二次函数的应用复习3
- 格式:ppt
- 大小:6.59 MB
- 文档页数:16
二次函数在实际问题中的应用一、知识回顾二次函数是一种常见的函数形式。
其一般式为 y=ax^2+bx+c,其中 a、b、c 是实系数,a≠0。
在二次函数图像的右开口和左开口两种情况下,其又有不同的性质:1.右开口。
此时 a>0,二次函数在顶点处取得最小值,最小值等于 c-b^2/(4a)。
2.左开口。
此时 a<0,二次函数在顶点处取得最大值,最大值等于 c-b^2/(4a)。
在实际问题中,用二次函数可以描述很多现象。
下面就来看看具体的应用。
二、实际问题中的应用1.水桶倒水有一个体积为 V 的圆柱形水桶,现在要倒掉其中的水,当水流速度为 v 时,需要 t 秒才能将桶内的水倒光。
现在需要求出水面下降深度 h 随时间 t 的变化关系。
分析:设最初水面为 y=0,水倒光时水面到桶底的距离为 h0。
可知 h(t)=h0-Vt/S,其中S 是底面积。
由于水的体积随时间的变化遵循等速度变化规律,即 V=Stv,将其代入 h(t) 中得到 h(t)=h0-tv。
得到与时间 t 的关系式后,可化为二次函数形式,即 h(t)=-\frac{v}{2}t^2+h0。
此时二次函数是左开口的,其最大值为 h0,即水面下降到最大深度时的位置。
2.抛物线运动有一个物体从平地上以初速度 v0 竖直向上抛,忽略空气阻力,球的落地时间为 t0。
现在需要求出球的最高高度和以及任意时间离落地面的高度 h(t)。
分析:在竖直上抛运动过程中,球的高度随时间的变化遵循自由落体公式 h(t)=-\frac{1}{2}gt^2+v0t。
由于自由落体是二次函数,且此时为右开口,所以球的最高高度为 h_max=v0^2/(2g)。
而将 t0 代入二次函数中,可以得到球落地时的高度 h0,即 h0=-\frac{1}{2}gt0^2+v0t0。
再将 h(t) 化为二次函数形式:h(t)=-\frac{1}{2}gt^2+v0t0+\frac{1}{2}gt0^2,此时是左开口的二次函数形式。
九年级数学下册《二次函数的应用》期末专题复习【基础知识回顾】一、二次函数与一元二次方程:二、二次函数解析式的确定:1、设顶点式,即:设2、设一般式,即:设3、设交点式,即:设【提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:2、与一次函数或直线形图形结合的综合性问题【提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1 (呼和浩特)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A.有最大值,最大值为 B.有最大值,最大值为C.有最小值,最小值为 D.有最小值,最小值为对应训练1.已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定考点二:确定二次函数关系式例2 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.对应训练2.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.考点三:二次函数与x轴的交点问题例3 若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.3对应训练3.(株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0) B.(-2,0) C.x=-3 D.x=-2考点四:二次函数的实际应用例4 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是 m.例5 (重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:月份x 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)对应训练4.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行 m才能停下来.考点五:二次函数综合性题目例6 如图,抛物线交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线沿y轴翻折得抛物线.(1)求的解析式;(2)在的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.对应训练6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【聚焦中考】1.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.92.抛物线y=-3x2-x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.03.(济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.4.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…20 30 40 50 60 …每天销售量(y件)…500 400 300 200 100 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)洛阳市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?5.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.6.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【备考真题过关】一、选择题1、如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A. B. C.3 D.42、已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.(资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>53、如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①② B.①④ C.②③ D.③④4、如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.45、若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>16、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3C.﹣6 D.9二、解答题7、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= (t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?8、某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)9、某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?10、抛物线y= x2+x+m的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.11、如图,一次函数y=- x+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大第 11 页 共 11 页 值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.14.已知抛物线y= x 2+1(如图所示).(1)填空:抛物线的顶点坐标是( , ),对称轴是 ;(2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.。
