最新七上数学练习题
- 格式:doc
- 大小:579.50 KB
- 文档页数:15
17.计算:(1) (-5)×2+20÷(-4) (2) -32-[-5+(10-0.6÷53)÷(-3)2] 18.解方程:(1) 7x -8=5x +4 (2) 16323221-⨯=+-b b b 19.先化简,后求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-120.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是3,n 在有理数王国里既不是正数也不是负数,求)()()(201322012d c b a n cd m mb a ++++-++的值 17.(16分) 计算:(1)-17-(-23)+(-13)-(+23)(2)12)1216143(⨯--(3)220122013)2()41(4-÷⨯ (4)21(14---)2×35--÷(21-)3.18.计算(8分)(1)(2a -1)+2(1-a ); (2)3 (3x +2)- 2(3+x ).19.(6分) 解方程:(1)13)12(3-=-x x (2)231221=--+x x 20.(6分)先化简.再求值. -2(ab -a 2)-3ab -1+(6ab -2a 2),其中a =1,b =-1. 19. 15218()263⨯-+ 20. 2232)(--- 21. 431(1)(1)3(22)2-+-÷⨯- 22. 744-+-x x四.解下列方程(每题5分,共15分).23. 5x 3-= 24. 5476-=-x x 25.212132x x -+=+ 五.先化简,再求值(本题6分)26.222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 19计算(1). 5)4()16(12--+-- (2). 2111941836⎛⎫⎛⎫--+÷- ⎪ ⎪⎝⎭⎝⎭(4).4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦(1). )32(4)8(2222-+--+-xy y x y x xy 9221441254-⨯⎪⎭⎫ ⎝⎛-÷⨯--(2). 5ab 2-[a 2b +2(a 2b -3ab 2)]21(8分)先化简求值:()()2221234,,12x y xy x y xy x y x y +---==-其中 (1))16(2317-++- (2)18.0)25()5(124-+-⨯-÷-(1)x x x 24-+- (2))104(3)72(5b a b a ---(1))5(4)3(2+-=-x x (2)362143-=-+x x 24.(10分)已知关于x 的方程1312=--x ax 的解是4=x ,求代数式12--a a 的值. 17.化简:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2)18.已知|a ﹣2|+(b ﹣3)2=0,求b a ﹣a b 的值.19.解方程:.20.已知三角形第一边长为2a+b ,第二边比第一边长a ﹣b ,第三边比第二边短a ,求这个三角形的周长.21.先化简,再求值:(﹣x 2+5x+4)+(5x ﹣4+2x 2),其中x=﹣2. (1)312 +(-12 )-(-13 )+223 (2)()()[]2421315.011--⨯⨯--- (3)2222735xy y x xy y x --+ (4)5(a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2)(1) 1647=+--y y y (2)3332x x =- (1)3-(-6+32)÷(-1+4) (2)6-4×(-21)-〔(-2)3+(-9)÷(-31)〕 (1)(2xy-5x )-2(xy-3x) (2)a 3-3(1-a)+(1-a+a 2)-(1-a+a 2+a 3)18、(本小题5分)先化简,再求值。
初中数学《七上》第一章 有理数-正数和负数 考试练习题姓名:_____________ 年级:____________ 学号:______________1、中国人很早开始使用负数,中国古代数学著作《九章算术》的“ 方程 ” 一章,在世界数学史上首次正式引入负数 . 如果收入 100 元记作 +100 元 . 那么﹣ 80 元表示( )A .支出 20 元B .收入 20 元C .支出 80 元D .收入 80 元知识点:正数和负数 【答案】C【详解】试题分析:“+” 表示收入, “—” 表示支出,则 —80 元表示支出 80 元 .考点:相反意义的量2、如果表示向东走,则向西走表示为________ .知识点:正数和负数 【答案】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m 表示向东走 80m ,规定向东为正,则向西走 60 米表示为 -60m.故答案为-60m.【点睛】本题主要考查了正数和负数的概念以及相反意义的量的表示,掌握正数和负数的概念是解题的关键.3、规定:表示向右移动2 个单位长度,记作 +2 ,表示向左移动3 个单位长度,记作( )A . +3B . -3C .D .知识点:正数和负数 【答案】B【分析】根据题中规定的箭头方向可判断正负,结合长度可得答案.【详解】解:∵→ 表示向右移 2 个单位长度,记作 +2 ,∴← 表示向左移动 3 个单位长度,此时移动方向相反,应用 “-” 表示,应记作 -3 , 故选B .【点睛】此题考查了正数和负数的表示,解题的关键是熟练掌握正数和负数的表示方法.4、用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高气温的变化量为,攀登后,气温下降__________.知识点:正数和负数 【答案】12【分析】根据题意知,气温变化量为乘以攀登高度,即可求解.【详解】根据“ 每登高气温的变化量为” 知:攀登后, 气温变化量为:下降为负:所以下降12故答案为:12 .【点睛】本题考查了分析信息的能力,正负数的意义,有理数的计算,根据题意分析得出变化量,再结合正负数的意义是解题的关键.5、如果规定收入为正,那么支出为负,收入2 元记作,支出5 元记作().A . 5 元B .元C .元D . 7 元知识点:正数和负数【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5 元记作元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.6、的倒数为()A.-2 B.2 C.D.知识点:正数和负数【答案】D7、5的相反数是()A、-5B、5C、D、知识点:正数和负数【答案】A8、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。
