混凝土微观试验方法
- 格式:docx
- 大小:130.85 KB
- 文档页数:5
混凝土中微观结构分析标准方法一、前言混凝土是一种广泛应用的建筑材料,其性能与微观结构密切相关。
因此,对混凝土中微观结构的分析具有重要的意义。
本文将介绍混凝土中微观结构分析的标准方法。
二、混凝土中微观结构分析的意义1. 了解混凝土的组成和结构,有助于优化混凝土的配合比,提高其性能。
2. 分析混凝土中的微观结构变化,有助于预测混凝土的耐久性。
3. 研究混凝土中的微观结构变化,为混凝土的维修和加固提供依据。
三、混凝土中微观结构分析的方法1. 石英晶体显微镜分析法该方法通过显微镜观察混凝土中的石英晶体来判断混凝土的成分和结构。
具体方法如下:(1)取混凝土样品,进行石英晶体显微镜观察;(2)根据石英晶体的形态、大小、颜色等特征,判断混凝土中的石英晶体含量和分布情况;(3)根据石英晶体的形态和大小,判断混凝土中的骨料类型和粒径分布。
2. 电子显微镜分析法该方法通过电子显微镜观察混凝土中的微观结构变化,包括毛细孔、水化产物等。
具体方法如下:(1)取混凝土样品,进行电子显微镜观察;(2)根据电子显微镜图像,判断混凝土中的毛细孔分布情况;(3)根据电子显微镜图像,判断混凝土中的水化产物类型和分布情况。
3. X射线衍射分析法该方法通过X射线衍射来判断混凝土中的水化产物类型和分布情况。
具体方法如下:(1)取混凝土样品,进行X射线衍射分析;(2)根据X射线衍射图谱,判断混凝土中的水化产物类型和含量;(3)通过对X射线衍射图谱的分析,判断混凝土中的晶体结构。
4. 红外光谱分析法该方法通过红外光谱分析混凝土中的水化产物类型和含量。
具体方法如下:(1)取混凝土样品,进行红外光谱分析;(2)根据红外光谱图谱,判断混凝土中的水化产物类型和含量;(3)通过对红外光谱图谱的分析,判断混凝土中的化学结构。
四、混凝土中微观结构分析的标准方法1. GB/T 50082-2009《混凝土结构工程施工质量检验规范》该标准规定了混凝土结构工程施工质量检验的要求和方法,其中包括混凝土中微观结构分析的方法。
混凝土微观试验混凝土微观试验是对混凝土在微观尺度下的性能进行分析和研究的一种方法。
通过观察混凝土的微观结构和性质,可以更好地理解混凝土的力学性能和耐久性,进而指导工程实践中的混凝土设计和施工。
混凝土是一种复杂的多相材料,由水泥胶石、骨料和孔隙组成。
混凝土微观试验主要通过显微观察和实验手段来研究混凝土的微观结构和性能。
其中,常用的混凝土微观试验方法包括显微镜观察、扫描电子显微镜(SEM)观察、能谱分析、X射线衍射、红外光谱等。
混凝土微观试验的目的是揭示混凝土在微观尺度下的特性和行为规律。
首先,通过显微镜观察,可以观察到混凝土中水泥胶石的形态、分布和连通性,以及骨料的种类、形状和分布情况。
这对于评估混凝土的均质性、致密性和孔隙结构等性能指标具有重要意义。
其次,通过SEM观察,可以进一步观察到混凝土中细观的结构特征,如水化产物的形态和分布、骨料与水泥胶石的界面结合情况等。
这有助于了解混凝土的强度、变形和耐久性等性能。
此外,通过能谱分析、X射线衍射和红外光谱等方法,可以对混凝土中各种物质的成分和结构进行定量和定性分析,从而进一步探究混凝土的性能和特性。
混凝土微观试验的结果可以为混凝土材料和结构的设计、施工和维护提供科学依据。
例如,在混凝土配合比设计中,通过观察混凝土的微观结构,可以合理控制水灰比、骨料粒径和骨料种类等参数,从而提高混凝土的力学性能和耐久性。
