软件架构设计(3)——软件架构视图实例
- 格式:pptx
- 大小:313.89 KB
- 文档页数:17
【软件架构】运⽤RUP4+1视图软件架构设计(逻辑视图、实现视图、进程视图、物理视图和⽤例视图)RUP概述RUP(Rational Unified Process),统⼀软件开发过程,统⼀软件过程是⼀个⾯向对象且基于⽹络的程序开发⽅法论。
在RUP中采⽤“4+1”视图模型来描述软件系统的体系结构。
“4+1”视图包括逻辑视图、实现视图、进程视图、部署视图和⽤例视图。
最终⽤户关⼼的是系统的功能,因此会侧重于逻辑视图;程序员关⼼的是系统的配置、装配等问题,因此会侧重于实现(开发)视图;系统集成⼈员关⼼的是系统的性能、可伸缩性、吞吐率等问题,因此会侧重于进程(处理)视图;系统⼯程师关⼼的是系统的发布、安装、拓扑结构等问题,因此会侧重于部署(物理)视图。
分析⼈员和测试⼈员关⼼的是系统的⾏为,因此会侧重于⽤例(场景)视图;原⽂链接:https:///turbock/article/details/102930810(2)4+1视图介绍:(3)UML 4+1视图:()运⽤RUP 4+1视图⽅法进⾏软件架构设计下⽂摘⾃:⽐如设计⼀座跨江⼤桥:我们会考虑"连接南北的公路交通"这个"功能需求",从⽽初步设计出理想化的桥墩⽀撑的公路桥⽅案;然后还要考虑造桥要⾯临的"约束条件",这个约束条件可能是"不能影响万吨轮从桥下通过",于是细化设计⽅案,规定桥墩的⾼度和桥墩之间的间距;另外还要顾及"⼤桥的使⽤期质量属性",⽐如为了"能在湍急的江流中保持稳固",可以把⼤桥桥墩深深地建在岩⽯层之上,和⼤地浑然⼀体;其实,"建造期间的质量属性"也很值得考虑,⽐如在⼤桥的设计过程中考虑"施⼯⽅便性"的⼀些措施。
和⼯程领域的功能需求、约束条件、使⽤期质量属性、建造期间的质量属性等类似,软件系统的需求种类也相当复杂,具体分类如图1所⽰。
《软件架构设计文档》模板软件架构设计文档模板1. 引言1.1 背景在当今数字化时代,软件的需求日益增加,对高质量、可维护和可扩展的软件架构需求也越来越高。
软件架构设计文档是为了规划和指导软件开发团队在开发过程中的工作,保证软件系统的稳定性和可靠性。
1.2 目的本文档旨在定义软件架构设计的要素和所需的技术、工具以及规范,以确保软件开发项目的成功实施。
2. 系统架构2.1 设计原则2.1.1 模块化2.1.2 可重用性2.1.3 可扩展性2.1.4 松耦合2.1.5 高内聚2.2 架构风格2.2.1 分层架构2.2.2 客户端-服务器架构2.2.3 事件驱动架构2.3 架构图示在此处插入架构图示,包括主要组件和它们之间的关系。
3. 体系结构设计3.1 模块描述3.1.1 模块一描述模块一的功能和职责,包括输入、输出和内部数据流程等。
3.1.2 模块二描述模块二的功能和职责,包括输入、输出和内部数据流程等。
...3.2 接口设计3.2.1 内部接口描述模块之间的内部接口,包括输入输出参数、数据格式等。
3.2.2 外部接口描述软件系统与外部系统或第三方服务的接口,包括输入输出参数、协议规范等。
3.3 数据库设计描述软件系统的数据库设计,包括表结构、关系、数据类型等。
3.4 数据流程设计描述软件系统的数据流程设计,包括数据的输入、处理和输出流程。
3.5 安全性设计描述软件系统的安全性设计,包括用户验证、数据保护、权限控制等。
4. 技术选型4.1 编程语言选择根据项目需求和开发团队的技术实力,选择适合的编程语言或技术框架进行开发。
4.2 开发工具描述使用的开发工具,包括IDE、版本控制系统等。
4.3 第三方库和组件描述使用的第三方库和组件,包括功能描述、版本信息等。
5. 质量保障计划5.1 单元测试计划描述针对各个模块的单元测试计划和策略,确保软件的稳定性和可靠性。
5.2 集成测试计划描述软件集成测试的计划和策略,确保软件各个模块之间的协同工作。