人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式的系数和次数分别是()A.2,2B.2,3C.3,2D.2,4 2.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0是单项式D.34ba是整式3.下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23xx+;(5)s =πr 2;(6)-6kA.2 B.3 C.4 D.54.a的5倍与b的和的平方用代数式表示为()A.(5a+b)2B.5a+b2C.5a2+b2D.5(a+b)2 5.下列各式中,不是整式的是().A.3a B.2x = 1 C.0 D.xy 6.23-x yz的系数和次数分别是()A.系数是0,次数是5 B.系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ) .22.(1)化简 :()()222252423-+-+-a b ab c c a b ab ;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24. 、 两仓库分别有水泥 吨和 吨, 、 两工地分别需要水泥 吨和 吨.已知从 、 仓库到 、 工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A、单项式﹣a的系数是﹣1,次数是1,故此选项错误,符合题意;B、12xy是二次单项式,正确,不合题意;C、﹣23ab系数是﹣23,正确,不合题意;D、数字0也是单项式,正确,不合题意;故选:A.3.某企业今年月份产值为万元,月份比月份增加了,月份比月份减少了,则月份的产值为()A. 万元B. 万元C. 万元D. 万元【答案】C 解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C .4.已知单项式﹣25m 2x-1n 9和25m 5n 3y 是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .0 【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( )A .33(2)6x x =B .33x x x ÷=C .325x x x ?D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误; B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误;故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C 解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7.故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<, 0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c ,所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( )A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++, ()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,,b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1,所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( )A.P +Q 是关于x 的八次多项式B.P -Q 是关于x 的二次多项式C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误;B 、P−Q 人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分)1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( ) A.5 B.2x C.2x D.23a 3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③;(C )②③ ; (D )②④4、-( a-1)-(-a-2)+3的值是( )(A )4; (B )6;(C )0; (D )与的值有关。
七年级上数学练习题一、有理数1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) (4) × (6)(4) 15 ÷ (5)2. 化简下列各题:(1) 3 2 + 5 4(2) (2) × (3) + 4 × (5)(3) (8) ÷ 2 5 ÷ (1)二、整式1. 计算下列各题:(1) 2x 3x + 4(2) 5a 3a + 2a(3) 4xy 2xy + 3xy2. 化简下列各题:(1) 3x^2 2x^2 + 4x^2(2) 5ab 3ab + 2ab(3) 7a^2b 4a^2b + a^2b三、一元一次方程1. 解下列方程:(1) 3x 7 = 11(2) 5 2x = 3x + 1(3) 4(x 3) = 2(x + 5)2. 解决实际问题:(1) 某数的3倍减去7等于13,求这个数。
(2) 甲、乙两数的和为20,甲数是乙数的2倍,求甲、乙两数。
四、几何图形初步1. 判断下列说法是否正确:(1) 对顶角相等。
(2) 平行线的性质是同旁内角互补。
(3) 钝角大于直角。
2. 画图并解答:(1) 画出一条直线和直线上的两个点,使这两个点与直线上的另一个点构成等腰三角形。
(2) 画出两条平行线,并在其中一条直线上找到一个点,使这个点到另一条直线的距离等于3cm。
五、数据初步认识1. 填空题:(1) 下列数据中,众数是______。
2, 3, 4, 4, 5, 4, 6, 4(2) 下列数据中,中位数是______。
7, 9, 5, 3, 6, 8, 102. 选择题:A. 平均数B. 中位数C. 众数D. 方差六、平面图形(1) 所有矩形的对角线都相等。
()(2) 两条平行线上的任意一对同位角都相等。
()(3) 等边三角形的三个角都是60度。
()2. 填空题:(1) 一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长为______cm。