在混凝土施工过程中,可以通过混凝土微观试验的结果来评估混凝土的质量和施工工艺是否合理,及时采取措施进行调整和改进。
在混凝土维护和修复中,可以通过混凝土微观试验来评估混凝土的损伤程度和耐久性,制定合理的维护和修复方案。
混凝土微观试验是对混凝土性能进行研究和分析的重要手段,可以深入了解混凝土的微观结构和性能,为混凝土材料和结构的设计、施工和维护提供科学依据。
通过不断深入研究混凝土微观试验方法,将进一步推动混凝土技术的发展和应用。
混凝土微观结构研究及其应用一、前言混凝土是建筑业中最常用的材料之一,其优点是具有较高的强度和耐久性,可以适应各种不同的建筑需求。
混凝土的微观结构对其性能有着至关重要的影响,因此研究混凝土的微观结构对于提高混凝土的性能和开发新的混凝土材料具有重要意义。
二、混凝土微观结构研究的意义1.研究混凝土的微观结构可以帮助我们更好地理解混凝土的力学性能和耐久性能。
混凝土是由水泥、砂、石等材料组成,其微观结构对于混凝土的强度、硬度、韧性、抗裂性、耐久性等性能有着重要的影响。
2.研究混凝土的微观结构可以帮助我们更好地了解混凝土的制备工艺和材料选用。
混凝土的微观结构和制备工艺密切相关,研究混凝土的微观结构可以帮助我们更好地了解混凝土的制备工艺和材料选用。
3.研究混凝土的微观结构可以促进混凝土材料的创新和发展。
混凝土的微观结构研究可以为混凝土材料的性能提升和新型混凝土材料的开发提供理论和实践基础。
三、混凝土微观结构的主要组成混凝土的微观结构主要由三部分组成:水泥胶体、骨料、孔隙。
1.水泥胶体水泥胶体是混凝土中最重要的组成部分之一,其占混凝土体积的比例很小,但是其对混凝土的力学性能和耐久性能有着至关重要的影响。
水泥胶体主要由水化产物、未水化水泥颗粒和水泥颗粒之间的空隙组成。
2.骨料骨料是混凝土中的填充物,主要用于提高混凝土的强度和硬度,同时也能改善混凝土的抗裂性能。
骨料可以分为粗骨料和细骨料两种类型,粗骨料主要用于提高混凝土的强度和硬度,细骨料主要用于填充水泥胶体和粗骨料之间的空隙。
3.孔隙孔隙是混凝土中的空隙,其数量和大小对混凝土的力学性能和耐久性能有着重要的影响。
孔隙可以分为两种类型:凝胶孔隙和非凝胶孔隙。
凝胶孔隙是由水泥胶体形成的孔隙,其大小通常在5nm以下;非凝胶孔隙主要由空鼓、气孔、裂缝等形成,其大小通常在几微米到几毫米不等。
四、混凝土微观结构研究方法混凝土微观结构的研究方法主要包括以下几种:1.扫描电镜扫描电镜可以对混凝土微观结构进行高分辨率的观测和分析,可以获得混凝土中水泥胶体、骨料和孔隙等组成部分的形貌和分布情况,有助于深入了解混凝土微观结构和性能之间的关系。
混凝土中的微观结构分析方法一、引言混凝土是一种最常见的建筑材料,它的性能直接影响着建筑物的结构安全和耐久性。
混凝土的性能与其微观结构密切相关,因此了解混凝土中的微观结构对于混凝土的性能分析和优化至关重要。
二、混凝土中的微观结构混凝土是由水泥、砂、骨料和水按一定比例混合而成的复合材料。
混凝土中的微观结构包括水泥石、砂浆骨料界面带和孔隙结构。
1. 水泥石水泥石是由水泥和水在一定时间内反应形成的胶结材料。
水泥石的主要成分是硅酸钙凝胶和水化硬化产物。
硅酸钙凝胶是水泥中最重要的反应产物之一,其具有很强的胶凝性和粘附性。
水化硬化产物包括钙硅石、钙铝石等,它们填补了水泥石中的孔隙,提高了水泥石的密实度和强度。
2. 砂浆骨料界面带砂浆骨料界面带是砂浆和骨料之间的过渡区域。