备考2021年九年级数学中考复习专题:二次函数实际应用(三)1.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?2.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m≤70,该产品产量为多少时,获得的利润最大?最大利润是多少?3.丁丁推铅球的出手高度为1.6m,在如图所示的直角坐标系中,铅球运动轨迹是抛物线y =﹣0.1(x﹣k)2+2.5,求铅球的落点与丁丁的距离.4.甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km的B处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?6.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.7.某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?8.某科技公司接到一份新型高科技产品紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了该种产品42件,以后每天生产的产品都比前一天多2件,由于机器损耗等原因,当日生产的产品数量达到50件后,每多生产一件,当天生产的所有产品平均每件成本就增加10元.(1)设第x天生产产品y件,求出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若该产品每件生产成本(日生产量不超过50件时)为1000元,订购价格为每件1460元,设第x天的利润为W元,试求W与x之间的函数解析式,并求该公司哪一天获得的利润最大,最大利润是多少?(3)该公司当天的利润不低于22680元的是哪几天?请直接写出结果.9.电商扶贫将为乡村振兴注入新动力,某地积极利用某电商平台试销售成本为20元/斤的木耳,规定试销期间销售单价不低于成本单价,也不高于40元/斤,经试销发现,销售量y(斤)与销售单价x(元/斤)符合一次函数关系,如图所示的是y与x的函数关系图象.(1)求y与x的函数表达式;(2)设该地试销木耳获得的利润为W元,求W的最大值.10.某商店销售一种成本为40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件;(1)商店要使月销售利润达到8000元,销售价应定为每件多少元?(2)当销售价定为每件多少元时会获得最大利润?参考答案1.解:(1)由题意可得出:y B=(x﹣60)2+m经过(0,1000),则1000=(0﹣60)2+m,解得:m=100,∴y B=(x﹣60)2+100,当x=40时,y B=×(40﹣60)2+100,解得:y B=200,y A=kx+b,经过(0,1000),(40,200),则,解得:,∴y A=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,y B=(44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,y A﹣y B=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x ﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.2.解:(1)设线段AB所表示的y1与x之间的函数表达式为y1=k1x+b1,将(0,60),(120,40)代入得:,解得:,∴线段AB所表示的y1与x之间的函数表达式为y1=﹣x+60;(2)若m=90,设y2与x之间的函数表达式为y2=k2x+90,根据题意得:50=120k2+90,解得:k2=﹣,∴y2=﹣x+90(0<x≤120),设产品产量为xkg时,获得的利润为w元,根据题意得:w=(y2﹣y1)x=[﹣x+90﹣(﹣x+60)]x=(﹣x+30)x=﹣x2+30x=﹣(x﹣90)2+1350(0<x≤120);∴当x=90时,w有最大值,最大值为1350元.∴若m=90,该产品产量为90kg时,获得的利润最大,最大利润是1350元;(3)设y=k2x+m,由题意得:120+m=50,解得:k2=,∴y=x+m,设产品产量为xkg时,获得的利润为w'元,∴w'=x[(x+m)﹣(﹣x+60)]=x2+(m﹣60)x,∵60<m≤70,∴a=>0,b=m﹣60>0,∴﹣<0,即抛物线对称轴在y轴左侧,对称轴为直线x=<0,∴当0<x≤120时,w'随x的增大而增大,∴当x=120时,w'的值最大,w'max=1200元.∴50<m<70时,该产品产量为120kg时,获得的利润最大,最大利润为1200元.3.解:由题意知,点(0,1.6)在抛物线y=﹣0.1(x﹣k)2+2.5上,所以1.6=﹣0.1(0﹣k)2+2.5,解这个方程,得k=3或k=﹣3(舍去),所以该抛物线的解析式为y=﹣0.1(x﹣3)2+2.5,当y=0时,有﹣0.1(x﹣3)2+2.5=0,解得x1=8,x2=﹣2(舍去),所以铅球的落点与丁丁的距离为8m.4.解:根据题意画出示意图如下:设x小时后,两船相距ykm,根据题意,得:y2=(15x)2+(20﹣20x)2=225x2+400﹣800x+400x2=(25x﹣16)2+144∴当x=时,y2有最小值144,则y的最小值为12,答:小时后,两船的距离最小,最小距离是12km.5.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.6.解:(1)平行于墙的边为xm,矩形菜园的面积为ym2.则垂直于墙的一面长为(45﹣x)m,根据题意得:S=x(45﹣x)=﹣x2+x(17≤x≤27);(2)∵S=﹣x2+x=﹣(x2﹣45x)=﹣(x﹣)2+(17≤x≤27),∵17≤x≤27,a=﹣<0,∴当x=m时,S取得最大值,此时S=m2,∵|27﹣|<|17﹣|,∴x=17m时,S取得最小值,此时S=238m2,答:s的最大值是m2,最小值是238m2.7.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:40≤x≤70,∴销售单价最多为70元.8.解:(1)∵第一天生产了该种产品42件,以后每天生产的产品都比前一天多2件,∴y=42+2(x﹣1)=40+2x,∴y与x之间的函数解析式为y=40+2x(1≤x≤10,且x为整数).(2)当1≤x≤5时,W=(1460﹣1000)×(40+2x)=920x+18400,∵920>0,∴W随x的增大而增大,=920×5+18400=23000;∴当x=5时,W最大值当5<x≤10时,W=[1460﹣1000﹣10(40+2x﹣50)]×(40+2x)=﹣40(x﹣4)2+23040,∵此时函数图象开口向下,在对称轴右侧,W随x的增大而减小,又天数x为整数,=22880元.∴当x=6时,W最大值∵23000>22880,=23000元;∴当x=5时,W最大,且W最大值∴W与x之间的函数解析式为:W=,该公司第5天获得的利润最大,最大利润是23000元.(3)当1≤x≤5时,由920x+18400≥22680得x≥4,∴x=5;当5<x≤10时,由﹣40(x﹣4)2+23040=22680得:x1=1,x2=7,∴x=7;∵由(2)可知,当x=6时,W=22880元,最大值∴x=6符合题意.∴该公司当天的利润不低于22680元的是第5、6、7天.9.解:(1)设y与x的函数关系式为y=kx+b,根据题意得,,解得,∴y与x的函数解析式为y=﹣2x+340(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2×(40﹣95)2+11250=5200(元).10.解:(1)设销售价应定为每件x元,由题意得:(x﹣40)[500﹣10(x﹣50)]=8000,化简得x2﹣140x+4800=0,解得:x1=60,x2=80,∴销售价应定为每件60元或80元;(2)设销售价应定为每件x元,获得利润y元,依题意得:y=(x﹣40)[500﹣10(x﹣50)]=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵x≥50,且500﹣10(x﹣50)>0,∴50≤x<100,当x=70时,y取最大值9000,∴销售价定为每件70元时会获得最大利润9000元.。
第三单元 第18课时 二次函数的应用知识点回顾:1、二次函数y =ax 2+bx +c(a ≠0)的图象和性质、顶点、对称轴、与坐标轴的交点、与x 轴两交点间的距离? 2.各类二次函数顶点位置与a 、b 、c 的关系:(顶点在x 轴上、y 轴上、原点、经过原点) 3、求二次函数解析式的方法:4、二次函数y =ax 2+bx +c(a ≠0)的最大(或最小)值? 知识点一:求二次函数的解析式例1.(18兰州)农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房如图所示,则需要塑料布(m2)与半径((不考虑塑料埋在土里的部分) .③交点式来求解析式。
