分子结构分析概论.ppt
- 格式:ppt
- 大小:1.01 MB
- 文档页数:49
化学分子结构化学分子结构是研究化学物质的构成和组成方式的重要内容之一。
它描述了化合物中原子之间的连接方式以及它们之间的空间排列关系。
通过了解分子结构,我们可以更深入地理解化学物质的性质和反应行为,为合成新的化合物、改良材料性能和探索新的科学领域开辟了道路。
一、分子结构的基本概念和组成要素化学物质由原子构成,而分子则由原子通过共价键连接而成。
分子结构描述了原子之间的连接方式和它们在空间中的相对位置。
分子结构的主要组成要素包括原子类型、原子间的键、键的角度和键的长度。
1. 原子类型不同种类的化学元素具有不同的原子类型。
每种原子类型都有特定的化学性质和价电子数,从而决定了其参与反应的方式和可能的结构。
常见的原子类型包括氢、氧、碳、氮等。
2. 原子间的键原子之间的连接通过化学键实现。
最常见的化学键类型是共价键,它是通过共享电子对来连接原子的。
共价键可以分为单键、双键和三键,取决于原子之间共享的电子对数量。
除了共价键,还有离子键、金属键和氢键等其他类型的化学键。
3. 键的角度和键的长度键的角度和键的长度也是分子结构的重要特征。
键的角度是指连接两个原子的键的方向相对于分子的相对角度。
键的长度则是指连接两个原子的键的实际长度,它决定了分子的几何形状和空间排列方式。
二、分子结构的表示方法为了更清晰地表达分子结构,化学家们发展了一系列的表示方法。
其中最常见的方法包括结构式、线角式和空间填充式。
1. 结构式结构式是一种二维图形表示方法,它通过化学键和原子符号来描述分子的连接方式。
结构式可以精确地表示化学键的类型、键的角度和键的长度。
其中最常见的结构式包括平面式、简化式和骨架式等。
平面式将分子中的原子和键都画在一个平面上,简化式通过简化分子结构的表示方式来减少图形的复杂性,骨架式则只画出分子的骨架结构。
2. 线角式线角式是一种简化的结构表示方法,它通过线段和角度来描述化学键的连接方式。
线段表示化学键,而角度则表示键的连接方向。
分子诊断学概论一、分子诊断的基本概念与历史发展二、分子诊断的现状三、分子诊断的主要技术四、分子诊断的标准化与质量控制五、分子诊断的未来趋势分子诊断基本概念◆1953年,Watson和Crick提出了DNA双螺旋结构模型,为揭开人类生命现象的本质奠定了基础,标志着分子生物学的开端,也使得对疾病发病机制的认识从整体、细胞水平逐渐深入到分子水平◆分子诊断学(Molecular diagnostics),是以分子生物学理论为基础,利用分子生物学的技术和方法,研究人体内源性或外源性生物大分子和大分子体系的存在、结构或表达调控的变化,为疾病的预防、诊断、治疗和转归提供信息和依据的一门学科◆通常所称的基因诊断,指针对DNA或RNA的分子诊断技术临床检验诊断体外诊断(IVD )报告,影响约70%临床决策影像学诊断临床诊断疾病的检验诊断核磁共振辅助检验B 超CT体格检查病史临床检验诊断(实验室检验诊断)临床体液、血液检验临床化学检验临床免疫、血清学检验临床微生物学检验(细菌室)临床细胞分子遗传学检验CT (computed tomography ,电子计算机断层扫描)临床检验诊断发展阶段发展阶段历史时期技术类型典型特征简单划分第一代早期细胞形态学检验诊断•以疾病的表型改变为依据•非特异、滞后•难以早期诊断传统的临床检验诊断学学科第二代1950年代生物化学检验诊断第三代1960年代免疫学检验诊断第四代1970年代末基因检验诊断 (分子生物学检验诊断)•以疾病基因为探测对象•特异、敏感•早期诊断、预测新型的临床检验诊断学学科分子诊断(临床分子生物学检验诊断)分子生物学医学检验(临床检验诊断)分子生物学(molecular biology)1953年Watson&Crick发现DNA双螺旋结构模型70年代以来,成为生命科学最具活力的学科前沿分子医学(molecular medicine)、基因诊断(genetic diagnosis)分子生物学理论和技术方法被应用于临床分子生物学与医学的交叉和渗透国际首例基因诊断1970年代末美籍华裔简悦威(Yuet Wai Kan)分子杂交技术,α地中海贫血、镰状红细胞贫血我国基因诊断里程碑1984年,上海市儿童医院曾溢滔点杂交技术,α地中海贫血,发表在《Lancet》•以基因突变位点 (导致单基因遗传病) 为靶标第一代•核心技术:DNA或RNA分子杂交技术•以基因组特异性核酸序列 (DNA、RNA) 为靶标第二代•核心技术:Sanger测序技术、PCR技术•以基因组特异性核酸序列、蛋白质分子为靶标第三代•核心技术:生物芯片技术(高通量)•以基因组特异性核酸序列、蛋白质分子、代谢物为靶标第四代•核心技术:新一代测序技术、质谱技术分子诊断生物标志物◆核酸序列信息•个体差异基因:微卫星、SNP、mtDNA等•病原体基因组:病毒、细菌、真菌等•基因转录水平:mRNA、microRNA、lncRNA、circRNA、cfRNA等◆核酸序列变化•染色体变异:T21、T18、T13、CNV等•基因突变:点突变、插入/缺失突变、倒位突变、重复突变等◆核酸修饰•DNA甲基化•RNA甲基化◆蛋白质表达水平、修饰◆代谢产物、多糖链和脂质分子分子诊断学任务、特点、辨别◆任务•利用基础医学和生命科学的理论和方法,研究疾病发生和发展的分子机制•确定在疾病过程中特异的分子标志物•建立分子标志物的临床检验方法和评价体系•建立分子生物学检验的质量控制◆特点•主要是直接以疾病基因为探查对象,属于病因学诊断•对基因的检测结果不仅具有描述性,更具有准确性•可准确诊断疾病的基因型变异、基因表型异常以及由外源性基因侵入引起的疾病◆辨别•临床分子生物学检验技术=临床分子诊断技术•分子诊断VS基因诊断•分子诊断学包括:核酸诊断(DNA/RNA)、蛋白质检测诊断等分子诊断学概论一、分子诊断的基本概念与历史发展二、分子诊断的现状三、分子诊断的主要技术四、分子诊断的标准化与质量控制五、分子诊断的未来趋势医疗机构临床检验项目(2013版)临床体液、血液专业临床化学检验专业临床免疫、血清学专业临床微生物学专业临床细胞分子遗传学专业哪些专业含有基因诊断项目?临床免疫、血清学专业(摘录)序号项目名称1甲型肝炎病毒(HAV)RNA检测2乙型肝炎病毒(HBV)DNA测定3乙型肝炎病毒(HBV) YMDD变异检测4乙型肝炎病毒(HBV)前核心变异检测5乙型肝炎病毒(HBV)核心变异检测6乙型肝炎病毒(HBV)基因分型测定7丙型肝炎病毒(HCV)RNA测定8丙型肝炎病毒(HCV)分型9丁型肝炎病毒(HDV)RNA测定10庚型肝炎病毒核糖核酸定性(HGV-RNA)测定11戊型肝炎病毒(HEV)RNA测定12弓形体核酸测定13风疹病毒RNA测定14巨细胞病毒(CMV)DNA测定15水痘—带状疱疹病毒核酸测定16人乳头瘤病毒(HPV)基因检测17呼吸道合胞病毒核酸测定18流行性出血热病毒核酸测定19EB病毒核酸测定20副流感病毒核酸测定21人轮状病毒核酸测定22狂犬病毒核酸测定23乙型脑炎病毒核酸测定序号项目名称26柯萨奇病毒核酸测定27森林脑炎病毒(TBE)核酸测定28甲型流感病毒核酸测定29乙型流感病毒核酸测定30SARS冠状病毒核酸测定31BK病毒核酸测定32禽流感病毒核酸测定33埃可病毒核酸测定34西尼罗河病毒核酸测定35斑疹伤寒杆菌核酸测定36布氏杆菌核酸测定37结核分枝杆菌核酸测定38脑膜炎奈瑟菌核酸测定39幽门螺杆菌核酸测定40淋球菌核酸测定41嗜肺军团菌核酸测定42肺炎支原体核酸测定43生殖道支原体核酸测定44解脲脲原体核酸测定45肺炎衣原体核酸测定46鹦鹉热衣原体核酸测定47沙眼衣原体核酸测定48立克次体核酸测定临床细胞分子遗传学专业(摘录)序号项目名称备注1利用Southern