华东师大版七年级数学上册全册课时练习数学伴我们成长人类离不开数学 (2)人人都能学会数学 (5)2.1.1正数和负数 (6)2.1.2有理数 (10)2.2 数轴 (14)2.3 相反数 (16)2.4 绝对值 (19)2.5 有理数的大小比较 (21)2.6.1有理数的加法法则 (25)2.6.2有理数加法的运算律 (28)2.7 有理数的减法 (32)2.8 有理数的加减混合运算 (34)2.9.1有理数的乘法法则 (36)2.9.2有理数的乘法运算律 (39)2.10有理数的除法 (43)2.11有理数的乘方 (46)2.12科学记数法 (48)2.13有理数的混合运算 (50)2.14近似数 (55)2.15 用计算器进行运算 (58)3.1列代数式 (60)3.2 代数式的值 (65)3.3 整式 (67)3.4 整式的加减 (69)4.1生活中的立体图形 (73)4.2 立体图形的视图 (77)4.3立体图形的表面展开图 (80)4.4平面图形 (83)4.5.1 点和线 (88)4.5.2 线段的长短比较 (91)4.6 1. 角 (94)4.6 2. 角的比较和运算 (98)4.6 3. 余角和补角 (103)5.1.1对顶角 (109)5.1.2垂线 (113)5.1.3 同位角、内错角、同旁内角 (116)5.2.1 平行线 (119)5.2.2平行线的判定 (122)5.2.3平行线的性质 (126)数学伴我们成长人类离不开数学一、选择题1.李叔叔家客厅长6米,宽4.8米,计划在地面铺上方砖.为了美观,李叔叔想使地面都是整块方砖,请你帮忙选择一种方砖,你的选择是( )A.边长50厘米的B.边长60厘米的C.边长100厘米的D.以上都不选2.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( )A.41B.40C.39D.383.已知世运会、亚运会、奥运会分别于2009年、2010年、2012年举办过.若这三项运动会均每四年举办一次,则这三项运动会均不举办的年份是( )A.2070年B.2071年C.2072年D.2073年二、填空题4.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.5.假设2019年8月3日是星期六,则2019年8月18日是星期________.6.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片________张才能用它们拼成一个新的正方形.三、解答题7.(8分)为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,友谊商城打九折;中百商厦“买8送1”,学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由.8.(8分)2019年5月1日小明和爸爸一起去旅游,在火车站看到如表所示的列车时刻表:2019年5月1日××次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸用手机上网找到了以前同一车次的时刻表如下:2006年12月15日××次列车时刻表始发点发车时间终点站到站时间A站[来源:数理化网]下午14:30 B站第三日8:30比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果四舍五入到个位)9.(10分)你玩过火柴吗?如图,用火柴棒搭正方形,所搭正方形个数n与火柴棒根数s之间有一定的关系:将下面表格补充完整并解答后面的问题:正方形个数n 1 2 3 4 5 6 …n火柴棒根数s求搭10个正方形,需要多少根火柴棒?答案1.【解析】选B.6米=600厘米,4.8米=480厘米.选项A:600÷50=12,480÷50=9.6,客厅宽不是方砖边长的整数倍,这种方砖不合适;选项B:600÷60=10,480÷60=8,客厅长和宽都是方砖边长的整数倍,这种方砖可以;选项C:600÷100=6,480÷100=4.8,客厅宽不是方砖边长的整数倍,这种方砖不合适.2.【解析】选C.三个骰子18个面上的数字的总和为:3×(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以看不见的面上的点数总和是63-24=39.3.【解析】选B.由于这三项运动会均每四年举办一次,所以只要每个选项与2009,2010,2012的差有一个是4的倍数,则能在这一年举办此项运动会,否则这三项运动会均不在这一年举办.因为选项B中,2071-2009=62,2071-2010=61,2071-2012=59,均不是4的倍数,所以这三项运动会均不在2071年举办.4.【解析】180×(1+20%)÷90%=240(元).答案:2405.【解析】2019年8月3日至2019年8月18日经过了15天,15÷7=2……1,所以2019年8月18日是星期日.答案:日6.【解析】本题可以动手操作,画也行,用纸片拼也行,应该取丙类纸片4张.答案:47.【解析】到中百商厦买合算.因为到友谊商城需花费:180×3×90%=486(元),到中百商厦只需买160只,就送20只,所以需花费:160×3=480(元).因为486元>480元,所以到中百商厦买合算.8.【解析】(1)原来该次列车所用时间=2×24+8.5-14.5=42(小时).现在该次列车的运行时间=24+12-8=28(小时),42-28=14(小时),所以缩短了14小时.(2)28×200÷42≈133(千米).答:(1)现在该次列车的运行时间比以前缩短了14小时,(2)原来的平均时速约为每小时133千米.9.【解析】前三个空可通过直接数得出n=1时,s=4;n=2时,s=7;n=3时,s=10.比较4,7,10,可看出后一个数比前一个数大3,故n=4时,s=13;n=5时,s=16;n=6时,s=19.观察填入的数据可看出正方形个数×3+1即为火柴棒根数,故当正方形个数为n 时,s=3n+1,所以n=10时,s=3×10+1=31.答:需要31根火柴棒.人人都能学会数学1.一件衣服的标价200元,若以6折销售,仍可获利20%,则这件衣服的进价是( )元。
1.2 展开与折叠一、基础训练:一、填空题1.如图所示棱柱(1)这个棱柱的底面是_______边形.(2)这个棱柱有_______个侧面,侧面的形状是_______边形.(3)侧面的个数与底面的边数_______.(填“相等”或“不相等”)(4)这个棱柱有_______条侧棱,一共有_______条棱.(5)如果CC′=3 cm,那么BB′=_______cm.2.棱柱中至少有_______个面的形状完全相同.二、判断题1.长方体和正方体不是棱柱. ()2.五棱柱中五条侧棱长度相同. ()3.三棱柱中底面三条边都相同. ()4.棱柱是根据它总共有多少条棱来命名的. ()三、剪一剪,折一折,然后选择正确答案1.下面图形不能围成一个长方体的是()2.如果有一个正方体,它的展开图可能是下面四个展开图中的()3.五棱柱的棱数有()A.五条B.十条C.十五条D.十二条四、下面平面图形能围成哪种几何体的表面.二、能力提高:一、填空题1.矩形绕其一边旋转一周形成的几何体叫_______,直角三角形绕其中一个直角边旋转一周形成的几何体叫______.2.将一个无底无盖的长方体沿一条棱剪开得到的平面图形为_____________________.3.将一个无底无盖的圆柱剪开得到一个矩形,其中圆柱的_____________________等于矩形的一个边长,矩形的另一边长等于_______________.4.长方体共有________个顶点___________个面,其中有___________对平面相互平行.5.球面上任一点到球心的距离__________.6.如图1,由6个边长相等的正方形组成的长方形ABCD中,包含*在内的正方形与长方形共____个.7.如果长方体从一点出发的三条棱长分别为2、3、4,则该长方体的面积为______,体积为__________.8.