△AOB 的面积是否为定值?若是,求出该定值;若不是,说明理由.
22.(本小题满分14分)已知函数()()
a e x f x +=ln (e 为常数)是R 上的奇函数,函数
()()x x f x g sin +=λ是区间[]1,1-上的减函数.
(I )求a 的值;
(II )若()x g <12++t t λ在[]1,1-∈x 上恒成立,求t 的取值范围; (III )讨论关于x 的方程()
m ex x x f x
+-=2ln 2的根的个数.
2017年普通高考理科数学仿真试题(二)答案。