blot分子杂交技术的白血病融合基因检查包括血友病A、血友病B、血菅性血友病、其它凝血因子缺陷症基因分析2利用Southern blot分子杂交技术的白血病融合基因检查1、 Ph染色体的分子杂交检查2、 RARA基因的分子杂交检查3、 AML1基因的分子杂交检查4、 E2A基因的分子杂交检查5、 MLL基因的分子杂交检查3利用RT-PCR或real time PCR技术的白血病融合基因检查1、Bcr-abl融合基因检查2、 AML1-EVI1融合基因检查3、 PML-RARA融合基因检查4、 DEK-CAN融合基因检查5、 AML1-MTG8融合基因检查6、 E2A-PBX1融合基因检查4单基因遗传病基因突变检查包括:1、进行性肌营养不良基因突变检查2、遗传性舞蹈病的基因突变检查3、其它5遗传性凝血因子缺陷症基因突变包括:1、血友病A的基因突变检查2、血友病B的基因突变检查3、混合型血友病的基因突变检查6α地中海贫血的基因突变检查7β地中海贫血的基因突变检查8苯丙酮尿症的基因突变检查9HLA低分辨基因分型检查10HLA高分辨基因分型检查序号项目名称备注12SRY的基因检查13P53基因的基因突变检查14K-Ras基因的基因突变检查15视网膜母细胞瘤RB1基因的基因突变检查16家族性乳腺癌基因的基因突变检查包括:1、BRCA1基因的基因突变检查2、BRCA2基因的基因突变检查3、其它17多发性内分泌腺瘤RET基因的基因突变的检查18遗传性非息肉性大肠癌的基因突变检查1、hMLH1基因的基因突变检查2、hMSH2基因的基因突变检查3、PMS1基因的基因突变检查4、PMS2基因的基因突变检查19遗传性大肠癌微卫星不稳定性(MSI)的基因检测20大肠癌易感基因的基因检测1、APC基因的基因检测2、DCC基因的基因检测21用于病毒、细菌用药指导的基因检测1、拉米夫定用药指导的基因检测2、结核病用药指导的基因检测3、肠球菌耐万古霉素用药指导的基因检测22用于化学药物用药指导的基因检测1、硝酸甘油用药指导的基因检测2、5-氟尿嘧啶用药指导的基因检测P450家族代谢酶基因的基包括CYP2C9、CYP2C19、CYP2D6、全国医疗服务项目技术规范(2023年版)◆检验+病理诊断项目合计1818项,增加了近60%,成为了11个大类中新增比例最高的板块实验室自建检测项目 (LDT)2022年12月《国家药监局综合司国家卫生健康委办公厅关于开展医疗机构自行研制使用体外诊断试剂试点工作的通知》,试点医疗机构包括:北京协和医院、北京医院、中日友好医院、中肿、阜外医院、北大一院等6家医院LDT(Laboratory developed test,实验室自建检测项目)感染领域:临床病原体检测方法微生物学检测:病原体培养/涂片病原体颗粒检测免疫学检测:检测血清学标志Ag、Ab分子诊断:检测DNA/RNA•耗时长•阳性率低•难培养•简便、快速•适于大规模筛查•可定性/定量检测•存在“窗口期”问题•不能早期诊断•灵敏度较低•快速、高通量•灵敏、特异•早期(缩短窗口期)•可分型•检测病原体突变•检测耐药基因•治疗监测病原体分子诊断检测病原体是否存在病原体分型(包括亚型)耐药基因检测相关的人类基因多态性检测标本类型外周血有核细胞血清血浆组织器官体液分泌物排泄物适宜分子诊断病原体类型难培养的如CT 