答案:同步检测:1、(18庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立图(1) 图(2)平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x =-D .212y x =答案:C2、(18芜湖)如图,在平面直角坐标系中放置一直角三角板,其顶点为(10)A -,,(0B ,(00)O ,,将此三角板绕原点O 顺时针旋转90°得到A B O ''△,一抛物线经过点A B B '、、,求该抛物线解析式。
答案:∵抛物线过(10)A B -,,设抛物线的解析式为(1)(0)y a x x a =+≠.又∵抛物线过(0B ,将坐标代入上解析式得:3)a a =⨯-=-·,.(1)3)y x ∴=-+-. 即满足条件的抛物线解析式为21)y x x =-+知识点二:利用二次函数的顶点式求最值二次函数y =ax2+bx +c =0,当x =2a b-时,a 4b ac 4y 2-=最大(小)值例2.(18浙江台州)如图,从地面垂直向上抛出一小球,小球的高 度(单位:米)与小球运动时间(单位:秒)的函数关系式是,那么小球运动中的最大高度 .分析:将化为顶点式即可求最大高度答案:4.9米 同步检测:1、(18内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. 答案:0.52、(18哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 答案:(1)根据题意,得2602302xS x x x -==-+ 自变量x 的取值范围是030x <<(2)10a =-<,S ∴有最大值301522(1)b x a ∴=-=-=⨯- 2243022544(1)ac b S a --===⨯-最大∴当15x =时,225S =最大答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米知识点三:根据二次函数图像上某些点坐标解决有关问题例3.(18襄樊)如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是m .分析:推出的距离转化为数学上的求y=0时的x 的值(取正值) 答案:10 同步检测:1、(18庆阳)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图所示),则6楼房子的价格为 元/平方米. 答案:2180;2、(18江西)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )A .40 m/sB .20 m/sC .10 m/sD .5 m/s答案:C知识点四:根据二次函数图像和性质解决销售利润问题例4、(18青岛)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?分析:(1)由题意:将(3,25)、(4,24)两点坐标代入可得:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ (2)理解利润的正确意义:12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++(3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+∵108a =-<,∴抛物线开口向下,在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. 最大利润211(46)111082=--+=(元). 同步检测:1、(18莆田)出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y 最大. 答案:32、(18包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.答案:解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+21807200x x =-+-2(90)900x =--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤ 知识点五:根据二次函数图像和性质解决最佳方案问题例5.(18新疆)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m ,抛物线拱高为5.6m .(1)在如图所示的平面直角坐标系中,求抛物线的表达式. (2)现需在抛物线AOB 的区域内安装几扇窗户,窗户的底边在AB 上,每扇窗户宽1.5m ,高1.6m ,相邻窗户之间的间距均为0.8m ,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m .请计算最多可安装几扇这样的窗户?分析:(1)可设抛物线的表达式为2y ax =,过点(6 5.6)B -,. ∴可得745a =-∴抛物线的表达式为2745y x =- (2)设窗户上边所在直线交抛物线于C 、D 两点,D 点坐标为(k ,t )已知窗户高1.6m ,∴ 5.6( 1.6)4t =---=- ∴27445k --=125.07 5.07k k -≈,≈(舍去)∴ 5.07210.14CD =⨯≈(m ) 又设最多可安装n 扇窗户∴1.50.8(1)10.14n n ++≤ ∴ 4.06n ≤ ∴最多可安装4扇窗户. 同步检测:(18长春)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点距守门员多少米?(取)(3)运动员乙要抢到第二个落点,他应再向前跑多少米?(取)解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即表达式为(或)(2)令(舍去).足球第一次落地距守门员约13米.3分(3)如图,第二次足球弹出后的距离为,根据题意:(即相当于将抛物线向下平移了2个单位)解得3分(米).∴他应再向前跑17米. 随堂检测1、(18恩施). 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )A. 7B. 6C. 5D.42、用长为8m 的铝合金条制成如图所示的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是 ( ) A2564m 2B 34m 2C 38m 2 D 4m 23、(18吉林长春)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.4、(18武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?5、(18金华)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9. (1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,华的身高;·AOBD EFy(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过..她的头顶,请结合图像,写出t的取值范围 .6、(18兰州)一座拱桥的轮廓是抛物线型(如图6-1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图6-2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x7、(18四川巴中)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m . (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.8、(18黄冈)新星电子科技公司积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线2y x x=-+-的一部分,且点A,B,C的横坐标分别为4,5205123010,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?9、(18南宁)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽; (3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.18万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?9题图10、(18日照)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.