八年级数据分析练习题平均数、众数、方差等
- 格式:docx
- 大小:221.18 KB
- 文档页数:4
第六章数据的分析测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题10.一组数据2、﹣2、4、1、0的中位数是.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.三、解答题15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.答案1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【考点】极差;算术平均数;中位数;众数.【专题】选择题.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为:=9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【专题】选择题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【考点】算术平均数;众数.【专题】选择题.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】选择题.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【考点】平均数、中位数和众数的比较.【专题】选择题.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.5【考点】方差;众数.【专题】选择题.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故选A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,3【考点】方差;算术平均数.【专题】选择题.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′=[(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]=[3×(x1+x2+ (x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9×[(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】选择题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数:=(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【考点】极差;加权平均数;中位数;众数.【专题】选择题.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.10.一组数据2、﹣2、4、1、0的中位数是.【考点】中位数.【专题】填空题.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.【考点】算术平均数.【专题】填空题.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.【考点】众数;中位数.【专题】填空题.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.【考点】中位数;算术平均数.【专题】填空题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.【考点】方差;算术平均数.【专题】填空题.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2=[(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 (把你认为正确结论的序号都填上). 【考点】方差;算术平均数;中位数. 【专题】填空题.【分析】平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.【解答】解:①由表中可知,平均字数都是135,正确;②甲班的中位数是149,过半的人数低于150,乙班的中位数是151,过半的人数大于等于151,说明乙的优秀人数多于甲班的,正确;③甲班的方差大于乙班的,又说明甲班的波动情况大,所以也正确. 故填①②③.【点评】本题考查了平均数、中位数和方差的意义.对统计中的概念理解是学好统计的关键,这道题把统计初步知识的考查与现代社会生活联系起来,避免了对该部分知识的抽象考查和脱离实际的弊病.16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示: 请决出两人的名次.【考点】加权平均数.【专题】解答题.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】解答题.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组【考点】折线统计图;算术平均数;中位数;方差.【专题】解答题.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】解答题.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【专题】解答题.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)。
初二数学数据分析练习题(含答案) 研究必备:初二数据分析测试题1.如果数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()。
A。
3和2B。
2和3C。
2和2D。
2和42.数学老师对XXX在参加高考前5次数学模拟考试的成绩进行统计分析,判断XXX的数学成绩是否稳定,于是老师需要知道XXX这5次数学成绩的()。
A。
平均数或中位数B。
方差或频率C。
频数或众数D。
方差或极差3.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的()。
A。
平均数但不是中位数B。
平均数也是中位数C。
众数D。
中位数但不是平均数4.XXX所在研究小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们研究英语日常用语,他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32.那么这组数据的众数和中位数分别是()。
A。
32,31B。
32,32C。