、MG 、病毒培养较慢的如TB镜检容易弄错的如NG 、阴道毛滴虫免疫交叉反应较多的如CT 需要分型的如HPV 、HSV胞内病原体如衣原体、支原体、病毒CT (Chlamydia trachomatis ,沙眼衣原体)MG (Mycoplasma genitalium ,生殖支原体)TB (Mycobacterium tuberculosis ,结核分枝杆菌)NG (Neisseria Gonorrhoeae ,淋病奈瑟菌)HPV (human papillomavirus ,人乳头瘤病毒)遗传领域:镰状红细胞贫血症◆红血球不正常带来严重后果,问题在于血红蛋白ß链一个谷氨酸残基变成了缬氨酸残基◆常染色体隐性遗传病•基因点突变•Mst II 限制性内切酶位点改变•RFLP技术:酶切+电泳胚胎着床前分子诊断◆取1-2个囊胚期细胞进行基因诊断,从而将人类的遗传缺陷控制在最早期阶段无创产前诊断(NIPT )19972008卢煜明发现母体外周血中存在胎儿游离DNA高通量测序分析胎儿游离DNA 用于唐氏综合征筛查2009中国开始NIPT 临床试验2011中国、美国开始NIPT 临床服务2012美国妇产科协会推荐高危人群进行NIPT 201520172016中国无创单病开始临床应用卫计委推出NIPT 临床应用指南美国多种单基因疾病NIPT 临床服务2022美国妇产科协会推荐全人群进行NIPT国家药监局发布NIPT 注册指南◆胎儿游离DNA ◆高通量测序肿瘤领域:肿瘤靶向治疗◆高通量测序为主循环肿瘤DNA(ctDNA)年份事件1948血中游离DNA的发现1965肿瘤与血中游离DNA的相关性1966-1973系统性红斑狼疮等疾病患者血中游离DNA水平增高1977血中游离DNA水平与肿瘤病程及疗效相关1989发现血中游离DNA与原发肿瘤突变相似1994-1999更多证据表明血中游离DNA与原发肿瘤基因突变的一致性1997孕妇血中胎儿DNA的发现1998移植器官核酸可称为游离核酸成分的发现2000-2010游离DNA与多种疾病的诊断和预后相关2010游离DNA致癌性的确定ctDNADNA文库构建捕获扩增DNA&质控富集效率高通量测序和数据分析个体化用药领域:药物基因组药物作用靶点相关基因药物代谢相关基因药物副作用相关基因药物相关基因◆P53:50%以上人类肿瘤会发生p53基因突变◆BRCA1和BRCA2:乳腺癌易感基因1和2◆EGFR:表皮生长因子受体,细胞增殖和信号传导功能◆细胞色素P450超家族:人体内最大的药物代谢系统分子诊断学概论一、分子诊断的基本概念与历史发展二、分子诊断的现状三、分子诊断的主要技术四、分子诊断的标准化与质量控制五、分子诊断的未来趋势DNA->RNA->蛋白质->代谢产物◆基因(产物) 修饰•甲基化•乙酰化•磷酸化◆代谢及代谢调控分子诊断主要技术1. 分子杂交技术•遗传性疾病的基因诊断2. PCR技术•感染性疾病的基因诊断3. 生物芯片技术•复杂性疾病的基因诊断4. 基因测序技术•复杂性疾病的基因诊断5. 质谱技术•核酸质谱、蛋白质组学6. 人工智能辅助•AI辅助的分子诊断(AI+)1. 