△EMN的面积;(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.随堂检测参考答案1、C2、C3、704、:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数);(2)210( 5.5)2402.5y x =--+.100a =-<,∴当 5.5x =时,y 有最大值2418.5.015x <≤,且x 为整数,当5x =时,5055x +=,2400y =(元),当6x =时,5056x +=,2400y =(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,.∴当1x =时,5051x +=,当10x =时,5060x +=.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元)5、(1)由题意得点E (1,1.4), B(6,0.9), 代入y =ax 2+bx +0.9得 0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩ 解得 0.10.6a b =-⎧⎨=⎩∴所求的抛物线的解析式是y =-0.1x 2+0.6x +0.9. (2)把x =3代入y =-0.1x 2+0.6x +0.9得 y =-0.1×32+0.6×3+0.9=1.8∴小华的身高是1.8米 (3)1<t <56、解:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,.设抛物线的解析式为2y ax c =+,将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,解得3650a c =-=,.所以抛物线的表达式是y =x(2)可设(5)F F y ,,于是2356 4.550F y =-⨯+= 从而支柱MN 的长度是10 4.5 5.5-=米.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(70),.过G 点作GH 垂直AB 交抛物线于H ,则23763.06350H y =-⨯+>≈.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. 7、解:(1)21855y x x =-+2116(4)55x =--+∴抛物线21855y x x =-+开口向下,顶点为1645⎛⎫⎪⎝⎭,,对称轴为4x =(2)令0y =,得:218055x x -+=解得:10x =,28x =∴球飞行的最大水平距离是8m .(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m∴抛物线的对称轴为5x =,顶点为1655⎛⎫⎪⎝⎭,设此时对应的抛物线解析式为216(5)5y a x =-+ 又点(00),在此抛物线上,162505a ∴+= ∴16125a =- 21616(5)1255y x ∴=--+ 2163212525y x x=-+8、(1)2210(1,2,3,4)1080120(5,6,7,8,9)502051230(10,11,12)x x y x x x x x x -=⎧⎪=-+=⎨⎪-+-=⎩(2)10(1,2,3,4)2090(5,6,7,8,9)10210(10,11,12)x s x x x x -=⎧⎪=-=⎨⎪-+=⎩(3)由(2)知当1,2,3,4x =时,s 的值均为-10;当5,6,7,8,9x =时,当9x =时s 有最大值90;而在10,11,12x =时,10210s x =-+,当10x =时,s 有最大值110; 因此第10月公司所获利润最大,它是110万元。
中考专项突破课 二次函数第15课 二次函数的应用(3)——抛物线型问题一、典例分析例1:羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度是多少?【解析】22 1.5h t t =-++Q , 1t ∴=时,12 1.5 2.5h m =-++=.例2:如图,一位运动员推铅球,铅球行进高度()y m 与水平距离()x m 之间的关系是21251233y x x =-++,则此运动员把铅球推出多远?【解析】令212501233y x x =-++= 则:28200x x --= (2)(10)0x x ∴+-= 12x ∴=-(舍),210x =由题意可知当10x =时,符合题意.例3:一位运动员在距篮下4m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮圈.如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m ,该运动员身高1.9m ,在这次跳投中,球在头顶上方0.25m 处出手球出手时,他跳离地面的高度是?【解析】Q 当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5), ∴设抛物线的表达式为2 3.5y ax =+.由图知图象过以下点:(1.5,3.05). 2.25 3.5 3.05a ∴+=,解得:0.2a =-,∴抛物线的表达式为20.2 3.5y x =-+.设球出手时,他跳离地面的高度为hm , 因为20.2 3.5y x =-+,则球出手时,球的高度为 1.90.25( 2.15)h h m ++=+,22.150.2( 2.5) 3.5h ∴+=-⨯-+, 0.1()h m ∴=.二、知识点小结:适当建立平面直角坐标系求解与二次函数相关的抛物线型问题的步骤: (1)恰当地建立直角坐标系; (2)将已知条件转化为点的坐标; (3)合理地设出所求函数的关系式; (4)代入已知条件或点的坐标,求出表达式; (5)利用表达式求解问题. 三、知识点检测1.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35mB .3mC .10mD .12m【解析】令函数式21251233y x x =-++中,0y =, 即212501233x x -++=, 解得110x =,22x =-(舍去), 即铅球推出的距离是10m . 故选:C .2.一个运动员打高尔夫球,若球的飞行高度()y m 与水平距离()x m 之间的函数表达式为:21(25)1250y x =--+,则高尔夫球在飞行过程中的最大高度为( )m . A .12B .25C .13D .14【解析】21(25)1250y x =--+Q , 顶点坐标为(25,12), 1050-<Q , ∴当25x =时,y 有最大值,最大值为12.故选:A .3.如图,小明在某次投篮中,球的运动路线是抛物线20.2 3.5y x =-+的一部分,若命中篮圈中心,则他与篮圈底的距离l 是( )A .3mB .3.5mC .4mD .4.5m【解析】如图,把C 点纵坐标 3.05y =代入20.2 3.5y x =+中得: 1.5x =±(舍去负值),即 1.5OB =,所以 2.5 1.54l AB ==+=. 故选:C .4.如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A .2316h t =-B .2316h t t =-+ C .2118h t t =-++D .21213h t t =-++【解析】根据题意,设二次函数的表达式为2(4)3h a t =-+, 抛物线过(0,1)即代入,解得18a =-.这个二次函数的表达式为:21(4)38h t =--+2118t t =-++.故选:C .5.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为 21(4)332y x =--+ .