3,31D。
3,325.若x1,x2,x3,x4,x5的平均数为x,方差为s2,则x1+3,x2+3,x3+3,x4+3,x5+3的平均数和方差分别是()。
A。
x+2,s+3B。
x+3,s2C。
x,s+3D。
x,s26.已知一组数据-1,x,-2,1的平均数是,那么这组数据的标准差()。
A。
2B。
2C。
4D。
-27.一组数据x1,x2,x3,…,xn的极差是8,另一组数据2x1+1,2x2+1,2x3+1,…,2xn+1的极差是()。
A。
8B。
9C。
16D。
178.某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是s2甲=245,s2乙=190,那么成绩比较整齐的是()。
A。
甲班B。
乙班C。
两班一样整齐D。
无法确定试试你的身手:1.根据天气预报可知,我国某城市一年中的最高气温为37℃,最低气温是-8℃,那么这个城市一年中温度的极差为?2.航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是多少分?3、数据9、10、8、10、9、10、7、9的方差是1.14,标准差是1.07.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定。
《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。
数据的分析知识点:1.平均数:把一组数据的总和除以这组数据的所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
2.众数:在一组数据中,出现次数的数(有时不止一个),叫做这组数据的众数3.中位数:将一组数据按大小顺序排列,把处在最中间的 (或两个数的 )叫做这组数据的中位数.4.极差:是指一组数据中最大数据与最小数据的。
5.方差:各个数据与平均数之差的平方的平均数,记作s2 .巧计方法:方差是偏差的平方的平均数公式s2=6.一组数据中的每一个数都增加(或减小)a时,平均数,方差一组数据中的每一个数都扩大相同的倍数k时,平均数,方差练习题:1.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.52.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元 B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元 D.一定有一半员工的月工资高于1500元3.将20个数据各减去30后,得到的一组新数据的平均数是6,则这20个数据的平均数是()A.35 B.36 C.37 D.384.已知一组数据2,x,4,6的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6 5、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.936.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()A.平均数B.加权平均数C.中位数D.众数从平均价格看,谁买得比较划算?()A.一样划算 B.小菲划算 C.小琳划算 D.无法比较8、某商贩去批发市场买了10千克奶糖和20千克果糖,已知奶糖的价格为每千克18元,果糖的价格为每千克12元,他将两种糖混合在一起后以每千克x元的价格出售,要想不赔钱,x至少应为()A.13 B.14 C.15 D.169、数据10,10,x,8的众数与平均数相同,那么这组数的中位数是()A.10 B.8 C.12 D.410、某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是()A.12元、12元 B.12元、11元 C.11.6元、12元 D.11.6元、11元11、数据-1、0、3、2.5、2的中位数是则在这次活动中,该班同学捐款金额的中位数是众数是13.一组数据:-1,1,3,4,a,若它们的平均数为2,则这组数据的众数为14、已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 . 15、在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是( ) A .众数是90分 B .中位数是90分 C .平均数是90分 D .极差是15分14题图 15题图 16、在方差的计算公式s2=101 [(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义是 ( )A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数 17、某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:则这6个区域降雨量的众数和平均数分别为18、数据0,1,1,3,3,4的平均数和方差分别是( )A .2和1.6B .2和2C .2.4和1.6D .2.4和219、已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个的2倍,则A ,B 两个样本的方差关系是( )A .B 是A 的2倍 B .B 是A 的2倍C .B 是A 的4倍D .一样大20、已知样本x 1,x 2,x 3…x n 的方差为5,则样本3x 1+2,3x 2+2,3x 3+2…3x n +2的方差为__ . 21、某区计划从甲、乙、丙、丁四支代表队中推选一支参加市级汉字听写,为此,该区组织了五轮选拔赛,在这五轮选拔赛中,甲、乙、丙、丁四支代表队的平均分都是95分,而方差依次为s 2甲=0.2,s 2乙=0.8, s 2丙=1.6,s 2丁=1.2.根据以上数据,这四支代表队中成绩最稳定的是( ) A .甲代表队 B .乙代表队 C .丙代表队 D .丁代表队22、某单位要从内部招聘管理人员一名,对甲、乙、丙三名候选人进行笔试和面试两项测试,三人的测试成绩如下表表示:根据录用程序,单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(每位职工只能推荐一人,没有弃权票),甲得25%,乙得40%,丙得35%,每得一票记一分. (1)如果根据三项测试的平均成绩录用人选,那么谁将被录用?(精确到0.1),为什么?(2)根据实际需要,单位将笔式、面试和民主评议三项测试按4:3:3的比例确定个人成绩,那么谁被录用?为什么?23.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他们的成绩分别如下表:根据上表解答下列问题:(1)完成下表:(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.24、通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.下图是学生注意力指标数y随时间x(分钟)变化的函数的近似图象.(y越大表示学生注意力越集中,且图象中的三部分都是线段)(1)注意力最集中那段时间持续了几分钟?(2)当0≤x≤10时,求注意力指标数y与时间x之间的函数关系式;(3)一道数学竞赛题,需要讲解23分钟,问老师能否经过适当安排使学生在听这道题时注意力的指标数都在34以上?附加题.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A _________ ,C _________ ;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果)我市某校根据规划设计,修建一条1200米长的校园道路。