它包括砂浆中的水泥石和骨料表面的胶凝材料。
砂浆骨料界面带的质量和强度影响着混凝土的强度和耐久性。
3. 孔隙结构混凝土中的孔隙主要包括毛细孔、小孔和大孔。
毛细孔是直径小于50nm的微小孔隙,它们主要由水化产物中的毛细孔和水泥石中的孔隙组成。
小孔的直径在50nm到500μm之间,大孔的直径大于500μm。
混凝土中的孔隙结构直接影响着混凝土的强度和耐久性。
三、混凝土中微观结构分析方法混凝土中的微观结构分析包括物理试验、化学试验和显微镜观察等方法。
1. 物理试验物理试验是通过测量混凝土的物理性质来分析混凝土中的微观结构。
常用的物理试验包括密度测定、孔隙率测定、毛细孔压汞试验、吸水性测定和渗透试验等。
(1)密度测定密度是衡量混凝土密实程度的重要指标。
通过测定混凝土的密度,可以了解混凝土中的孔隙率和孔隙结构。
常用的密度测定方法包括水中置换法、直接法和包容法等。
(2)孔隙率测定孔隙率是混凝土中孔隙的体积占总体积的比例。
通过测定混凝土的孔隙率,可以了解混凝土中孔隙的分布和孔隙结构。
常用的孔隙率测定方法包括质量法、水中置换法和包容法等。
(3)毛细孔压汞试验毛细孔压汞试验是一种通过测定混凝土中毛细孔的孔径和孔隙率来分析混凝土中的微观结构的方法。
采用测试电阻率的方法[1]来监测混凝土的水化程度是一个有效可行的方法。
通过对不同水灰比、不同掺合料混凝土电参数和相应曲线变化规律的研究表明,早龄期混凝土电阻率和强度随时间发展的曲线具有很强的相似性与相关性。
如图1所示,利用混凝土早龄期电阻率的变化速率曲线,可以采用直观和量化的方法将混凝土的水化进程划分为水泥水解I(dissolution)、诱导期II(competition ofdissolution-precipitation)、凝结III(setting)、硬化IV(hardening)和硬化后期V(hardening deceleration)五个阶段[2]。
通过电阻率速率曲线的0值点M、拐点L、峰值点P与P2,可以表征水泥颗粒开始接触及相互紧密连接的水化过程,较精确地确定混凝土的凝结时间。
混凝土早期电阻率的变化反映了混凝土早期水化进程的发展,客观上体现了混凝土早期内部联通孔隙减少、水化产物生成等一系列变化。
同时,进一步的研究还表明电阻率与混凝土早期强度之间还存在内在联系。
1 / 6X射线衍射分析(XRD)X衍射原理,如图9.1所示,当X射线入射到晶体时,如果入射角度0满足布拉格定律,则X射线强度因衍射而得到加强,此时可以记录到衍射线,而从其它角度入射的则无衍射,这也称为/选择性衍射0,其本质就是入射的X射线照射到晶体中各平行原子面上,各原子面各自产生相互平行的衍射线的结果。
这些衍射线的衍射角度与晶体的结构相联系,也就具有唯一性,因此可以判断材料中的晶体成份。
同时,衍射的晶体数目多少将决定衍射射线的强度。
虽然衍射射线的强度还受到温度、吸收等其他因素的影响,但是,通过衍射射线的峰值可以定性判断出晶体成份的数量关系。
X射线衍射(XRD)技术提供了分析晶体矿物的便利方法如果晶体矿物被置于特定波长的X射线下,射线使原子层衍射并产生衍射峰,它是矿物的表征。
典型XRD 图的横坐标(衍射角)表示晶格间距,纵坐标(峰高)表示衍射强度。
混凝土中微观结构分析方法一、概述混凝土是一种重要的建筑材料,其性能直接影响建筑物的质量和寿命。
混凝土的微观结构对其性能具有重要影响,因此分析混凝土的微观结构是十分必要的。
本文将介绍混凝土中微观结构分析方法。