【解析】根据题意,得设抛物线对应的函数式为2(4)3y a x =-+ 把点5(0,)2代入得:51632a +=,解得132a =-, ∴抛物线对应的函数式为21(4)332y x =--+. 6.铅球行进高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,铅球推出后最大高度是 3 m ,铅球落地时的水平距离是 m . 【解析】21251233y x x =-++Q ,21(4)312y x ∴=--+ 因为1012-< 所以当4x =时,y 有最大值为3. 所以铅球推出后最大高度是3m . 令0y =,即210(4)312x =--+, 解得110x =,22x =-(舍去) 所以铅球落地时的水平距离是10m . 故答案为3、10.7.根据牛顿发现的有关自由落体运动的规律,我们知道竖直向上抛出的物体,上升的高度()h m 与时间()t s的关系式为212h v t gt =-,一般情况下,29.8/g m s =.如果09.8/v m s =,那么经过 1 s 竖直向上抛出的小球的上升高度为4.9m . 【解析】由题意,得当 4.9h =时, 214.99.89.82t t =-⨯,解得:121t t ==.故答案为:1.8.如图,小李推铅球,如果铅球运行时离地面的高度y (米)关于水平距离x (米)的函数解析式2113822y x x =-++,那么铅球运动过程中最高点离地面的距离为 2 米.【解析】Q 函数解析式为:2113822y x x =-++,223114()428221448ac b y a ⎛⎫⨯⨯-- ⎪-⎝⎭∴===⎛⎫⨯- ⎪⎝⎭最值.故答案为:2.9.一斜坡上有一高尔夫球场.斜坡的坡度为1:10i =.一球从斜坡底部O 点被击起,飞行轨道是一条抛物线,轨迹最高点H 离开O 点的水平面高度是8米,离O 点的水平距离是4米.则该球落地点A 与O 点的距离为3910150(结果保留根号)【解析】Q 抛物线顶点坐标为(4,8),∴设抛物线解析式为2(4)8y a x =-+,把(0,0)代入得:1680a +=,解得:12a =-,∴抛物线解析式为2211(4)8422y x x x =--+=-+,Q 斜坡的坡度为1:10i =,∴设A 的坐标为(10,)b b ,代入抛物线得:21100402b b b -⨯+=,解得:3950b =或0b =(舍去), 由勾股定理得:2239101(10)101OA b b b =+==; 故答案为:39101. 10.如图,足球场上守门员徐杨在O 处抛出一高球,球从离地面1m 处的点A 飞出,其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,且飞行的路线是抛物线一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点.(参考数据:437)≈ (1)求足球的飞行高度()y m 与飞行水平距离()x m 之间的函数关系式;(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到个位)(3)若对方一名1.7m 的队员在距落点3C m 的点H 处,跃起0.3m 进行拦截,则这名队员能拦到球吗?【解析】(1)当4h =时,2(6)4y a x =-+, 又(0,1)A ,21(06)4a ∴=-+, 112a ∴=-,21(6)412y x ∴=--+; (2)令0y =,则210(6)412x =--+, 解得:143613x =≈,2360x =-<(舍去)∴球飞行的最远水平距离是13米;(3)当13310x =-=时,81.70.323y =>+=, ∴这名队员不能拦到球.11.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度()y m 与它的飞行时间()x s 满足二次函数关系,y 与x 的几组对应值如下表所示: ()x s0 0.5 1 1.5 2⋯()y m0 8.75 15 18.75 20⋯(Ⅰ)求y 关于x 的函数解析式(不要求写x 的取值范围); (Ⅱ)问:小球的飞行高度能否达到22m ?请说明理由. 【解析】(Ⅰ)0t =Q 时,0h =,∴设h 与t 之间的函数关系式为2(0)h at bt a =+≠,1t =Q 时,15h =;2t =时,20h =, ∴154220a b a b +=⎧⎨+=⎩,解得520a b =-⎧⎨=⎩,h ∴与t 之间的函数关系式为2520h t t =-+;(Ⅱ)225205(2)20h t t t =-+=--+,∴小球飞行的最大高度为20m ,2220>Q ,∴小球的飞行高度不能达到22m .12.在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)以地面为x 轴,篮球出手时垂直地面所在直线为y 轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;(2)通过计算,判断这个球员能否投中? 【解析】(1)依题意得抛物线顶点为(4,4), 则设抛物线的解析式为2(4)4y a x =-+ 依题意得抛物线经过点(0,2)2(04)42a ∴-+= 解得18a =-∴抛物线的解析式为21(4)48y x =--+(2)当7x =时,2123(74)4 3.1988y =--+=≠ ∴这个球员不能投中.13.在一次高尔夫球的练习中,小成在O 处击球,其飞行路线满足抛物线21855y x x =-+,其中()y m 是球的飞行高度,()x m 是球飞出的水平距离,结果球离球洞的水平距离还有2m . (1)请写出抛物线的顶点坐标. (2)请求出球洞离击球点的距离.(3)若小成再一次从O 处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.【解析】(1)2218116(4)5555y x x x =-+=--+∴抛物线21855y x x =-+的顶点为16(4,)5;(2)令0y =,得:218055x x -+=解得:10x =,28x =,∴球飞行的最大水平距离是8m , ∴球洞离击球点的距离为8210m +=;(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m∴抛物线的对称轴为直线5x =,顶点为16(5,)5 设此时对应的抛物线解析式为216(5)5y a x =-+又Q 点(0,0)在此抛物线上,162505a ∴+=,16125a =-, 21616(5)1255y x ∴=--+,即其解析式为2163212525y x x =-+.。
二次函数在经济决策问题中的应用【专题综述】经济问题是中考中的热点问题,在今年的中考试题中,出现了很多和经济有关的函数型试题.解决此类试题,需要从已知条件中捕捉函数信息,通过函数关系,进一步解决实际问题.本文就二次函数在经济决策问题中的应用举例说明.【方法解读】例1:枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些 枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? 解:设增种x 棵树,果园的总产量为y 千克, 依题意得:y =(100 + x )(40 – 0.25x )=4000 – 25x + 40 x – 0,25x 2 = - 0.25 x 2 + 15x + 4000 因为a = - 0.25〈0,所以当1530220.25b x a =-=-=-⨯,y 有最大值 2244(0.25)400015422544(0.25)ac b y a -⨯-⨯-===⨯-最大值答:(略)例2我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销. 经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?销售单价x (元∕件) …… 30 40 50 60 …… 每天销售量y (件)……500400300200……解:(1)画图如右图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.例3、某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z 与x 之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y 和每亩蔬菜的收益z 与政府补贴数额x 之间的函数关系式; (3)要使全市这种蔬菜的总收益w (元)最大,政府应将每亩补贴数额x 定为多少?