5.2.2同角三角函数 的基本关系
温故知新
公式一: 文字语言: 终边相同的角的同一三角函数的值相等
符号语言: sin(α+k·2π)=
cos(α+k·2π)=
tan(α+k·2π)= 其中k∈Z
探索新知
问题1 公式一表明,终边相同的角的同一三角函数值相等,那么, 终边相同的角的不同三角函数值之间是否也有某种关系呢?
探索新知
(1)首先我们知道三个三角函数的值都是由角的终 边与单位圆的交点坐标所唯一确定的,这说明它们 定义的背景统一,所以它们之间一定有内在联系。
探索新知
(2)可以利用公式一,把这些终边相同角的三角函数值转化 为同一个角的三角函数值,这时就可以将这个问题进一步 转化为“研究同一个角的三个三角函数值之间的关系”.
1.两个公式的结构特点:
(1)
是
的简写,
不能将
写成
,
(2)
同角三角函数基本关系的理解与认识
2.同角的理解: (1) 关系式中的角要相同,与角的形式无关。
同角三角函数基本关系的理解与认识
3.公式等价变形 (1)
(2)
学以致用
例1 解:
∵ 为第三象限角 ∴
学以致用
变式 思考2: 若把题目中的条件“角 该解如:何解答?
探究:同一个角的不同三角函数值之间的关系
问题3:同一个角的三角函数值还有什么关系?
由定义可知:
探究:同一个角的不同三角函数值之间的关系
追问1:函数的基本关系
1、平方关系: 2、商数关系:
注意:只要能使得函数有意义,对任意一个角关系式恒成立。
同角三角函数基本关系的理解与认识
探究:同一个角的不同三角函数值之间的关系
问题2:给一个角 ,在单位圆中你能找到与点 P 坐标 对应的线段吗?从而建立 与 关系吗?