二、混凝土的微观结构混凝土的微观结构主要由水泥石、骨料和孔隙组成。
其中,水泥石是混凝土的基质,由水泥、水和细集料(如石灰石粉等)组成。
骨料是混凝土的骨架,由粗集料和细集料组成。
孔隙是混凝土中的空隙,包括内部孔隙和表面孔隙。
三、混凝土中微观结构分析方法1. 显微镜观察法显微镜观察法是混凝土微观结构分析的基础方法。
通过显微镜观察混凝土的切片,可以清晰地观察混凝土的微观结构,包括水泥石、骨料和孔隙等。
此外,还可以观察混凝土中的气泡、裂缝等缺陷。
2. X射线衍射法X射线衍射法可以分析混凝土中水泥石中的晶体结构和结晶度。
通过X 射线衍射仪对混凝土切片进行测试,可以得到水泥石中晶体的成分、分布和排列情况,进而分析水泥石的硬化程度和性能。
3. 红外光谱法红外光谱法可以分析混凝土中有机物的含量和种类。
通过对混凝土切片进行红外光谱测试,可以得到混凝土中有机物的吸收峰,进而分析有机物的含量和种类。
4. 热重分析法热重分析法可以分析混凝土中的水泥、细集料和骨料的含量。
通过对混凝土样品进行加热,可以测得样品的失重量,进而分析样品中的水泥、细集料和骨料的含量。
5. 原子力显微镜法原子力显微镜法可以分析混凝土中的孔隙结构。
通过原子力显微镜观察混凝土切片,可以得到混凝土中孔隙的形貌、大小和分布情况,进而分析混凝土的孔隙结构。
6. 气体吸附法气体吸附法可以分析混凝土中的孔隙结构和孔径分布。
通过对混凝土样品进行氮气吸附实验,可以得到样品中的孔隙结构和孔径分布情况,进而分析混凝土的孔隙结构。
四、结论混凝土中微观结构分析是混凝土性能研究的重要方法之一。
通过多种方法对混凝土进行微观结构分析,可以深入了解混凝土的性能和缺陷,进而优化混凝土的配合比和施工工艺,提高混凝土的质量和寿命。
混凝土中的微观结构研究方法一、介绍混凝土的微观结构混凝土是一种由水泥、砂、骨料等组成的复合材料,其微观结构主要由水泥石、骨料、孔隙等组成。
混凝土中的微观结构对其力学性能和耐久性能有着重要影响。
因此,研究混凝土的微观结构是混凝土科学研究的重要方向之一。
二、混凝土中的微观结构研究方法1.扫描电子显微镜观察扫描电子显微镜(SEM)是一种高分辨率的显微镜,可用于观察混凝土中的微观结构。
通过SEM观察混凝土的表面形貌和微观结构,可以得到混凝土的孔隙分布、孔隙形态、骨料分布等信息。
同时,SEM还可以结合能谱分析等技术,对混凝土中的元素分布和化学成分进行分析。
2.透射电子显微镜观察透射电子显微镜(TEM)是一种高分辨率的显微镜,可用于观察混凝土中的微观结构。
通过TEM观察混凝土的薄片,可以得到混凝土中水泥石、骨料等组分的形态、结构和分布情况。
同时,TEM还可以结合电子衍射和元素能谱分析等技术,对混凝土中的晶体结构和化学成分进行深入研究。
3.X射线衍射分析X射线衍射(XRD)是一种分析晶体结构的方法,可用于研究混凝土中水泥石、矿物等的结构和组成。
通过XRD分析混凝土样品的衍射图谱,可以确定混凝土中的物相类型、相对含量和晶体结构等信息。
4.核磁共振成像核磁共振成像(NMRI)是一种非破坏性的成像技术,可用于观察混凝土中的孔隙结构和水分分布。
通过NMRI成像,可以得到混凝土中孔隙的大小、分布和连通性等信息,同时也可以观察混凝土中水分的分布情况。
5.压汞法测孔隙度压汞法是一种测量材料孔隙度和孔径分布的方法,可用于研究混凝土中的孔隙结构。
通过压汞法测量混凝土的孔隙度和孔径分布,可以得到混凝土中孔隙的大小、分布和连通性等信息。
