全等三角形的判定四(习题课)
- 格式:pdf
- 大小:272.10 KB
- 文档页数:5
第5讲 全等三角形的判定四(全等的综合)【课前热身】1、如图,∠1=∠2,PD ⊥OA 于D ,PE ⊥OB 于E ,则下列结论中,错误的是( ) A .PD =PEB .OD =OEC .∠DPO =∠EPOD .PD =OD2、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6 cm ,则△DEB 的周长为( ) A .40 cmB .6 cmC .8 cmD .10 cm3、如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°,求∠DAC 和∠BOA 的度数4、(本题10分)如图,在△ABC 中,∠C =90°,BC =AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =21BD ,且DF ⊥AB 于F ,求证:CD =DF【本讲说明】本讲重难点:全等三角形的综合,手拉手模型与半角模型这讲内容,是全等三角形这章的大综合,全等是中考常考知识点并且是几何的基础,奠定了后续所有几何的学习。
综合的难度提高,是对前面的简单复习,更是提高,其中,我们已经学习了三垂直模型,四大金刚模型,今天我们继续学习手拉手模型和半角模型。
这些模型是初二全等几何非常重要的模型,其证明过程巧妙,图形变化之丰富,还能与很多知识点相结合,是很多区、校大型考试压轴题中的常客。
【课程引入】提问式引入(顾及班上所有学生)老师:同学们,全等三角形这一章已经全部学完了,大家还记得这一章都学了哪些知识点呢?生:SSS,SAS,ASA, AAS,HL,四大金刚模型,三垂直模型……(学生七嘴八舌)师:很好,大家都说出了自己心里印象最深的一节,那我们一起回顾下本章内容。
这一章我们主要学习了全等三角形的概念,是什么?生:能够完全重合的两个三角形叫做全等三角形。
师:全等三角形有哪些性质?生:全等三角形的对应边相等、对应角相等、周长相等、面积相等、对应中线、角平分线、高线分别相等。
三角形全等的判定同步练习一、选择题1、下列说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.其中正确的有().A、1个B、2个C、3个D、4个2、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出 [ ].A.2个 B.4个 C.6个 D.8个(第2题图) (第3题图) (第4题图) (第7题图)3、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A、∠BCA=∠EDFB、∠BCA=∠EFDC、∠BAC=∠EFDD、两个三角形中,没有相等的角4、如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°5、下列说法正确的是()A、全等三角形是指周长和面积都一样的三角形;B、全等三角形的周长和面积都一样 ;C、全等三角形是指形状相同的两个三角形;D、全等三角形的边都相等6、下列两个三角形中,一定全等的是()A. 两个等边三角形B. 有一个角是40°,腰相等的两个等腰三角形C. 有一条边相等,有一个内角相等的两个等腰三角形D. 有一个角是100°,底相等的两个等腰三角形7、如图,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为 ( )A.AE=CD B.AE>CD C.AE<CD D.无法确定8、如图, 小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ(第8题图) (第9题图) (第10题图) (第11题图)9、如图,D、E、F是△ABC三边的中点,且DE∥AB,DF∥AC,EF ∥BC, 平移△AEF可以得到的三角形是( )A.△BDFB.△DEFC.△CDED.△BDF和△CDE10、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题11、如图,铁路上A,B两站(视为线上两点)相距25千米,C,D为铁路同旁两个村庄(视为两点),DA⊥AB于A点,CB⊥AB于B点,DA=15千米,CB=10千米,现在要在铁路AB 上修一个土特品回购站E,使C,D两村庄到E站的距离相等,则E站应建在距A站______千米处.12、如图,等腰直角三角形ABC的直角顶点B在直线PQ上,AD⊥PQ于D,CE⊥PQ于E,且AD=2cm,DB=4c m,则梯形ADEC的面积是 _____.