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为_______________.9.现实生活中的油桶、水杯等都给人以__________的形象.二、解答题10.如图2,ABCD为边长为4的正方形,M、N分别是DA、BC上的点,MN∥AB,MN交AC于O,且MD=1,沿MN折起,使∠AMD=90°制作模型,并画出折起后的图形.图2 图311.如图3,是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,猜测蜘蛛爬行的最短路线.12.如图4,在长方形ABB1A1中,AB=6 cm,BB1=3 cm,CC1、DD1是A1B、AB三等分线段,A1B交C1C、D1D于M、N,把此图以C1C、D1D为折痕且A1A与B1B重合折成一个三棱柱侧面,制作出相应的模型,并观察折成棱柱前后A1B的变化.图413.如图5,为一扇形,将此扇形卷起使AB与AC重合,制作相应模型,并观察卷起以后,形成一个什么样的几何体及BC的变化,你能画出卷起后的几何体吗?试试看.图5 图614.如图6,折叠长方形的一边AD,点D落在BC边的点F处,当AB=8 cm,BC=10 cm时量出FC的长.学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│= ,│-32│= 。
2、+│+5│= ,+│-5│= ,-│+5│= ,-│-5│= 。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 。
5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。
6、绝对值小于3.1的所有非负整数为 。
7、绝对值大于23小于83的整数为 。
8、计算2005(2004|20052004|)-+-的结果是 。
9、当x= 时,式子||52x -的值为零。
10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++= 。
11、已知||||2x y +=,且,x y 为整数,则||x y +的值为 。
12、若|8||5|0a b -+-=,则a b -的值是 。
13、若|3|a -与|26|b -互为相反数,则2a b +的值是 。
14、若||3x =,||2y =,且x y >,求x y +的值是 。
15、如图,化简:2|2||2|a b +-+-= 。
16、已知|(2)||3|||0x y z +-+++=,则x y z ++= 。
17、如图, 则||||||||a b a b b a --++-= 。
18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为 。
19、若||5a =,2b =-,且0ab >,则a b += 。
20、若0ab <,求||||||a b ab a b ab ++的值为 。
21、绝对值不大于2005的所有整数的和是 ,积是 。
22、若2|3|(2)0m n -++=,则2m n +的值为 。
23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是 。
24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= .25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+ 36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =±40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|= 42.(1)若|a+2|+|b-1|=0,则a= b= ;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个 C .22个 D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
最新人教版七年级数学上册全册课时小练习班级:姓名:目录第一章有理数 (1)1.1 正数和负数 (1)1.2 有理数 (2)1.3 有理数的加减法 (7)1.4 有理数的乘除法 (11)1.5 有理数的乘方 (17)第二章整式的加减 (21)2.1 整式 (21)2.2 整式的加减 (24)第三章一元一次方程 (27)3.1 从算式到方程 (27)3.2 解一元一次方程(一)——合并同类项与移项 (29)3.3 解一元一次方程(二)——去括号与去分母 (31)3.4 实际问题与一元一次方程 (33)第四章几何图形初步 (38)4.1 几何图形 (38)4.2 直线、射线、线段 (42)4.3 角 (44)4.4 课题学习——设计制作长方体形状的包装纸盒 (47)答案 (48)第一章有理数 (48)1.1正数和负数 (48)1.2有理数 (48)1.3有理数的加减法 (49)1.4有理数的乘除法 (50)1.5有理数的乘方 (52)第二章整式的加减 (53)2.1整式 (53)2.2整式的加减 (53)第三章一元一次方程 (54)3.1从算式到方程 (54)3.2解一元一次方程(一)——合并同类项与移项 (54)3.3解一元一次方程(二)——去括号与去分母 (55)3.4实际问题与一元一次方程 (55)第四章几何图形初步 (57)4.1几何图形 (57)4.2直线、射线、线段 (58)4.3角 (58)4.4课题学习——设计制作长方体形状的包装纸盒 (59)第一章 有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480. 正数有 ;负数有 ;既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( ) A.1 B.2C.3D.42.下列各数中是负分数的是( )A.-12B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95. 正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是()2.如图,点M 表示的数可能是()A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是()A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和0 3.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ;(2)-(-3)= ;(3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时 绝对值1.-14的绝对值是( ) A.4 B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()4.若一个负有理数的绝对值是310,则这个数是 . 