八年级数学下《数字数据的分析》练习题本文档旨在为八年级学生提供一些练题,帮助他们巩固和应用数字数据的分析知识。
以下是一些练题及其解答,供学生们参考。
问题一某班级有30名学生,他们的语文成绩如下所示:85, 92, 78, 90, 88, 75, 95, 80, 82, 86, 92, 88, 90, 78, 85, 83, 91, 88, 86, 89, 77, 92, 85, 79, 84, 87, 90, 88, 93, 81。
请计算该班级学生的语文成绩的平均值、中位数和众数。
解答一平均值的计算公式为所有成绩之和除以学生人数:平均值 = (85 + 92 + 78 + 90 + 88 + 75 + 95 + 80 + 82 + 86 + 92 + 88 + 90 + 78 + 85 + 83 + 91 + 88 + 86 + 89 + 77 + 92 + 85 + 79 + 84 + 87 + 90 + 88 + 93 + 81) / 30中位数是将所有成绩按升序排列后,取中间位置的成绩:中位数 = (82 + 84) / 2众数是出现频率最高的成绩,这里有多个众数:众数 = 88, 92问题二一家服装店在某天内记录下了顾客购买服装的金额(单位:元),记录如下:398, 450, 330, 498, 380, 550, 398, 498, 650, 398, 550, 498, 450, 330。
请问这些购买金额中,出现频率最高的金额是多少?解答二我们可以通过统计每种金额的出现次数来找出频率最高的金额。
398的出现次数为3次,450和330的出现次数为2次,498、380、550和650的出现次数为2次。
因此,出现频率最高的金额是398元。
以上是八年级数学下《数字数据的分析》的练习题和解答,希望能对同学们的学习有所帮助!。
初二平均数中位数众数方差练习题1. 某班级有10个学生,他们的身高分别是:150cm, 152cm, 148cm, 155cm, 160cm, 145cm, 155cm, 150cm, 157cm, 153cm。
请计算该班级学生的平均身高、中位数、众数和方差。
解答:平均身高:(150 + 152 + 148 + 155 + 160 + 145 + 155 + 150 + 157 + 153) ÷ 10 = 153.5cm中位数:首先将身高从小到大排序:145cm, 148cm, 150cm, 150cm, 152cm, 153cm, 155cm, 155cm, 157cm, 160cm中位数为中间的数值,也就是150cm。
众数:众数是指出现次数最多的数值。
在这个例子中,150cm和155cm各出现了两次,其他的数值只出现了一次,因此众数有两个,即150cm 和155cm。
方差:方差是用来衡量数据的离散程度,是每个数据值与平均值的差的平方的平均值。
计算方差的方法如下:1) 计算各个数据值与平均值的差的平方:(150 - 153.5)^2 = 9.02(152 - 153.5)^2 = 2.25(148 - 153.5)^2 = 29.02(155 - 153.5)^2 = 2.25(160 - 153.5)^2 = 42.02(145 - 153.5)^2 = 71.02(155 - 153.5)^2 = 2.25(150 - 153.5)^2 = 9.02(157 - 153.5)^2 = 12.02(153 - 153.5)^2 = 0.252) 计算差的平方的平均值:(9.02 + 2.25 + 29.02 + 2.25 + 42.02 + 71.02 + 2.25 + 9.02 + 12.02 + 0.25) ÷ 10 ≈ 21.12因此,该班级学生身高的方差约为21.12。
数据的分析1. 一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是.2.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是件.3. 某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这20万件产品中合格品...约为万件. 4.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.5. 有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是.6. 一组数据为5,8,2,7,8,2,8,3,则这组数据的众数是______7. 一组数据有n 个数,方差为S 2.若将每个数据都乘以2,所得到的一组新的数据的方差是_______. 8. 某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(2)随机抽取的这部分学生中男生体育成绩的平均数是,众数是;女生体育成绩的中位数是. (3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少? 9在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:一班竞赛成绩统计图 二班竞赛成绩统计图请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析: ①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩10为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?组别。