6.红外光谱分析红外光谱分析是一种分析材料分子结构的方法,可用于研究混凝土中的水泥石和有机杂质等。
通过红外光谱分析混凝土样品,可以得到混凝土中水泥石的化学成分、结构和有机杂质的含量等信息。
三、结论混凝土中的微观结构对其力学性能和耐久性能有着重要影响,因此研究混凝土的微观结构是混凝土科学研究的重要方向之一。
混凝土微观结构分析方法一、前言混凝土是建筑工程中常用的材料,其微观结构分析是理解其性能和强度的重要途径。
本文将介绍混凝土微观结构分析的方法。
二、混凝土的微观结构混凝土是由水泥、骨料、砂、水等材料混合而成,其微观结构包括水泥石基质、骨料颗粒、孔隙等。
1. 水泥石基质水泥石基质是混凝土中最主要的组成部分,是由水泥水化生成的胶状物质。
其微观结构可以通过扫描电镜观察得到,常见的有以下几种形态:(1)胶状体:呈胶状或胶凝体状,通常呈现出蜂窝状、网状或皱褶状。
(2)晶体:呈现出粒状或板状,通常呈现出六面体的形态。
(3)空隙:由于水泥水化反应不完全或混凝土的制备过程中存在孔洞等原因,水泥石基质中常存在一定量的空隙。
2. 骨料颗粒骨料颗粒是混凝土中的另一个主要组成部分,其微观结构可以通过光学显微镜观察得到。
常见的骨料颗粒包括天然石料、人造石料等,其形态和大小不尽相同。
3. 孔隙混凝土中的孔隙可以分为两种类型:一种是由于混凝土制备过程中留下的气泡、水泥水化反应不完全等原因所形成的孔隙,另一种是由于混凝土结构中的骨料颗粒之间形成的孔隙。
孔隙是影响混凝土性能和强度的重要因素之一。
三、混凝土微观结构分析方法混凝土微观结构分析方法包括物理分析、化学分析、显微分析等多种方法。
1. 物理分析物理分析是通过物理手段对混凝土微观结构进行分析。
常用的物理分析方法包括:(1)密度分析:通过测量混凝土的密度来分析混凝土中空隙的分布和大小。
(2)孔隙率分析:通过测量混凝土中的孔隙率来分析混凝土中空隙的分布和大小。
(3)扫描电镜分析:通过扫描电镜观察混凝土中的微观结构,包括水泥石基质、骨料颗粒、孔隙等。
2. 化学分析化学分析是通过化学手段对混凝土微观结构进行分析。
常用的化学分析方法包括:(1)X射线衍射分析:通过X射线衍射分析混凝土中的晶体结构,包括水泥石基质中的Ca(OH)2、C-S-H等。
(2)热重分析:通过热重分析测定混凝土中的水泥石基质的含水量,以及孔隙中的水分含量。
混凝土微观结构检测标准一、前言混凝土作为一种广泛应用的建筑材料,在建筑领域中扮演着重要的角色。
由于混凝土的使用寿命长且耐久性好,因此在建筑中得到了广泛的应用。
但是,混凝土在使用过程中也面临着各种各样的问题,这些问题有些是由于混凝土的微观结构出现了问题所导致的。
因此,为了更好地保障混凝土的使用寿命和质量,对混凝土的微观结构进行检测是非常必要的。
二、混凝土微观结构的组成混凝土的微观结构是由水泥石、骨料、孔隙和钢筋等组成的。
其中,水泥石是混凝土中最主要的成分,它由水泥、水和骨料等混合而成。
骨料是混凝土中的骨架,它可以分为粗骨料和细骨料两种。
孔隙是混凝土中的空隙,它的存在对混凝土的性能有着很大的影响。
钢筋则是混凝土中用来增强混凝土性能的一种材料。
三、混凝土微观结构的检测方法1.混凝土的抽芯检测混凝土的抽芯检测是一种直接观察混凝土微观结构的方法,它可以通过对混凝土中心部位进行钻孔并取出钻芯来观察混凝土微观结构。
这种方法可以对混凝土的孔隙率、骨料分布、水泥石的质量等信息进行检测。
但是,这种方法会对混凝土的结构造成破坏,因此在进行检测时需要对混凝土进行修复。