MVC架构模式实例⼀、简介 什么是MVC呢?MVC架构模式,也就是Model View Controller模式。
它是⼀种软件设计典范,⽤⼀种业务逻辑、数据、界⾯显⽰分离的⽅法组织代码,将业务逻辑聚集到⼀个部件⾥⾯,在改进和个性化定制界⾯及⽤户交互的同时,不需要重新编写业务逻辑。
MVC被独特的发展起来⽤于映射传统的输⼊、处理和输出功能在⼀个逻辑的图形化⽤户界⾯的结构中。
说起来好像是很复杂,但是我对它的理解也就是各⾃处理⾃⼰的任务。
模型:负责封装并实现应⽤的具体功能。
可以实现系统中的业务逻辑,通常可以⽤JavaBean来实现。
视图:⽤于与⽤户的交互。
⽤来将模型的内容展现给⽤户。
⽤户可以通过视图来请求模型进⾏更新。
视图从模型获得要展⽰的数据,然后⽤⾃⼰的⽅式展⽰给⽤户,相当于提供页⾯来与⽤户进⾏⼈机交互。
⽐如⽤户在登陆注册界⾯完成信息的填报后点击确定,由此来向控制器发出这个请求。
控制器:是Model与View之间沟通的桥梁。
⽤来控制应⽤程序的流程和处理视图所发出的请求。
当控制器接收到⽤户的请求后,会将⽤户的数据和模型相映射,也就是调⽤模型来实现⽤户请求的功能。
然后控制器会选择⽤于响应的视图,把模型更新后的数据展⽰给⽤户。
MVC模式的这三个部分的职责⾮常明确,⽽且相互分离,因此每个部分都可以独⽴地改变⽽不影响其他部分,从⽽⼤⼤提⾼应⽤的灵活性和重⽤性。
⼆、⽬的 使⽤MVC的⽬的是将Model和View实现代码分离,也就是前台html表现层和后台php逻辑层分离。
这样做便于开发,代码优化,界⾯交互性好。
归根结底,其⽬的就是便宜项⽬开发。
三、特点 MVC重要特点就是两种分离:1.视图和数据模型的分离:使⽤不同的视图对相同的数据进⾏展⽰;分离可视和不可视的组件,能够对模型进⾏独⽴测试。
因为分离了可视组件减少了外部依赖利于测试。
(数据库也是⼀种外部组件)2.视图和表现逻辑(Controller)的分离:Controller是⼀个表现逻辑的组件,并⾮⼀个业务逻辑组件。
软件架构设计之“4+1”视图模型1、软件架构设计 软件架构是具有⼀定形式的结构话元素,即构件的集合,包括处理构件、数据构件和连接构件。
处理构件负责对数据进⾏加⼯,数据构建是被加⼯的信息,连接构件把架构不同部分负责连接起来。
软件架构是软件设计过程中⼀个层次,这⼀层次超越计算过程中的算法设计和数据结构设计。
2、软件架构建模 设计软件架构的⾸要问题是如何表⽰软件架构,即对软件架构建模。
根据建模的侧重点不同,可以讲软件建构的模型分为5种,分别是结构模型、框架模型、动态模型、过程模型和功能模型。
2.1结构模型这是⼀个最直观、最普遍的建模⽅法。
这种⽅法以架构的构件、连接件和其他概念呢来刻画架构,并⼒图通过结构来反映系统的重要寓意内容,包括系统的配置、约束、隐含的假设条件、风格和性质等。
研究结构模型的核⼼是架构描述语⾔。
2.2框架模型框架模型和结构模型类似,但他不太侧重描述结构的细节⽽更侧重与整体的结构。
框架模型主要以⼀些特殊的问题为某表建⽴⾄针对和适应该问题的结构。
2.3动态模型动态模型是对结构或框架模型的补充,研究系统“⼤颗粒”的⾏为性质例如,描述系统的重新配置活演化。
动态可以指系统的总体结构和配置、建⽴活拆除通信通道或计算的过程。
这类系统是激励型的。
2.4过程模型过程模型研究构造系统的步骤和过程,因⽽结构是遵循某些过程脚本的结果。
2.5功能模型该模型认为架构是⼀组功能构件按层次组成,下层向上提供服务。
它可以看作是⼀种特殊的框架模型。
在这5中模型中,最常⽤的是结构模型和动态模型。
这5中模型各有所长,将5中模型有机地统⼀在⼀起,形成⼀个完整的模型来刻画软件架构更合适。
例如,Kruchten在1995年提出了“4+1”视图模型。
3、“4+1”视图模型 “4+1”视图模型从5个不同的视⾓包括逻辑视图、进程视图、物理视图、开发视图和场景视图来描述软件架构。
每个视图只关⼼系统的⼀个侧⾯,5个视图结合在⼀起才能反映系统软件架构的全部内容。