5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( ) A.3 B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则()A.a >2B.a >-2C.a <0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12 -23. 4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( )A.-8B.-2C.2D.82.计算(-2)+(-3)的结果是( )A.-1B.-5C.-6D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( )A.-1℃B.1℃C.-9℃D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律)=( )+( )= .3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( )A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是.5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是()A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( ) A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A.2x +2y B.2y C.2x D.02.已知A =5a -3b ,B =-6a +4b ,则A -B 为( ) A.-a +b B.11a +b C.11a -7b D.-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是()4.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A.(3a +b) B.(2a +2b) C.(a +b) D.(a +3b)5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是()2.方程x +3=-1的解是( ) A.x =2 B.x =-4 C.x =4 D.x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是( ) A.-8 B.0 C.8 D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .5.商店出售一种文具,单价3.5元,若用100元买了x 件,找零30元,则依题意可列方程为 .6.七(2)班有50名学生,男生人数是女生人数的 倍.若设女生人数为x 名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a =b ,则下列变形一定正确的是()2.下列变形符合等式的基本性质的是( ) A.若2x -3=7,则2x =7-3 B.若3x -2=x +1,则3x -x =1-2 C.若-2x =5,则x =5+2 D.3.解方程- x =12时,应在方程两边( ) A.同时乘- B.同时乘4 C.同时除以 D.同时除以-4.由2x -16=5得2x =5+16,此变形是根据等式的性质在原方程的两边同时加上了 .5.利用等式的性质解下列方程: (1)x +1=6; (2)3-x =7;(3)-3x =21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时 立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个 4.将下列几何体分类:其中柱体有 ,锥体有 ,球体有 (填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形 个,圆 个.6.把下列图形与对应的名称用线连起来:圆柱 四棱锥 正方体 三角形 圆第2课时 从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是()2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是()3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是()4.下面图形中是正方体的展开图的是()5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是()A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明 ; (2)用棉线“切”豆腐表明 ;(3)旋转壹元硬币时看到“小球”表明 . 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时 线段的长短比较与运算1.如图所示的两条线段的关系是( ) A.a =b B.a <b C.a >b D.无法确定第1题图 第2题图2.如图,已知点B 在线段AC 上,则下列等式一定成立的是( ) A.AB +BC >AC B.AB +BC =AC C.AB +BC <AC D.AB -BC =BC3.如图,已知D 是线段AB 的延长线上一点,C 为线段BD 的中点,则下列等式一定成立的是()A.AB +2BC =ADB.AB +BC =ADC.AD -AC =BDD.AD -BD =CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是 .5.如图,已知线段AB =20,C 是线段AB 上一点,D 为线段AC 的中点.若BC =AD +8,求AD 的长.4.3 角4.3.1 角1.图中∠AOC 的表示正确的还有( ) A.∠O B.∠1 C.∠AOB D.∠BOC第1题图 第2题图2.如图,直线AB ,CD 交于点O ,则以O 为顶点的角(只计算180°以内的)的个数是( ) A.1个 B.2个 C.3个 D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是 °.4.把下列角度大小用度分秒表示: (1)50.7°; (2)15.37°.5.把下列角度大小用度表示: (1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( ) A.∠AOC B.∠BOD C.∠AOD D.∠COB第1题图 第2题图2.如图,OC 为∠AOB 内的一条射线,且∠AOB =70°,∠BOC =30°,则∠AOC 的度数为 °.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC 为∠AOB 内的一条射线,OM ,ON 分别平分∠AOC ,∠COB.若∠AOM =30°,∠NOB =35°,求∠AOB 的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是()2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为()A.14B.10C.8D.73.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).答案第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值。