2.混凝土的超声波检测混凝土的超声波检测是一种非破坏性的检测方法,它可以通过超声波的传播来检测混凝土中的孔隙、裂缝、骨料分布等信息。
这种方法可以对混凝土的质量进行评估,但是需要专业的设备和人员进行操作。
3.混凝土的电磁波检测混凝土的电磁波检测是一种非破坏性的检测方法,它可以通过电磁波的传播来检测混凝土中的孔隙、裂缝、骨料分布等信息。
这种方法可以对混凝土的质量进行评估,但是需要专业的设备和人员进行操作。
4.混凝土的显微镜检测混凝土的显微镜检测是一种直接观察混凝土微观结构的方法,它可以通过显微镜来观察混凝土中的水泥石、骨料和孔隙等信息。
这种方法可以对混凝土的微观结构进行精细的检测,但是需要专业的人员进行操作。
四、混凝土微观结构检测的标准混凝土微观结构检测的标准主要包括以下几个方面:1.混凝土的孔隙率混凝土的孔隙率是混凝土中孔隙占总体积的比例。
水泥混凝土微观结构演化模拟与分析水泥混凝土是建筑工程中最常见的材料之一。
对于水泥混凝土的研究,主要是从材料力学性能等宏观角度来进行分析。
然而,从微观角度来分析水泥混凝土的结构和性质,可以更加深入地理解其宏观性质,并拓展新的应用方向。
本文将介绍水泥混凝土微观结构演化模拟的基本方法及其在建筑工程中的应用。
一、水泥混凝土的基本微观结构水泥混凝土由水泥、骨料和水等材料组成,最终形成一种块状结构。
该结构的形成是由胶凝物与骨料之间的黏着力及互相紧密拥挤的力量协同作用所导致。
水泥结构主要由硬化水泥石粒子、间隙以及微观裂纹组成。
水泥石粒子在进行硬化反应时,其局部晶体结构会发生改变,从而导致结构的压缩性能、内聚力以及其他性能的变化。
二、水泥混凝土微观结构演化模拟的基本方法水泥混凝土的微观结构演化模拟一般是采用离散元方法(DEM)或者连续介质方法(FEM)。
离散元方法主要是模拟水泥混凝土内部颗粒的动力学特性,而连续介质方法则是直接求解物质宏观的力学性质。
两种方法的主要区别在于,离散元方法仅关注物质颗粒之间的互动和碰撞,而连续介质方法会考虑物质的连续性。
微观结构演化模拟可以使用DEM工具进行构建。
这些DEM工具一般支持使用CAD建立模型,基于精度的需求,会把模型的尺寸缩小到亚微米级别。
通过调整初始状态和材料参数等,就可以将数值模型带入发展阶段,模拟微观结构的演化和加强过程。
三、水泥混凝土微观结构演化模拟在建筑工程中的应用根据水泥混凝土微观结构演化模拟的结果,对其力学性质和易损性进行较为精确的预测。
这将拓展水泥混凝土的应用范围,并增强其在建筑工程中的安全性。
以下是水泥混凝土微观结构演化模拟在建筑工程中的应用案例。
1.混凝土裂缝的形成混凝土易发生裂缝,而通过模拟微观结构演化,研究人员可以清晰地了解裂纹形成的原因。
此外,模拟还可以通过材料选型和实验探测等方式,对混凝土的易裂性进行预测,从而优化整体结构和过程。
2.混凝土的强度和变形率通过微观结构演化模拟,可以计算混凝土的强度和变形率,并探究温度、水质等因素对混凝土性质的影响。
采用测试电阻率的方法[1]来监测混凝土的水化程度是一个有效可行的方法。
通过对不同水灰比、不同掺合料混凝土电参数和相应曲线变化规律的研究表明
,
早龄期混凝土电阻率和强度随时间发展的曲线具有很强的相似性与相关性。
如图1所示,利用混凝土早龄期电阻率的变化速率曲线,可以采用直观和量化的方法将混凝土的水化进程划分为水泥水解l(dissolution)、诱导期ll(competition ofdissolution-precipitation) 、凝结III(setting) 、硬化IV(hardening) 和硬化后期V(hardening deceleration) 五个阶段[2]。