(第12题图) (第13题图) (第14题图) (第15题图)13、将两块直角三角尺的直角顶点重合为如图17的位置, 若∠AOD=110°,则∠BOC=____°14、如图,和都是边长为4的等边三角形,点、、在同一条直线上,连接,则的长为 .15、如图,AB∥EF∥DC,∠ABC=90°,AB=DC,那么图中的全等三角形共有对(填数字)16、如图,若△ABC ≌△ADE ,∠EAC=35, 则∠BAD =________度.(第16题图) (第17题图)17、如图,△ABC的三个顶点分别在格子的3个顶点上,请你试着再在图中的格子的顶点上找出一个点,使得△DBC与△ABC全等,这样的三角形有个.18、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;(2)另一个三角板CDE•的直角顶点与前一个三角板直角顶点重合;(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?三、简答题19、一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将两张三角形纸片摆成如图18的形式,使点B,F,C, D在同一条直线上.(1)你能说明AB⊥DE吗?(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予说明.20、如图,已知M在AB上,BC=BD,MC=MD.请说明:AC=AD.21、如图,在△ABC中,点D在AB上,BD=BE,(1)请你再添加一个条件,使得△BEA≌△BDC,并说明理由,你添加的条件是理由是:(2)根据你添加的条件,再写出图中的一对全等三角形(只要求写出一对全等三角形,不再添加其它线段,不再标注或使用其它字母,不必说明理由。
课题:12.2 三角形全等的判定(4) 主备者王东明授课时间2015年5月22日星期五课型新授
教学目标1、在题组训练中,掌握全等三角形的性质与判定;
2、形成解题模型,提高总结的能力。
教学重点教学难点1、运用全等解题,形成模型;
2、解题模型的形成。
学习方法
教学手段
课时安排 1课时
教学过程、内容分析
(组内集体备课)
一、练一练
1. △ABC沿AC翻折得到△ADC,若∠B=75°,
则∠D= .
2. △ABC沿BC平移得到△DEF,若BC=8,EC=5,
则CF=.
3. △ABC≌△ADE,∠C=∠E,若∠BAC=105°,∠DAC=75°,
则∠CAE= .
归纳1:
二、利用图形语言挖掘隐含条件判定全等
1.如图,AB=AD,CB=CD. △ABC和△ADC全等吗?为什么?
2.如图,AB=AC,AD=AE.求证∠B=∠C.
3.如图,AC和BD相交于点O,OA=OC,OB=OD.
求证:DC∥AB.
(个人二次备课)
公共边,公共角,对顶角这些都是隐含的边,角相等的条件!
三、添条件判全等
1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
根据“AAS”需要添加条件.
友情提示:
添加条件的题目,首先要找到已具备的条件,这些条件有些是题目已知条件,有些是图中隐含条件.
2. 如图,已知AC=BD,要使△ABC≌△DCB,根据“SSS”需要添加条件;根据“SAS”需要添加条件.
归纳3
3.如图,BD与AC相交于点O,∠A=∠C,要使△ABO≌△CDO,根据“ASA”需要添加条件;
根据“AAS”需要添加条件.
归纳5:
四、转化间接条件,判断全等
1. 如图,点E、F在BC上,BE=CF,∠B=∠C,AB=DC.
求证∠A=∠D.
2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE.求证AD=AB.
3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB. AE 与CE有什么关系?证明你的结论.
五、课堂小结
1.本节课主要解决了哪些问题?你对解决全等的习题有了哪些认识?
2.本节课的学习中哪些环节给你留下的印象最深刻?你还有什么疑问?
六、课堂检测
1. 已知:如图,点A、B、C、D在一条直线上,AC=BD,∠M=∠N,BM∥CN.求证:AM∥CN.
2.已知∠1=∠2,AE=AC,请再补充条件(写一个即可),使△ABC ≌△ADE,并加以证明.
板书
设计
课本第44页第11题,第45页13题。
作业
布置
辅导
记载
教学
反思。