1、生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.常见的几何体有()、()、()、()、()、和()等。
2、几何图形包括立体图形和(),几何图形是由()、()、()构成。
面有平面和(),面不分厚薄;线有直线和(),线不分粗细。
面与面相交得到(),线与线相交得到(),点不分大小。
3、从运动的角度看,点动成(),线动成(),面动成()。
(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线。
点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等。
钟表的分针旋转一周形成一个圆面,即线动成面。
线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等。
长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体。
面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等)4、如图所示的立体图形,是由()个面组成的,其中有()个平面,有()个曲面;面与面相交成()条线,其中曲线有()条。
5、立体图形的识别。
几何图形的特征:(1)圆柱:两个底面是(),侧面是()。
如()、()等。
(2)圆锥:底面是(),侧面是(),像锥子。
如()、()等。
(3)长方体:有6个面,底面是(),相对的两个面平行且()。
如()、()等。
(4)正方体:6个面是大小完全相同的()。
如()、()等。
(5)棱柱:所有()都相等,底面是(),上、下底面的(),侧面的形状都是()。
(6)球:由一个()组成,圆圆的。
如足球、乒乓球等。
(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的()。
多边形的面称为棱锥的(),其余各面称为棱锥的()。
根据()可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面认识几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等。
6、请在每个几何体下面写出它们的名称。
7、如图,在下面四个物体中,最接近圆柱的是( ).8、几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:9、在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( )。
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
初一上册数学代数式练习题初一上册数学代数式练习题学生的学习生涯就是不断的用习题来充实自己,下面店铺给大家整理了一些初一上册数学代数式练习题,大家可以参考练习。
代数式练习题一:一、判断1、a²=a+a ( )2、小红今年a岁,比小艺大2岁,小艺今年(a+2)岁。
( )3、a×a可以写成2a。
( )4、m×6可以写成m6。
( )5、小明每分钟写x个字,6分钟写了6x个字。
( )6、一个书包a元,用50元钱买一个书包,还剩50a元。
( )7、比m的.3倍少12的数是3x-2. ( )8、u除3的商用字母表示为u÷3. ( )二、选择1、当a=20,b=40时,2a²-b=( )A. 0B. 160C.7602、甲、乙两地相距150千米,一辆汽车从甲地出发,每小时行m 千米,5小时以后离乙地还有( )千米。
A.150÷5+mB.150+5mC.150-5m3、5除a与b的差,商是( )A.5÷a-bB.5÷(a-b)C.(a-b)÷54、x的平方加x的7倍是( )A.2x+7xB.x²+7xC.x²-x÷75、张师傅每天做m个零件,是王师傅每天做的6倍,王师傅每天做( )个零件。
A.m+6B.m÷6C.6m代数式练习题二:1.不能表示代数式“4a”的意义的是( )2.下列式子:①a+b=c;②5√2;③a>0;④a2a,其中属于代数式的是( )3.用语言叙述代数式a2-b2,正确的是( )4.对于代数式-丨a-b丨,叙述表达的是( )7.代数式√3-2x2 5是( )8.某商场举办促销活动,将原价x元的衣服改为(x+1)元出售.叙述可作为此商场的促销标语的是( )9.(1)根据生活经验,对代数式3x+2y作出解释.(2)两个有理数的和是负数,那么这两个数一定都是负数,这种说法对吗?如果不对,请举例说明?10.根据代数式50a-40b自编一道应用题.。
最新七年级上册数学压轴题专题练习(解析版)最新七年级上册数学压轴题专题练(解析版)一、压轴题1.[问题提出]一个边长为$n$ cm($n\geq 3$)的正方体木块,在它的表面涂上颜色,然后切成边长为1 cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?问题探究]我们先从特殊的情况入手:1)当$n=3$时,如图(1)。
没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$1\times 1\times 1=1$个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个。
2)当$n=4$时,如图(2)。
没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$2\times 2\times 2=8$个小正方体;一面涂色的:在面上,每个面上有4个,正方体共有6个面,因此一面涂色的共有24个;两面涂色的:在棱上,每个棱上有2个,正方体共有12条棱,因此两面涂色的共有24个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有8个顶点,因此三面涂色的共有8个。
问题解决]一个边长为$n$ cm($n\geq 3$)的正方体木块,没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$$(n-2)^3$$个小正方体;一面涂色的:在面上,共有$$6(n-2)^2$$个;两面涂色的:在棱上,共有$$12(n-2)$$个;三面涂色的:在顶点处,共有$$8$$个。
问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1 cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积。
解:设大正方体的边长为$n$ cm,则根据问题解决部分的公式,$$12(n-2)=96,$$解得$n=8$,因此大正方体的体积为$$8^3=512\text{ cm}^3.$$答案:512 $\text{cm}^3$。