通过电阻率速率曲线的0值点M拐点L、峰值点P与P2,可以表征水泥颗粒开始接触及相互紧密连接的水化过程,较精确地确定混凝土的凝结时间。
混凝土早期电阻率的变化反映了混凝土早期水化进程的发展,客观上体现了混凝土早期内部联通孔隙减少、水化产物生成等一系列变化。
同时,进一步的研究还表明电阻率与混凝土早期强度之间还存在内在联系。
时间/h
1混凝土1天时的电迥率变化遠率
I E Iccli ica 1 resislh r ih p of concrcte ii 1 dav
X射线衍射分析(XRD
X衍射原理,如图9.1所示,当X射线入射到晶体时,如果入射角度0满足布拉格定律,则X射线强度因衍射而得到加强,此时可以记录到衍射线,而从其它角度入射的则无衍射,这也称为/选择性衍射0,其本质就是入射的X射线照射到晶体中各平行原子面上,各原子面各自产生相互平行的衍射线的结果。
这些衍射线的衍射角度与晶体的结构相联系,也就具有唯一性,因此可以判断材料中的晶体成份。
同时,衍射的晶体数目多少将决定衍射射线的强度。
虽然
衍射射线的强度还受到温度、吸收等其他因素的影响,但是,通过衍射射线的峰值可以定性判断出晶体成份的数量关系。
X射线衍射(XRD)技术提供了分析晶体矿物的便利方法"如果晶体矿物被置
于特定波长的X射线下,射线使原子层衍射并产生衍射峰,它是矿物的表征。
典型XRD图的横坐标(衍射角)表示晶格间距,纵坐标(峰高)表示衍射强度。
取样:用于X射线衍射分析的试样是将不同龄期的试件母体破碎,从中取出水泥石,使用无水酒精中止水泥的水化。
测试前研磨水泥石样品颗粒至粉末粒径<10pm 适当烘干样品后装瓶密封,以防止空气中水和二氧化碳与样品粉末继续反应,影响试验结果"衍射扫描范围取10度一一70度。
扫描电镜试验(SEM)
扫描电镜是利用扫描电子束,从样品表面激发出各种物理信号来调制成像。
可以通过形貌判定是否密实、水化程度、产物量。
从而分析混凝土微观结构的发展过程。
取样:1号样,规格为IOmmxlOmmx30mm砂浆试样,配合比为三种,分别为:m(c): m(s): m(w)=l : 2. 5: 0. 40: 2-5号样,底面015ram高度为5m的圆柱体。
m(w), m(c)=分别为0. 45、0. 65、0.85和1.0扫描试样取侵蚀试样的一部分。
选取原则为:试榉成片状,一面为外表面,另一面为内表面,为了方便聚焦扫描成像,内表面尽量选择落差小的。
压汞法测孔隙率试验(MIP)
基本原理:压汞法MIP测孔的基本原理,是水银对固体表面的不可润湿性。
根据固体界面行为的研究结果,当接触角e大于90度时,固体不会被液体润湿。
而水银的接触角e为141.3度,故如果没有外加压力,水银不会润湿混凝土,即不会发生毛细管渗透现象。
首先必须假定孔系的形状,一般采用Wittmann的柱状毛细管系统假定,即认为混凝土中的孔隙是相互连通的一定半径的圆柱状孔隙。
水银要压入孔径为D的毛细孔,就必须施加一定的压力P以克服阻力。
在实际试验过程中,得到的直接试验结果是压力P,以及在此压力下孔径大于d的所有孔隙的体积V。
以压力P为中介可以建立起V和d的关系,这样就可以得到几种不同的孔径分布曲线。
MIP中最常用的是如下所述的积分曲线和微分曲线。