八年级数据分析练习题1、若1,3,x ,5,6五个数的平均数为4,则x 的值为( )A .3B .4C .5D .62、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A .4B .5C .6D .73、某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加4、某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C . 中位数D .平均数5、某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是(A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大5、(A )A 班 (B )B 班 (C )C 班 (D )D 班6、张大娘为了提高家庭收入,买来10头小猪.经过精心饲养,不到7个月就可以出售了,下表为这些A .126.8,126 B .128.6,126 C .128.6,135 D .126.8,135、7、有一组数据3、5、7、a 、4,如果它们的平均数是5,那么这组数据的方差是( ) (A)2(B)5 (C)6 (D)78、(2010?泸州)4.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两 班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )A .学习水平一样 B. 成绩虽然一样,但方差大的班学生学习潜力大C .虽然平均成绩一样,但方差小的班学习成绩稳定 D. 方差较小的学习成绩不稳定,忽高忽低9、上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是A .19岁 B.20岁 C.21岁 D.22岁10、2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某A.中位数是6吨 B.平均数是5.8吨 C.众数是6吨 D.极差是4吨11、某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为( )A .2、2 B .2、3 C .2、1 D .3、112、小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):3.6,3.8,4.2,4.0,3.8,4.0.那么,下列结论正确的是(A )众数是3 .9 m (B )中位数是3.8 m (C )平均数是4.0m (D )极差是0.6m13、某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图. 则这组数据的众数和中位数分别是 A .7、7 B . 8、7.5 C .7、7.5 D . 8、614、4个数据8,10,x,10的平均数和中位数相等,则x 等于( )A 、8B 、10C 、12D 、8或1215、某班5010分16、某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A. 82,76B. 76,82C. 82,79D. 82,8217、“一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下列A .15B .30C .50D .2018则这15(A )3,3 (B )2,3 (C )2,2 (D )3,519、某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份与3月份相........A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、3020、要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的A .方差B .中位数C .平均数D .众数21、10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正确的是(A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C)甲x >乙x ,2甲S >2乙S (D) 甲x <乙x , 2甲S >2乙S 。
2初二 数据分析测试题一、相信你的选择1、若数据2, x ,4,8 的平均数是 4,则这组数据的中位数和众数是( ) A 、3 和 2B 、2 和 3C 、2 和 2D 、2 和 42、数学老师对小明在参加高考前 5 次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这 5 次数学成绩的( ) A 、平均数或中位数 B 、方差或频率C 、频数或众数D 、方差或极差3、已知一组数据 5,15,75,45,25,75,45,35,45,35,那么 40 是这组数据的( )A 、平均数但不是中位数B 、平均数也是中位数C 、众数D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的 7 个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下: 33,32,32,31,28,26,32 ,那么这组数据的众数和中位数分别是 ( ) A 、32,31B 、32,32C 、3,31D 、3,325、若 x 1 , x 2 , x 3 , x 4 , x 5 -的平均数为 x ,方差为s 2 ,则 x 1 + 3, x 2 + 3, x 3 + 3, x 4 + 3, x 5 + 3 的平均数和方差分别是 ( )- A 、 x + 2 , s 2+ 3-B 、 x + 3 , s 2-C 、 x , s 2 + 3-D 、 x , s 26、已知一组数据- 1,0, x ,-2,1的平均数是 0,那么这组数据的标准差( )A 、2B 、C 、4D 、- 2甲 甲7、一组数据 x 1 , x 2 , x 3 , , x n 的极差是 8,另一组数据 2x 1 + 1,2x 2 + 1,2x 3 + 1, ,2x n + 1 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是s 2 = 245 , s 2乙 = 190 ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为37︒C ,最低气温是 - 8︒C ,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的 6 名同学的平均分为 74 分,其中甲同学考了 89 分,则除了甲以外的 5 名同学的平均分是 分.3、数据 9,10,8,10,9,10,7,9 的方差是,标准差是.