分子杂交技术杂交类型检测目的及范围Southern印迹杂交经凝胶电泳分离且转移至膜上,DNA分子Northern印迹杂交经凝胶电泳分离且转移至膜上,RNA分子菌落杂交固定在膜上,经裂解从细菌释放,DNA分子斑点杂交固定在膜上,DNA或RNA分子原位杂交(FISH)细胞或组织中,DNA或RNA分子液相分子杂交在溶液中,DNA或RNA分子,引入磁珠2. PCR技术◆痕量核酸模板体外扩增,提高了检测灵敏度和反应特异性•1971年,Korana提出核酸体外扩增的设想•1985年,Mullis发明聚合酶链反应,Klenow片段•1988年,Keohanog,T4DNA聚合酶•1988年,Saiki,TaqDNA聚合酶•1993年,Mullis因聚合酶链反应技术获得诺贝尔奖荧光定量PCR 技术◆也称为real-time PCR ,实现了核酸的实时定量检测◆Log 浓度与循环数呈线性关系,根据达到阈值的循环数计算样品所含模板量•荧光染料:SYBR green•荧光探针:Taqman 、molecular beacon 、复合探针•举例:新冠病毒检测荧光强度---循环数曲线初始模板量对数---Ct 循环数标准曲线10410310610510210数字PCR技术◆dPCR,又称为单分子PCR,近年来迅速发展起来的绝对定量PCR技术◆不依赖于扩增曲线的循环阈值进行定量,不受扩增效率的影响,也不必采用看家基因和标准曲线,具有很好的准确度和重现性,可以实现绝对定量分析3. 生物芯片技术◆广义指在微小空间中能够高通量处理或分析生物相关物质的集成式技术◆狭义指微阵列芯片技术,将大量基因探针/基因片段/蛋白/多肽,按特定的排列方式固定在支持物表面上,实现高通量处理或分析功能•固相芯片(玻片、硅片、塑料等)、液相芯片(微珠)•特点:高通量、微型化、自动化微流控芯片技术◆Microfluidics 技术,指的是使用微管道(尺寸为数十到数百微米)处理或操纵微小流体(体积为微升到纳升)的系统所涉及的科学和技术,是一门涉及化学、流体物理、微电子、新材料、生物学和生物医学工程的新兴交叉学科◆也被称为芯片实验室(lab on a chip )和微全分析系统(micro-total analytical system ),具有微型化、集成化等特征优势集成小型化与自动化样本量需求少试剂消耗少高通量污染少不足缺规范与标准技术难度不低生产成本较高开发周期较长4. 基因测序技术◆核酸测序技术,是分子诊断中基因序列确定的金标准ABI Prism310 1986年Roche 4542005年Illumina GA2006年ABI SOLiD2007年Helicos HeliScope2008年PacBio RS2010年ONT MinION2013年第一代(Sanger)第二代(NGS)第三代第四代或合称第三代(TGS)Sanger测序和NGS测序双脱氧末端终止法可逆终止、边合成边测序法单分子测序技术◆SMRT单分子实时合成测序技术,零模波导孔,荧光◆纳米孔单分子测序技术,纳米孔,电信号5. 质谱技术质量分析器离子源检测器多肽离子化 真空环境获得质谱图进样系统引入样品根据荷质比分离离子 检测记录离子信号计算机数据处理系统◆离子源•电子电离•快原子轰击离子化(FAB)•电喷雾离子化(ESI )•基质辅助激光解析离子化(MALDI)◆质量分析器•四极杆质谱(直流电极+射频电极,共4组)•飞行时间质谱(TOF)•离子阱质谱◆离子源与质量分析器组合•MAIDL-TOF-MS (基质辅助激光解析电离飞行时间质谱)•ESI-四极杆MS •ESI-串联MS6. AI辅助分子诊断◆AI+自动化流水线(包含分子诊断)•打通从标本到检验到临床的数据通路•及时准确地将“标本信息”转化为“检验数据”•再将“检验数据”转化为“临床诊疗信息”•大幅提高实验室咨询服务能力•医学检验工作向着更精准、高效的方向发展分子诊断学概论一、分子诊断的基本概念与历史发展二、分子诊断的现状三、分子诊断的主要技术四、分子诊断的标准化与质量控制五、分子诊断的未来趋势临床分子诊断方法性能评价◆定量检测方法和程序的分析性能验证内容,至少应包括准确度、精密度、可报告范围等◆定性检测项目验证内容,至少应包括检出限及符合率等,验证结果应经过授权人审核分子诊断存在的问题及原因◆假阳性问题◆假阴性问题◆重复性问题•同一实验室不同批次间重复测定,结果存在差异•不同实验室对同一标本检测,结果存在差异◆检测对象的多态性◆标本采集◆诊断试剂方法•准确性•特异性•检测限•检测范围•重复性•稳定性◆微量反应体系◆测定操作 (人员素质)◆仪器设备的维护校准 (定期)◆数据处理及结果报告个体差异样本量差异检测平台差异样本采集差异样本保存、运输差异分子诊断技术监管◆申请获批医疗器械证,有严格的管理•项目报批:卫健委批准•实验室:通过验收,定期校验仪器与器材•试剂:国家食品药品监督管理局(NMPA)批准•工作人员:经过培训,持证上岗•质量控制:室内质量控制(IQC),室间质量评价( EQA)◆LDT?国内正在摸索监管➢推荐“微专业-体外诊断与大数据分析”,《体外诊断产品注册与监管》,由项光新、李伟、连国军等老师授课国家如何监管医疗器械NMPA产品上市许可制度企业医疗器械生产企业许可国家机构法规生产质量管理规范规范性文件法律规章法规不良事件检测和报告医疗器械召回稽查局、法规司省和县级药监器械司、注册司质量监督机构技术审评机构分子诊断学概论一、分子诊断的基本概念与历史发展二、分子诊断的现状三、分子诊断的主要技术四、分子诊断的标准化与质量控制五、分子诊断的未来趋势将成为本世纪检验医学的主导技术◆应用面更广:扩展到复杂性疾病,检测未知病原体◆使用更便捷:自动化、智能化、普及化◆诊断更准确:致病根源、致病机制,定性->定量◆诊断更早期:早发现、早治疗,诊已病->诊未病•病原体的确认和定量、分型、耐药性检测1. 感染性疾病分子诊断•对遗传病进行确诊、分型和早期诊断2. 遗传病分子诊断•肿瘤的早期诊断、分型和伴随诊断3. 肿瘤分子诊断•药物基因组学、用药指导4. 个体化用药指导•公共卫生、器官移植、个体识别、基因治疗5. 其他领域美国《2030年全球趋势》未来分子诊断学的准确性将促使医疗体系变革基因检测方法将加速疾病诊断,同时帮助医师确定个性化最佳治疗方案感染领域:病原体检测⚫国内总体:年均非新冠的标本量约为1亿例⚫常规感染样本量:约为9000万例/年⚫危重感染样本量:约为1000万例/年,多数病原不明WHO 公布2019年全球十大健康威胁,与感染密切相关有6个:流感、耐药、埃博拉、登革热、艾滋病、疫苗犹豫临床宏基因组测序遗传领域:人类基因组临床应用Collins, FS & McKusick VA. Implications of the Human Genome Project for medical science. JAMA, 2001, 285: 540-554.单基因病无创产前筛查◆利用母体外周血中的胎儿游离DNA 的进行分子生物学检验,开展无创性性产前诊断,取代羊膜穿刺或采集绒毛进行无创性产前诊断方法8000病种多1%发病率高20%致死率高治疗方式少1%努南综合征1:2500 -1:1000Rett综合征(女性)1:23000 -1:10000Kabuki 综合征1:32000致死性骨发育不良1:10000-1:5000CHARGE 综合征1:15000 -1:8500软骨发育不全1:10000结节性硬化1:5,800马凡综合征1:10000 -1:5000单基因病占总出生缺陷的22.2%(染色体10%)复杂性疾病诊断。