在压汞试验结果中,和可以得到如下几个重要的孔结构参数,总比体积V;总比表面积A;中位孔径(体积);中位孔径(表面积);平均孔径da;密度pa;表观密度pb;孔隙率P。
试件按标准方法养护,分7、28、90d龄期,龄期到后分别进行各项试验,配
合比见表1。
TG-DSC综合热分析法
热分析(thermal analysis )是指在程序控制温度条件下,测量物质的物理性质随温度变化的函数关系的技术。
热分析法的技术基础在于物质在加热或冷却的过程中,随着其物理状态或化学状态的变化,通常伴有相应的热力学性质(如热焓、比热、导热系数等)或其他性质(如质量、力学性质、电阻)的变化,因而通过对某些性质(参数)的测定可以分析研究物质的物理变化或化学变化过程。
差示扫描量热法(DSC是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。
热重法(TG是在程序控制温度条件下,测量物质的质量与温度关系的热分析方法。
差示扫描量热法与热重法分析可得出结合水量和Ca (OH 2含量。
试验取的温升速率为20K/min。
图7 2阪船水泥和TG-DSC |lh线国
Fig 7 2 TG-DSC cuive of mature hydra ted renieiit paste
图7.2中,DSC曲线上左边第一个吸热谷主要是由于水泥石中的自由水、
吸附水和钙矶石中的结晶水挥发吸热形成的,大部分是由自由水、吸附水吸热形成的,其谷底的温度出现在150度左右。
而标有Peak 492.5 C的谷,则主要是由于水泥石中的氢氧化钙分解吸热导致的。
而在800 C左右DSC曲线有波动,形成了两(也可能更多)小的吸热谷。
可以肯定的是,这里一定是有物质在发生相的转变。
根据水泥化学的理论,C-S-H凝胶在这个温度下发生了相变,凝胶的失水导致了两个小谷的出现。
而两个谷的出现说明有两种不同的C-S-H凝胶存在于水
泥石中,即所谓的HD C-S-H凝胶和LD C-S-H凝胶。
TG曲线基本反应的是各种水失去导致的质量损失,可以看出,凝胶失去结合水导致的质量变化是微小的。
化学结合水测量法
对于纯水泥浆体,测定水泥水化程度的方法。
试样制备与测试方法:用5 m离心管成型胶凝材料净浆试样,然后密封养护。
养护制度有2种,即标准养护((20 ± 1)C,相对湿度大于90%)和高温养护.高温养护的具体过程为:将成型密封后的净浆试样直接放入(65 士2)C的烘箱中养护7 d(如测试龄期未到7 d,则直接取出测试),再置于标准养护室中养护至规定龄期•破碎试样,取中间碎块浸泡于无水乙醇中,中止水化。
进行化学结合水量测试时,取碎块磨细,再在(65土2)C烘箱中烘24 h至恒重,随后高温(1 000 C)灼烧3 h至恒重•净浆试样化学结合水量(W。
,%)的计算式如下:
m x—m2
= ---------- 一T-----------------
m 工 1 —W FA.C
式中何\为65 £烘干后试样的质量(g)^ 为1000 E
灼烧后试样的质U (g);W FAd c = U^FA * 」+ WC *
Wc/ ;U/斑和W Q分别为粉煤灰和水泥的质址分数
(%);妙和利攻^分别为粉煤灰和水泥的烧失量(%)・
图2不同水化龄期时p [合腔凝材料中粉煤萩的反应程度
Fig* 2 Rcarrion degree of fly ash in complex binders at different hydration ages
(b) rn^m^A
10 100 Age/d
(»)耐叫丸3
m u % 書。