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是s 2 , s 2乙 ,则它们的大小关系是5、下面是五届奥运会中国获得金牌的一览表:在 15,5,16,16,28 这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是 15,乙所得环数如下: 0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)从成绩的波动情况来看,班学生的成绩波动较大.8、若一个样本是3,-1, a,1,-3,3 是三、挑战你的技能-,它们的平均数x 是a 的3,则这个样本的标准差1、甲、乙两台编织机同时编织一种毛衣,在5 天中,两台编织机每天出的合格品数量如下(单位:件):甲:10 ,8 ,7 ,7 ,8;乙:9 ,8 ,7 ,7,9.在这5 天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10 次,将射击结果作统计分析如下:1(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5 次测量,所得数据如下表所示.现已算得乙组所测得数据的平均数为,x乙= 12.00 ,方差s 2乙= 0.002 .(1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4 元,另加付电话费,每小时1.2 元;乙种方式是包月制,每月付信息费100 元,同时加付电话费每小时1.2 元;丙种方式也是包月制,每月付信息费150 元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7 天中每天的上网所花的时间(单位:分钟):30 天计算)x 甲 x 乙1、A 8、D 二、2、A3、B4、B5、B6、B7、D1、45℃2、713、1,14、s 2 〉 s 2乙 甲5、16,166、甲7、甲8、5.33三、1、解:这 20 名学生成绩的众数是 80 分,中位数是 70 分,平均数是 1 (50 ⨯ 2 + 60 ⨯ 3 + 70 ⨯ 6 + 80 ⨯ 7 + 90 ⨯ 2)= 72(分).202、解:该用户一个月上网总时间约为: t =62 + 40 + 35 + 74 + 27 + 60 + 80 ⨯ 30 ÷ 60 = 27(h )。
一、选择题1.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,223.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的()A.平均数B.中位数C.众数D.极差4.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分5.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定6.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是()A.平均数是92 B.中位数是90 C.众数是92 D.极差是77.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45; ③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .① B .①③ C .②③ D .①②③ 8.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( ) A .2B .3C .5D .79.下表为某校八年级72位女生在规定时间内的立定投篮数统计, 投进的个数 5 6 7 8 9 10 11 12 13 14 15 人数37610118137142若投篮投进个数的中位数为a ,众数为b ,则+a b 的值为( ) A .20B .21C .22D .2310.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,8511.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方12.甲、乙两人各射击6次,甲所中的环数是8,5,5,a ,b ,c ,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较13.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲 B .乙 C .丙 D .丁 14.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差15.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.某单位要招聘1名英语翻译,对听、说、读、写进行素质测试,小张4项的分数分别为90分、85分、90分、80分.若把听、说、读、写的成绩按3:3:2:2计算,则小张的平均成绩为_____.17.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2S 甲、2S 乙,则2S 甲____2S 乙.(填“>”,“=”或“<”)18.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.19.已知一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.20.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.21.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________ ①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.22.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.23.某样本数据是:2,2,x,3,3,6如果这个样本的众数为2,那么这组数据的方差是______24.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)126132136138142人数14212则这10名学生的数学周考成绩的中位数是________分.25.现有甲、乙两个合唱队队员的平均身高均为170cm,方差分别是2S甲,2S乙,且22S S<甲乙,则两个队的队员的身高较整齐的是______.26.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.成绩(分)30405060708090100人数235x6y34三、解答题27.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.28.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?29.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?30.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C组中的数据是:94,90,94.。