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
数学七上练习题1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8) 5、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm11.(-5)0=( ).A .1B .0C .-1D .-512.12-的倒数为( ) A .12 B .2 C .2- D .1-13.某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元14.-2的相反数是( )A .2B .12-C .2-D .1215.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×10616.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为A .-60 mB .︱-60︱mC .-(-60)mD .601m 17. 2-的倒数是( ) A .12- B .12 C .2 D .2-18. 2的相反数是( )A .-2B .2C .21D .-2119目前国内规划中的第一学科网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( )A .535.910⨯平方米B .53.6010⨯平方米C .53.5910⨯平方米D .435.910⨯平方米 20. 3-的相反数是( )A .3B .3-C .13D .13- 21.下列等式变形正确的是( ) A.如果s=12ab,那么b=2s a ; B.如果12x=6,那么x=3 C.如果x-3=y-3,那么x-y=0; D.如果mx=my,那么x=y 22. 方程2x-3=2+3x 的解是( )A.-2;B.2;C.-12;D.1223.关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为( ) A.0 B.1 C.12 D.224.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( )A.12B.6C.-6D.-1225.下列解方程去分母正确的是( ) A.由1132x x --=,得2x-1=3-3x; B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y; D.由44153x y +-=,得12x-1=5y+2026.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a27.下列四个式子中,是方程的是( ) A .1 + 2 + 3 + 4 = 10 B .2x -3 C .x = 1 D .|1-0. 5|= 0. 528.若2153x -=与kx -1=15的解相同,则k 的值为( ) A .8 B . 2 C .-2 D .629.下列方程,2151,5,3,0,275y m x x m a m=-===-=,其中一元一次方程的个数是( )A .1B .2C .3D .430.解为x =3的方程是( )A .2x -6=0B .5362x += C . 13243x x -+= D .3(x -2)-2(x -3)=5x31.若代数式312x +比223x -小1,则x 的值为( ) A .135-B . 513- C .135 D . 513 32.某书中一道方程题21,3x x +⊗+=⊗处印刷时被墨盖住了,查后面答案,这道题的解为x =-2.5,那么处的数字为( )A .-2.5 B .2.5 C .3.5 D .533.下列方程中,解是2x =的是( )A .2 4.x =B .1 4.2x =C .4 2.x =D .1 2.4x = 34.下列各式中,一元一次方程是( )A .12.t +B .120.x -=C .2 1.m m +=D .41 3.x+= 35.天平的左边放2个硬币和10克砝码,右边放6个硬币和5个砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x 克,可列出方程为( )A .2106 5.x x +=+B .2106 5.x x -=-C .2106 5.x x +=-D .2106 5.x x -=+361-=的解是(结果保留2个有效数字)( )A .3.4.B .0.29.C .-1.7.D .1.7.37.将方程2124x x --=去分母,得( ) A .2(2) 4.x x --= B .22 4.x x --=C .22 1.x x -+=D .2(2) 1.x x --=38.已知A ,B 两地相距30千米.小王从A 地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B 地. 则小王骑自行车的速度为( )A .13.25千米/时.B .7.5千米/时.C .11千米/时.D .13.75千米/时.39.某种商品的标价为132元. 若以标价的9折出售,仍可获利10%,则该商品的进价为( )A .105元.B .100元.C .108元.D .118元.40.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列方程( )A .121.55x x x ++=B .1211.55x x x +++= C .1211.55x x x ++-= C .12 1.55x x +=41、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x42、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍43、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 44、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --45、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式46、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x47、代数式,21a a + 43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是()A 、3B 、4C 、5D 、648、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式49、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x50、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+51. 合并同类项,其结果正确的是( )A .4a +b =5abB .6x 2 -2x 2 =4C .22660xy y x -=D .3x 2 +2x 3 =5x 552. 下列化简正确的是( )A .