并求出总收益w 的最大值.解:(1)政府没出台补贴政策前,这种蔬菜的收益额为30008002400000⨯=(元)(2)由题意可设y 与x 的函数关系为800y kx =+ 将(501200),代入上式得120050800k =+ 得8k =所以种植亩数与政府补贴的函数关系为8800y x =+同理可得每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+ (3)由题意(8800)(33000)u yz x x ==+-+224216002400000x x =-++224(450)7260000x =--+所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大为7260000元.例4、 研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).∵w w >乙甲,∴应选乙地.【强化训练】1. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2.2.(2017湖北省荆州市)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:116(140)4146(4180)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩,为整数,为整数 ,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式? (2)哪一天的日销售利润最大?最大利润是多少? (3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.3.(2017湖北省荆门市)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y 1(百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y 2(百件)与时间t (t 为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y 1与t 的变化规律,并求出y 1与t 的函数关系式及自变量t 的取值范围;(2)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大,并求出此时的最大值.4.(2017湖北省随州市)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?时间x (天) 1≤x <9 9≤x <15 x ≥15售价(元/斤) 第1次降价后的价格 第2次降价后的价格销量(斤) 80﹣3x 120﹣x 储存和损耗费用(元)40+3x3x 2﹣64x +400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?5.(2017湖北省襄阳市)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用1y (元)与x (m 2)的函数关系式为()()11206006001000k x x y k x b x ≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示:栽花所需费用2y (元)与x (m 2)的函数关系式为220.012030000y x x =--+(0≤x ≤1000).(1)请直接写出1k 、2k 和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.6.(2017湖北省黄石市)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P (单位:元/千克)与时间x (单位:月份)满足关系:P =9﹣x ;②该蔬菜的平均成本y (单位:元/千克)与时间x (单位:月份)满足二次函数关系210y ax bx =++,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克. (1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L (单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)7.(2017辽宁省锦州市)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x 元(为便于结算,停车费x 只取整数),此停车场的日净收入为y 元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x ≤10时,y 与x 的关系式为:; ②当x >10时,y 与x 的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?8.(2017山东省潍坊市)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?9.(2017内蒙古包头市)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?10.(2017四川省达州市)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:()()7.504510414x xyx x⎧≤≤⎪=⎨+<≤⎪⎩.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?。
二次函数的复习与应用在数学的学习中,二次函数是一个非常重要的知识点。
它不仅在数学学科中有着广泛的应用,在实际生活中也能帮助我们解决很多问题。
接下来,让我们一起对二次函数进行系统的复习,并探讨它的各种应用。
一、二次函数的基本概念二次函数的一般式为$y = ax^2 + bx + c$(其中$a \neq 0$)。
其中,$a$决定了二次函数图象的开口方向和开口大小。
当$a > 0$时,图象开口向上;当$a < 0$时,图象开口向下。
$b$的值影响着二次函数图象的对称轴位置,对称轴的方程为$x =\frac{b}{2a}$。
$c$则是二次函数图象与$y$轴的交点纵坐标,即当$x = 0$时,$y =c$。
二、二次函数的图象和性质1、图象形状二次函数的图象是一条抛物线。
2、顶点坐标对于一般式$y = ax^2 + bx + c$,其顶点坐标为$(\frac{b}{2a},\frac{4ac b^2}{4a})$。
3、增减性当$a > 0$时,在对称轴左侧,函数单调递减;在对称轴右侧,函数单调递增。
当$a < 0$时,情况则相反。
三、二次函数的三种表达式1、一般式:$y = ax^2 + bx + c$2、顶点式:$y = a(x h)^2 + k$(其中$(h, k)$为顶点坐标)3、交点式:$y = a(x x_1)(x x_2)$(其中$x_1$和$x_2$是函数与$x$轴的交点横坐标)我们可以根据不同的条件,选择合适的表达式来求解问题。
四、二次函数的求解方法1、配方法通过配方将一般式转化为顶点式,从而更方便地求出顶点坐标和对称轴。
2、公式法利用求根公式$x =\frac{b \pm \sqrt{b^2 4ac}}{2a}$来求解方程的根。
五、二次函数的应用1、解决几何问题例如,求图形的面积最大值或最小值。
比如,用一段长为_____的篱笆围成一个矩形,求矩形面积的最大值。
我们可以设矩形的长为$x$,宽为$y$,则$2x + 2y =$篱笆长度,面积$S = xy$。
《二次函数的应用》教案教学目标:1、继续经历利用二次函数解决实际最值问题的过程。
2、会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题。
3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
教学重点和难点:重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:例3将现实问题数学化,情景比较复杂。