八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。
八年级数据的分析练习题一、选择题1. 能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 2. 数据1,1,2,2,3,3,3的极差是( )A .1B .2C .3D .6 3.在一组数据3,4,4,6,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数 4.) A. 平均数 B. 众数 C. 中位数 D. 方差 5.某班50名学生身高测量结果如下表:A. 1.60, 1.59B. 1.59, 1.58C. 1.60,1.58D. 1.60, 1.606.如果一组数据12,,,n a a a 的方差是2,那么一组新数据122,2,,2n a a a 的方差是( )A. 2B.4C.8D.167. 一组数据由五个正整数组成,中位数是3,且唯一众数是7,则这五个正整数的平均数是( )A .4B .5C .6D .8 8.甲、乙两班举行电脑汉字辅人比赛,参赛学生每分钟输入汉字的个数统计结果如下表;某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同;(2) 乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); (3)甲班成绩的波动比乙班大,上述结论正确的是( ). A.①②③ B. ①② C.①③ D.②③ 9.样本方差的计算式S 2=120[(x 1-30)2+(x 2-30)]2+…+(x 20-30)2]中,数字20和30分别表示样本中的( )A.众数、中位数B.方差、标准差C.样本中数据的个数、平均数D.样本中数据的个数、中位数二、填空题10.已知5筐苹果的质量分别为(单位:kg );52,49,50,53,51,则这5筐苹果的平均质量为 kg . 11.某次射击练习,甲、己二人各射靶5次,命中的环效如下表:那么射击成绩比较稳定的是 . 12.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可得在这期间我市年出口总额的极差是 亿美元. 13.数据6,8,8,x 的众数有两个,则这组数据的中位数是 . 14.为了解某校九年级学生每天的睡眠时间情况,随机调查了该校九年级20据此估计该校九年级学生每天的平均睡眠时间大约是 小时.15.现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为2S 甲= 0.28;2S 乙= 0.36,则身高较整齐的球队是 队(填“甲”或“乙”). 16.数据1,-3,4,-2的方差2S = . 17.由于不小心被墨迹污染了一个数据,这个数据是 .18. 有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是 .19.数据123321a a a a a a a +++---,,,,,,的中位数是 .三、解答题20.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)问这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.21.下图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题. (1)该队队员年龄的平均数.(2)该队队员年龄的众数和中位数.22.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?23.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写右表.(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理24.(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;(3)请画出一种你认为合适的统计图来表示上面表格中的数据.25.某研究性学习小组为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),•请结合统计图中提供的信息,回答下列问题: (1)这个研究性学习小组所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120•分钟(•不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?26.(本题8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考。
第6章《数据的分析》章节测试卷、一.选择题(共10小题,满分30分,每小题3分)1.八(1)班的学生从第一学期到第二学期时,下列有关年龄的统计量不变的是()A.平均年龄B.年龄的方差C.年龄的众数D.年龄的中位数2.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()吨2 A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是433.某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均值(结果取整数)为()A.87次B.110次C.112次D.120次4.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数是()A.3分B.3.55分C.4分D.45%5.八位评委对参加演讲比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下的6个分数的平均分作为选手的比赛得分,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差D.众数6.育新中学八年级六班有53人.一次月考后,数学老师对数学成绩进行了统计.由于有三人因事没有参加本次月考,因此计算其他50人的平均分为90分,方差s2=40.后来三进行了补考,数学成绩分别为88分,90分,92分.加入这三人的成绩后,下列说法正确的是()A.