(3a -b )-(5c -b )=3a -2b -5cB .(a+b )-(3b -5a )=-2b -4aC .(2a -3b+c )-(2c -3b+a )=a +3cD .2(a -b )-3(a+b )=-a -5b53. 下列各选项中,两个代数式是同类项的是( )A .2123mn mn --与 B .18ab 与18abc C .221616a b ab -与 D .336x 与54. 关于x 的多项式ax +bx 合并后的结果为0,则a 与b 的关系是__________.A :a ,b 互为相反数 B, a,b 只能是0C. a ,b 一定相等55. 已知496b a -和445b a n 是同类项,则代数式1012-n 的值是( )A .17B .37C .-17D .9856. 若536x y 与12b c ax y --是同类项,则________b c ==,.A :6,-1 B. -6, 1 C.-6,-1 D 6,157. 关于x ,y 的多项式312x y xy k -+-,当k 取什么值时,就不含常数项. A.:12k =.B. 1, C. 2, D 358. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应为( )A .-4(x -3)2-(x -3)B .4(x -3)2+x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2+(x -3)59. 若关于a ,b 的代数式a 2m -1b 与a 5b m +n 是同类项,那么(mn +5)2004等于( )A .0B .1C .-1D .5200460. 化简:222a a -+=A :2aB :-2aC :32a D: A :22a61.数据0.000207用科学记数法表示为A.2.07×10-3B. 2.07×10-4C. 2.07×10-5D. 2.07×10-662.5的相反数是A. 51 B.5 C.-5 D. 51- 63.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯元B .972.610⨯元C .110.72610⨯元D .117.2610⨯元64.4的算术平方根是( )A .2±B .2C .2±D .265.据统计,2009年漳州市报名参加中考总人数(含八年级)约为102000人,则102000用科学记数法表示为( )A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯66. 3-的倒数是( )A .3-B .13-C .13D .367.36的算术平方根是( ).(A )6 (B )±6 (C )6 (D )±668.-2的相反数是( ).A .2B .一2C .21D .一2169.某种流感病毒的直径是0.00000008m ,这个数据用科学记数法表示为( )A .6810m -⨯B .5810m -⨯C .8810m -⨯D .4810m -⨯ 70.9-的相反数是( )A .19B .19-C .9-D .971.在0,l ,一2,一3.5这四个数中,是负整数的是( )A .0B .1C .一2 D.一3.572.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( )A .40.2110-⨯B .42.110-⨯C .52.110-⨯D .62110-⨯73.计算2009(1)-的结果是( )A .1-B .1C .2009-D .200974.2008 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标.用科学记数法表示数 1 千亿,正确的是( )A .1000×108B .1000×109C .1011D .101275.如果a 与1互为相反数,则|2|a +等于( )A .2B .2-C .1D .1-76.2009年6月,全国参加高等院校统一招生考试的学生约10 200 000人,其中10 200 000用科学记数法表示应为( )A .610.210⨯B .81.0210⨯C .80.10210⨯D .91.0210⨯77.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( D )A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米78.27的立方根是( A )A .3B .3-C .9D .9- 79.实数1的倒数是( )A .0B .1C .-1D .±1 80.4的相反数是( )A .4B .4-C .14D .14- 81.在数轴上的点A 、B 位置如图所示,则线段AB 的长度为( )第 4 题 图A. -3B. 5C. 6D. 782. 2008年我国的国民生产总值约为130800元,那么130800用科学记数法表示正确的是( )A.1308×102B. 13.08×104C. 1.308×104D. 1.308×10583.5-的相反数是( )A.5 B.5-C.15D.15-84.用科学记数法表示660 000的结果是()A.66×104 B.6.6×105 C.0.66×106 D.6.6×106 85. 2009的相反数是()A.-2009 B.2009 C.12009- D.1200986.方程2x+1=5的解是( )A.4 B.3 C.2 D.187.已知 5x+6=1是关于x的一元一次方程,则m的值为()A.1B.-1C.D.088.若 10x+7=17,则x 的值是()A.1B.2C.3D.589.已知三角形的三个外角之比为2:3:4,则这个三角形的最小内角是( )°A.20B.40C.60D.8090.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是().A.4cmB.5cmC.9cmD.13cm91.当x=-4时,整式-x-4x的平方-2与x的三次方+5x的平方+3x-4的和是()A.0 B.4 c.-4 D.-292.下列说法中,正确的是()A单项式与单项式的和仍是单项式B多项式与单项式的和仍是多项式C多项式与多项式的和仍是多项式D整式与整式的和仍是整式93.下列的说法正确的是 ( )A. 2.3与2.30的有效数字的位数相同B. 0.0000046用科学记数法表示为4.610C. 6000与64的精确度是一样的D. “5万”的有效数字的为数是1位94.利润为标价的40%,若这种商品的标价为2200元,那么它的成本价为()A.1600元 B.1780元 C.1980元 D.2980元95.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期银行将扣除20%的利息税),设到期后银行向储户支付现金x元,则所列方程正确的是:A. x-5000=5000×3.06%B. x+5000×20%=5000(1+3.06%)C. x+5000×3.06%×20%=5000(1+3.06%)D. x+5000×3.06%×20%=5000×3.06%96.对-6.5(负6.5),下列说法错误的是()A.是负数,不是整数。