教学过程:一、复习:1.二次函数y=ax2+bx+c(a≠0)的图象和性质?并指出顶点、对称轴、与坐标轴的交点、与x轴两交点间的距离?2.各类二次函数顶点位置与a、b、c的关系?(顶点在x轴上、y轴上、原点、经过原点)3.求二次函数y=-2x2+10x+1的最大(或最小)值?思考:如何求下列函数的最值:(1) y=-2x2+10x+1(3≤x≤4)(2)y=2x2+4x+5(3)y=1 100-5x2(4) y=x2+1x22利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
二、例题讲解例题2:B船位于A船正东26km处,现在A、B两船同时出发,A船发每小时12km的速度朝正北方向行驶,B船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?分析:设经过t时后AB两船分别到达A’,B’,两船之间距离为A’B’=AB'2+AA'2=(26-5t)2+(12t)2 =169t 2-260t+676 。
因此只要求出被开方式169t 2-260t+676的最小值,就可以求出两船之间的距离s 的最小值。
解:设经过t 时后,A ,B AB 两船分别到达A ’,B ’,两船之间距离为S=A ’B ’=AB'2+AA'2 =(26-5t)2+(12t)2=169t 2-260t+676 = 169(t-1013 )2+576 (t>0) 当t=1013 时,被开方式169(t-1013 )2+576有最小值576。
2022年年年年年年年年年年——年年年年年年年年年年1.(2022·湖北省荆州市)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24−x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?2.(2022·湖北省咸宁市)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉3.(2022·陕西省)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.4.(2022·四川省广元市)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?5.(2022·浙江省宁波市)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?6. (2022·江西省)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为ℎm(ℎ为定值).设运动员从起跳点A 起跳后的高度y(m)与水平距离x(m)之间的函数关系为y =ax 2+bx +c(a ≠0). (1)c 的值为______;(2)①若运动员落地点恰好到达K 点,且此时a =−150,b =910,求基准点K 的高度ℎ;②若a =−150时,运动员落地点要超过K 点,则b 的取值范围为______; (3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.7. (2022·浙江省金华市)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息: ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表: 售价x(元/千克) … 2.5 3 3.5 4 … 需求量y 需求(吨) … 7.75 7.2 6.55 5.8 …②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x−1,函数图象见图1.③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=12t+2,x成本=14t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.8.(2022·山东省滨州市)360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.9.(2022·湖北省武汉市)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度v/cm/s109.598.58运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.10.(2022·广东省)某种服装,平均每天可销售20件,每件利润是44元,经市场调查发现,该品牌服装在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多销售5件.(1)如果每件降价x元,平均每天销售的服装为y1件,试写出x与y1之间的函数关系(用x表示y1);(2)如果每天该服装销售的利润总金额记为y2(元),求当y2=1600,每件应降价多少元?1.解:(1)根据题意得:w=(x−8)(24−x)−60=−x2+32x−252;(2)①∵该产品第一年利润为4万元,∴4=−x2+32x−252,解得:x=16,答:该产品第一年的售价是16元.②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,∴{x≤1624−x≤13,解得11≤x≤16,设第二年利润是w′万元,w′=(x−6)(24−x)−4=−x2+30x−148,∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,∴x=11时,w′有最小值,最小值为(11−6)×(24−11)−4=61(万元),答:第二年的利润至少为61万元.2..解:(1)当0<x≤40时,y=30;当40<x≤100时,设函数关系式为y=kx+b,∵线段过点(40,30),(100,15),∴{40k+b=30100k+b=15,∴{k=−1 4b=40,∴y=−14x+40,即y={30(0<x≤40)−14x+40(40<x≤90);(2)∵甲种花卉种植面积不少于30m2,∴x≥30,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴360−x≥3x,∴x≤90,即30≤x≤90;由(1)知,y=30x,∵乙种花卉种植费用为15元/m2.∴w=yx+15(360−x)=30x+15(360−x)=15x+5400,当x=30时,w min=5850;当40<x≤90时,x+40,由(1)知,y=−14(x−50)2+6025,∴w=yx+15(360−x)=−14(90−50)2+6025=5625,∴当x=90时,w min=−14∵5850>5625,∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;②当30≤x≤40时,由①知,w=15x+5400,∵种植总费用不超过6000元,∴15x+5400≤6000,∴x≤40,即满足条件的x的范围为30≤x≤40,当40<x≤90时,(x−50)2+6025,由①知,w=−14∵种植总费用不超过6000元,(x−50)2+6025≤6000,∴−14∴x≤40(不符合题意,舍去)或x≥60,即满足条件的x的范围为60≤x≤90,综上,满足条件的x的范围为30≤x≤40或60≤x≤90.3..解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x−5)2+9,,把(0,0)代入,可得a=−925(x−5)2+9;∴抛物线的解析式为y=−925(2)令y=6,得−925(x−5)2+9=6,解得x1=5√33+5,x2=−5√33+5,∴A(5−5√33,6),B(5+5√33,6).4..解:(1)设科技类图书的单价为x元,文学类图书的单价为y元,依题意得:{2x+3y=154 4x+5y=282,解得:{x=38 y=26.答:科技类图书的单价为38元,文学类图书的单价为26元.(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100−m)本.①当30≤m≤40时,w=38m+26(100−m)=12m+2600,∵12>0,∴w随m的增大而增大,∴2960≤w≤3080;②当40<m≤50时,w=[38−(m−40)]m+26(100−m)=−(m−26)2+3276,∵−1<0,∴当m>26时,w随m的增大而减小,∴2700≤w<3080;③当50<m≤60时,w=[38−(50−40)]m+26(100−m)=2m+2600,∵2>0,∴w随m的增大而增大,∴2700<w≤2720.