平均分和方差都改变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都不变7.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是()A.13s2B.3s2C.19s2D.9s28.(3分)某同学各科成绩如图所示,则其成绩的中位数是()A.75分B.75.5分C.76分D.77分9.第1组数据为:0、0、0、1、1、1,第2组数据为:m 个00、0、⋯、0、n 个11、1、⋯、1,其中m 、n 是正整数.下列结论:①当m=n 时,两组数据的平均数相等;②当m>n 时,第1组数据的平均数小于第2组数据的平均数;③当m<n 时,第1组数据的中位数小于第2组数据的中位数;④当m =n 时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A .①②B .②③C .①③D .②④10.某数学兴趣小组对我县祁禄山的红军小道的长度进行n 次测量,得到n 个结果x 1,x 2,x 3,…,x n (单位:km ).如果用x 作为这条路线长度的近似值,要使得(x −x 1)2+(x −x 2)2+⋅⋅⋅+(x −x n )2的值最小,x 应选取这n 次测量结果的( )A .中位数B .众数C .平均数D .最小值二.填空题(共6小题,满分18分,每小题3分)11.某学校开展“齐诵满江红,传承报国志”诵读比赛,八年级准备从小乐和小涵两位同学中选拔一位同学参加决赛,如图是小乐和小涵两位同学参加5次选拔赛的测试成绩(满分为100分)折线统计图,若选择一位成绩优异且稳定的同学参赛,推选参加决赛的同学是 (填“小乐”或“小涵”).12.有一组数据:a,b,c,d,e(a <b <c <d <e).将这组数据改变为a −2,b,c,d,e +2.设这组数据改变前后的方差分别是s 21,s 22,则s 21与s 22的大小关系是 .13.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为 .14.甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克元.15.若质数a,b满足a2−9b−4=0,则数据a,b,2,3的中位数是.16.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是.三.解答题(共7小题,满分52分)17.(6分)已知一组数据:x,10,12,6的中位数与平均数相等,求x的值.18.(6分)校园广播站招聘小记者,对应聘同学分别进行笔试(含阅读能力、思维能力和表达能力三项测试)和面试,应聘者小成同学成绩(单位:分)如下表:笔试面试阅读能力思维能力表达能力92成绩889086(1)请求出小成同学的笔试平均成绩;(2)如果笔试平均成绩与面试成绩按6:4的比例确定总成绩,请求出小成同学的总成绩.19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b c d(1)写出表格中a,b,c,d的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)近些年来,我国航天事业飞速发展.今年5月30日,搭载神舟十六号载人飞船的长征二号F遥十六运载火箭,在酒泉卫星发射中心发射升空,神舟十六号航天员乘组由景海鹏、朱杨柱、桂海潮3名航天员组成,发射取得圆满成功.而“天宫课堂”让广大人民尤其是青少年学到了很多科学知识,激发了更多人的航天梦.为普及科学知识,某校开展了“天宫课堂”知识竞赛.为了解七、八年级学生(八年级有600名学生、八年级有800名学生)的竞赛情况,现从两个年级各随机抽取20名学生的成绩(百分制)进行分析.过程如下:【收集数据】八年级20名学生成绩:62,52,58,67,70,69,75,73,75,75,80,78,77,90,81,84,86,88,94,98;八年级20名学生成绩在80≤x<90的分数:83,85,87,81,80,84,82;【整理数据】按照分数段,整理、描述两组样本数据:年级x<7070≤x<8080≤x<9090≤x≤10八年级5a53八年级3674【分析数据】两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级76.676b131八年级76.6c78124(1)直接写出a、b、c的值;(2)根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有多少人?【得出结论】(3)通过以上分析,你认为这两个年级中哪个年级对“天宫课堂”知识掌握情况更好一些,并说明推断的合理性(写出一条理由即可).21.(8分)每年4月中上旬的体育考试,是初三同学们决胜中考的第一关,为了解我校初2023届学生的体育训练情况,对初2023届学生进行了一次体育机器模拟测试.测试完成后,在初2023届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:①20名女生的测试成绩统计如下:44,47,48,45,50,49,45,50,48,49,50,50,44,50,43,50,44,50,49,45.②抽取的20名男生的测试成绩扇形统计图如图:③抽取的20名男生成绩得分用x表示,共分成五组:A:40<x≤42;B:42<x≤44;C:44<x≤46;D:46<x≤48;E:48<x≤50.其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.④抽取男生与女生的学生的测试成绩的平均数、中位数、众数如表所示:性别平均数中位数众数女生47.548.5c男生47.5b49(1)根据以上信息可以求出:a=______,b=______,c=______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2023届学生中男生有600人,女生有550人,(规定49分及以上为优秀)请估计该校初2023届参加此次体育测试的学生中成绩为优秀的学生人数.22.(8分)某校为了解八年级800名学生跳绳情况,从八年级学生中随机抽取50名学生进行1分钟跳绳测试,并对测试成绩进行统计,绘制了如下统计表.组别1分钟跳绳个数n频数组内学生平均1分钟跳绳个数A n<100680B100≤n<13015120C130≤n<16020145D n≥1609180其中C组同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.根据以上信息,回答下列问题:(1)这50名学生1分钟跳绳个数的中位数是_______;(2)求这50名学生1分钟跳绳个数的平均数;(3)若跳绳个数超过140个为优秀,则该校八年级学生跳绳成绩优秀的约有多少人?23.