软件架构设计文档软件架构设计文档一、引言本设计文档旨在详细阐述一款软件系统的架构设计,包括系统的整体结构、主要功能模块、接口定义、数据流向、安全性和可扩展性等方面的内容。
本设计文档将帮助开发人员更好地理解系统的结构与实现方式,为后续的开发工作提供指导和支持。
二、系统概述本系统是一款面向广大用户的在线购物平台,旨在为用户提供便捷、安全的购物体验。
系统主要包括用户注册、商品展示、购物车管理、订单处理、支付结算、物流配送等功能模块。
通过本系统,用户可以轻松地浏览各种商品,将商品添加到购物车并进行结算,同时可以选择不同的支付方式进行支付。
三、系统架构设计1.系统整体结构本系统的整体结构如下图所示:系统整体结构图(请在此处插入系统整体结构图)由上图可知,本系统主要包括以下几个层次:(1)表示层:负责与用户进行交互,展示数据和接收用户输入。
(2)业务逻辑层:处理系统的核心业务逻辑,包括用户注册、商品展示、购物车管理、订单处理、支付结算等功能。
(3)数据访问层:负责与数据库进行交互,包括数据的读取和写入。
(4)数据库层:存储系统的数据。
2.主要功能模块(1)用户注册模块:该模块负责用户的注册功能,用户可以通过填写个人信息并设置密码进行注册。
注册成功后,用户可以登录系统并使用各种功能。
(2)商品展示模块:该模块负责展示各种商品的信息,包括商品的名称、价格、描述、图片等。
用户可以通过搜索或浏览方式查找自己需要的商品。
(3)购物车管理模块:该模块允许用户将选中的商品添加到购物车中,并进行结算操作。
用户可以查看购物车中的商品列表,并选择删除或修改商品数量。
在结算时,用户需要填写收货地址和支付方式等信息。
(4)订单处理模块:该模块负责生成订单并处理订单状态。
当用户提交结算请求时,系统会生成一个订单号并记录订单信息,包括商品信息、收货地址、支付方式等。
同时,系统会根据订单状态进行相应的处理,如等待支付、已发货等。
(5)支付结算模块:该模块允许用户选择不同的支付方式进行支付。
基于模块化的软件架构设计引言:随着互联网软件产业的高速发展,软件产品呈现出复杂化、多功能化趋势,随之而来的是软件代码量及功能模块剧增,如果软件的结构与层次设计不清晰,会极大降低开发效率,影响软件产品质量。
本文通过分析软件模块化设计的优势与思想,研究设计一种软件模块化设计方案,该方案以微服务架构为基础,将软件从整体到部分进行层次划分,极大降低软件内部的耦合度,提高软件开发质量和效率。
关键词:软件设计,模块化,微服务1.引言随着软件工程发展,人们对软件的需求也不断增加,为满足客户的动态需求,软件编程思想也随之而变化,结构化编程、面对对象编程、com编程、微服务等一系列思想均是追求将软件进行模块化,把软件开发变为搭积木形式以完成复杂的功能,提高软件代码的扩展性。
由此软件模块化设计的相关研究逐渐成为业界关注的热点,软件模块化在软件设计中的应用也越来越广泛。
2.模块化设计概念2.1模块化设计概念软件模块化设计(modular programming)源于分工思想,是指在进行软件设计时根据软件所需的功能将软件划分为若干相对独立的功能模块,每个模块只需要完成一个确定的任务,不需要关心其它功能模块的实现方式与过程,一个模块对于其它模块就是一个可以实现特定功能的“黑盒”程序,模块需要制定对应自身功能的调用接口,模块与模块之间通过调用对方接口来建立必要的联系,并通过相互协作实现整个软件的需求。
2.2模块化设计优势(1)控制程序设计的复杂性软件模块化设计对软件整体进行层次划分、对功能进行模块划分,使软件整体结构更加清晰。
在进行程序设计时,不同的层次做自身应该做的事情,在设计系统架构时,可针对不同的层次的需求选择对应优势框架,使程序设计的条理标准化,提高后期开发效率。
(2)提高代码的重用性模块与模块之间是相对独立的,每个模块只实现单一的功能,可以将模块看做一个独立完整的小程序或者项目,可在多个项目中使用,使用时只需要根据所制定的接口规范调用即可。