综上,当30≤m≤60时,w的最小值为2700.答:社区至少要准备2700元购书款.5..解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4−0.5(x−2)=−0.5x+5,答:y关于x的函数表达式为y=−0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,∵−0.5<0,∴当x =5时,W 取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.6..66 b >9107..解:(1)把(3,7.2),(4,5.8)代入y 需求=ax 2+c ,{9a +c =7.2①16a +c =5.8②, ②−①,得7a =−1.4,解得:a =−15,把a =−15代入①,得c =9,∴a 的值为−15,c 的值为9;(2)设这种蔬菜每千克获利w 元,根据题意,w =x 售价−x 成本=12t +2−(14t 2−32t +3)=−14(t −4)2+3, ∵−14<0,且1≤t ≤7,∴当t =4时,w 有最大值,答:在4月份出售这种蔬菜每千克获利最大;(3)当y 供给=y 需求时,x −1=−15x 2+9, 解得:x 1=5,x 2=−10(舍去),∴此时售价为5元/千克,则y 供给=x −1=5−1=4(吨)=4000(千克),令12t +2=5,解得t =6,∴w =−14(t −4)2+3=−14(6−4)2+3=2,∴总利润为w ⋅y =2×4000=8000(元),答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.8..解:(1)设y =kx +b ,把x =20,y =360,和x =30,y =60代入,可得{20k +b =36030k +b =60,解得:{k =−30b =960, ∴y =−30x +960(10≤x ≤32);(2)设每月所获的利润为W 元,∴W =(−30x +960)(x −10)=−30(x −32)(x −10)=−30(x 2−42x +320)=−30(x −21)2+3630.∴当x =21时,W 有最大值,最大值为3630.9..解:(1)设v =mt +n ,将(0,10),(2,9)代入,得{n =102m +n =9, 解得,{m =−12n =10, ∴v =−12t +10;设y =at 2+bt +c ,将(0,0),(2,19),(4,36)代入,得{c =04a +2b +c =1916a +4b +c =36,解得{a =−14b =10c =0,∴y =−14t 2+10t .(2)令y =64,即−14t 2+10t =64,解得t =8或t =32,当t =8时,v =6;当t =32时,v =−6(舍);(3)设黑白两球的距离为w cm ,根据题意可知,w =70+2t −y =14t 2−8t +70=14(t −16)2+6, ∵14>0,∴当t =16时,w 的最小值为6,∴黑白两球的最小距离为6cm ,大于0,黑球不会碰到白球.10..解:(1)设每件降价x 元,平均每天销售的服装为y 1件, 则x 与y 1之间的函数关系(用x 表示y 1)为:y 1=20+5x(0≤x ≤10);(2)由题意可得:y2=(44−x)(20+5x) =−5x2+200x+880,(0≤x≤10);1600=−5x2+200x+880,解得:x1=4,x2=36(不合题意舍去),答:每件应降价4元.第14页,共1页。
东海县石梁河中学孙克浩赵州桥圣路易斯拱门玉带桥拱桥造型美,应用广,遍布全国各地。
常见的桥孔形状除半圆形、椭圆形、马蹄形外,还有抛物线形。
抛物线形桥孔的水位涨落是汛期常见的现象,水位上涨后,桥孔下的水面宽变为多少?另外,“水涨船高”,涨水后,船能否从桥下安全通过?这些都是汛期常见的现象及具有现实意义的问题。
本节课我们将探索这些问题。
没有平面直角坐标系,怎么办?怎样建立直角坐标系最简单?6 m3 m 上升1m桥孔是抛物线形,能否求出它的函数关系式?一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔3m 时,水面宽6m.当水位上升1m 时,水面宽多少?解:如图,以桥孔的最高点为原点,过原点的水平线为轴,过原点的铅垂线为纵轴建立直角坐标系,设桥孔抛物线对应二次函数为:y=ax2,因为当水面离桥孔顶部3米时,水面宽为6米,所以A点的坐标为(3,-3),代入y=ax2得:-3=a×32解得a=-,所以桥孔对应的函数关系式为:y=-x2.把y=2代入y=-x2解得x=±(负值舍去).所以CD=2≈4.9.答:水位上长1米时,桥下水面宽为4.9米.一艘装满防汛器材的船,在上面问题所说的河流中航行,露出水面的部分高为0.5m 、宽为4m.当水位上升1米时,这艘船能从桥下通过吗?怎样进行计算呢?满足什么条件时, 船才能从桥下通过?宽和高须同时满足,即宽要比4大,高要比0.5大 4 m 0.5m 方法一:取宽比高解:如图,由题意可知GE=GF,即x=2将x=2代入y=-x 2可得:y=-×22≈-1.333所以高为:2-1.333 =0.667而0.667>0.5所以这这艘船能从桥下通过.EFGOH方法二:取高比宽解:如图,由题意可知OG=2-0.5=1.5 即y=-1.5将y=-1.5代入y=-x 2可得:-1.5=-x 2,可以求出x≈2.121,所以宽为:EF=2×2.121=4.242,而4.242 >4所以这这艘船能从桥下通过.33-3对于上面的问题,你还能建立不同的直角坐标系吗?(-3,3)-6如图:可设y=ax 2+k,可求得:y=-x 2+3.(3,3)6如图:可设y=a(x+m)2+k,可求得:y=-(x-3)2+3.如图:可设y=a(x+m)2+k,可求得:y=-(x+3)2+3.你能用平移的观点说说它们与y=-x 2图象之间的关系吗?你还有什么发现闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱跨径37.02米,拱高7.23米,试在恰当的直角坐标系中求出与该抛物线桥拱对应的二次函数关系式.A(-18.5,-7.23)解:由题意可知,点A(-18.5,-7.23)在函数图象上,由,-7.23= (-18.5)2a,得a≈-0.021.所以该桥孔对应的二次函数关系式为:y=-0.021x 2.你还能用不同的方法求解吗?y xo这节课你有哪些收获1.通过建立适当的坐标系求函数关系式.实际问题数学问题转化解决,应用2.。
1.4二次函数的应用(3)教案∴令y=0,则x2-3x+2=0解得:x1=1,x2=2;∴A(1,0), B(2,0)你发现方程 x2-3x+2=0 的解x1、x2与A、B的坐标有什么联系?方程的解是函数图象与x轴的交点的横坐标。
二、提炼概念我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标x1,x2就是一元二次方程ax2+bx+c=0(a≠0)的两个根。
因此我们可以通过解方程ax2+bx+c=0来求抛物线y=ax2+bx+c与x轴交点的坐标;反过来,也可以由y=ax2+bx+c的图象来求一元二次方程ax2+bx+c=0的解。
讲授新课三、典例精讲例4、一个球从地面上竖直向上弹起时的速度为10m/s,经过t(s)时球的高度为h(m)。
已知物体竖直上抛运动中,(v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s²)。
问球从弹起至回到地面需要多少时间?经多少时间球的高度达到3.75m?分析:根据题意可以得出函数并画出函数的大致图象,从图象我们可以看到,图象与横轴的两个交点分别为(0,0),(2,0).它们的横坐标分别为0与2,就是球从地面弹起和回到地面的时刻,此时h=0.所以这两个时刻也就是一元二次方程的两个根.这两个时刻的差就是球从地面弹起至回到地面所需的时间。
解:由题意,得h关于t的二次函数解析式为h=10t-5t²取h=0,得一元二次方程10t-5t²=0解方程得t1=0;t2=2球从弹起至回到地面需要时间为t2-t1=2(s)取h=3.75,得一元二次方程10t-5t²=3.75解方程得t1=0.5;t2=1.5答:球从弹起至回到地面需要时间为2(s);经过圆心的0.5s或1.5s球的高度达到3.75m。
归纳从上例我们看到,可以利用解一元二次方程求二次函数的图象与横轴(或平行于横轴的直线)的交点坐标。
例5、利用二次函数的图象求一元二次方程x²+x-1 =0的近似解。