软件架构设计的实际案例分析随着计算机技术的日新月异,软件架构设计已经成为了越来越多领域的重要研究方向。
软件架构设计不仅涉及到软件的性能、可维护性、可扩展性等方面问题,也关系到快速响应市场需求、保持竞争优势等重要领域。
在本文中,将基于实际案例分析,探讨软件架构设计的实践应用。
案例一:微信支付微信支付是一项无现金支付解决方案,其背后架构设计是如何实现的呢?它主要包含了以下几个方面的架构设计:1.分布式服务架构:微信支付在设计之初就考虑到了高并发的情况,因此它采用了分布式服务架构的设计,将整个系统分解成多个服务模块,运行在不同的服务器上,并通过微服务框架实现互相调用。
2.异步消息队列:微信支付在交易过程中需要各种异步任务,如订单消息通知、余额更新等,这些任务需要在后台异步执行。
微信支付采用了消息队列技术,将各个异步任务按照优先级排队,保证交易过程的稳定性。
3.高可用架构:为了保证支付系统的可用性,微信支付采用了多机房部署,同时在系统各个要素上都设置了冗余备份,比如日志备份、数据库备份、负载均衡器备份等。
4.智能路由策略:微信支付在交易场景中会根据用户不同的访问地点、网络状况等动态调整服务配额和业务逻辑,利用智能路由策略,各个地域的用户均可以稳定地享受到优质的支付服务。
案例二:支付宝钱包支付宝钱包是阿里巴巴旗下一项重要的互联网金融产品,它的架构设计主要包含以下方面:1.云计算平台:支付宝钱包采用了阿里云计算平台,可以根据业务的需求,在云端快速创建自己的计算资源,大大提高了系统的灵活性和可扩展性。
2.分布式关系型数据库:为了解决高并发的支付场景,在数据库层面,支付宝钱包采用了分布式关系型数据库,将数据存储在多个地域节点,提高了数据访问速度。
3.缓存技术:在交易中间件层面,支付宝钱包采用了高速缓存技术,将常用的数据缓存到内存中,减少了数据库的访问频率,提升了系统的性能。
4.服务治理体系:为了保证支付宝钱包系统的稳健性,采用了服务治理体系,包括监控、日志、预警、链路追踪等手段,快速定位系统故障。
软件架构视图案例设备调试系统案例概述本文的以下部分,将研究一个案例:某型号设备调试系统。
设备调试员通过使用该系统,可以察看设备状态(设备的状态信息由专用的数据采集器实时采集)、发送调试命令。
该系统的用例图如图1所示。
图1 设备调试系统的用例图经过研制方和委托方的紧密配合,最终确定的需求可以总括地用表1来表示。
表2 设备调试系统的需求下面从不同视图进行架构设计,来分门别类地将不同需求一一满足。
逻辑视图:设计满足功能需求的架构首先根据功能需求进行初步设计,进行大粒度的职责划分。
如图2所示。
•应用层负责设备状态的显示,并提供模拟控制台供用户发送调试命令。
•应用层使用通讯层和嵌入层进行交互,但应用层不知道通讯的细节。
•通讯层负责在RS232协议之上实现一套专用的"应用协议"。
•当应用层发送来包含调试指令的协议包,由通讯层负责按RS232协议将之传递给嵌入层。
•当嵌入层发送来原始数据,由通讯层将之解释成应用协议包发送给应用层。
•嵌入层负责对调试设备的具体控制,以及高频度地从数据采集器读取设备状态数据。
•设备控制指令的物理规格被封装在嵌入层内部,读取数采器的具体细节也被封装在嵌入层内部。
图2 设备调试系统架构的逻辑视图开发视图:设计满足开发期质量属性的架构软件架构的开发视图应当为开发人员提供切实的指导。
任何影响全局的设计决策都应由架构设计来完成,这些决策如果"漏"到了后边,最终到了大规模并行开发阶段才发现,可能造成"程序员碰头儿临时决定"的情况大量出现,软件质量必然将下降甚至导致项目失败。
其中,采用哪些现成框架、哪些第三方SDK、乃至哪些中间件平台,都应该考虑是否由软件架构的开发视图确定下来。
图6展示了设备调试系统的(一部分)软件架构开发视图:应用层将基于MFC设计实现,而通讯层采用了某串口通讯的第三方SDK。
图3 设备调试系统架构的开发视图在说说约束性需求。