(8分)甲、乙两名队员练习射击,每次射击的环数为整数,两人各射击10次,其成绩分别绘制成如图1、图2所示的统计图,两幅图均有部分被污染,两名队员10次的射击成绩整理后,得到的统计表如下表所示.平均数中位数众数方差甲a7b 1.8乙7c83(1)甲队员射中7环的次数为___________;(2)统计表中a=___________;b=___________;c=___________;(3)___________队员的发挥更稳定;(4)乙队员补射1次后,成绩为m环,据统计乙队员这11次射击成绩的中位数比c大0.5,则m的最小值为___________.答案与试题一.选择题1.B【分析】根据当数据都加上一个数时的平均数、方差、众数、中位数的变化特征逐项判断即可解答.【详解】解:由题意知,八年级一班的学生升八年级时,每个同学的年龄都加1,其中平均年龄加1,众数加1,中位数加1,方差不变,故A、C、D不符合要求;B符合要求.故选:B.2.C【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【详解】∵这组数据的6出现了3次,3,4,5各出现了1次,∴众数为6吨,∵平均数为3+4+5+6×36=5吨,方差为[(4−5)2+(3−5)2+(5−5)2+(6−5)2×3]6=43吨2,中位数是6+52= 5.5吨,∴A,B,D选项正确,不符合题意,C选项错误,符合题意,故选:C3.C【分析】根据众数的定义求解即可【详解】解:∵45%>25%>15%>10%>5%,∴由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:C.5.B【分析】根据平均数、中位数、众数、极差的意义分别判断即可得到答案.【详解】去掉一个最高分和一个最低分后一定会影响平均分、极差,有可能影响众数,但是这组数据的中间两个数没有变化故一定不会影响中位数,故选:B.6.C【分析】分别求出加入三人成绩后的平均分、方差,然后比较大小即可.【详解】解:由题意知,加入三人成绩后的平均分为:90×50+88+90+9253=90,∴平均分不变,方差为:40×50+(88−90)2+(90−90)2+(92−90)253≈37.9,∵37.9<40,∴方差变小,故选:C.7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x1,x2,…,x n表示出已知数据的平均数与方差,再根据题意用x1,x2,…,x n表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.【详解】设原数据为x1,x2,…,x n,其平均数为x,方差为s2.根据题意,得新数据为13x1,13x2,…,13x n,其平均数为13x.根据方差的定义可知,新数据的方差为1n[(13x1−13x)2+(13x2−13x)2+⋯+(13x n−13x)2]=19×1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]=19s2.故选C.【点睛】本题考查平均数与方差,会分别利用方差和平均数的公式去表示方差和平均数是解题的关键.其次根据题意给代数式进行等量变形也非常重要.8.(3分)(2023春·江西九江·八年级统考期中)某同学各科成绩如图所示,则其成绩的中位数是()9.C【分析】根据平均数的定义,中位数的定义,方差的定义对每一项判断解答即可.【详解】解:∵第1组数据为:0、0、0、1、1、1,∴第1组数据的平均数为0+0+0+1+1+16=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据平均数为m×0+n×1m+n =nm+n,∵m=n,∴第2组数据平均数nm+n =n2n=12,∴当m=n时,两组数据的平均数相等,故①正确;∵当m>n时,m+n>2n,∴第2组数据平均数nm+n <n2n=12,∴第1组数据的平均数大于第2组数据的平均数,故②错误;∵第1组数据为:0、0、0、1、1、1,∴第1组数据的中位数为0+12=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴当m<n时,若m+n为奇数时,第2组数据的中位数为1;若m+n偶数,第2组数据的中位数是为1,∴当m<n时,第2组的中位数为1,当m<n时,第1组数据的中位数小于第2组数据的中位数,故③正确;∵第1组数据为:0、0、0、1、1、1,∴第1组数据方差:3×(0−0.5)2+3×(1−0.5)26=0.25,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据的方差为m(0−0.5)2+n(1−0.5)2m+n=0.25,∴当m=n时,第2组数据的方差等于第1组数据的方差,∴正确的序号为①③,故选C.10.C【分析】先设出y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2,然后进行整理得出y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),再求出二次函数的最小值,再根据x的取值即可得出答案.【详解】解:设y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2 y=x2﹣2xx1+x12+x2﹣2xx2+x22+x2﹣2xx3+x32+…+x2﹣2xxn+xn2y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),则当x=−﹣2(x1+x2+x3+…+x n)2n =x1+x2+x3+…+x nn时,二次函数y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2)最小,∴x所取平均数时,结果最小,故选:C.二.填空题11.解:根据题意得:x小乐=85+90+60+70+905=79,S2小乐=15[(85−79)2+(90−79)2+(60−79)2+(70−79)2+(90−79)2]=144,x小涵=80+80+90+85+905=85,S2小涵=15[(80−85)2+(80−85)2+(90−85)2+(85−85)2+(90−85)2]=20,∵x小涵>x小乐,S2小涵<S2小乐,∴小涵的成绩优异且稳定,∴推选参加决赛的同学是小涵,故答案为:小涵.12.S21<S22【分析】设数据a,b,c,d,e的平均数为x,根据平均数的定义得出数据a−2,b,c,d,e+2的平均数也为x,再利用方差的定义分别求出s21,s22,进而比较大小.【详解】解:设数据a,b,c,d,e的平均数为x,则数据a−2,b,c,d,e+2的平均数也为x,∵s21=15[(a−x)2+(b−x)2+…+(e−x)2],s22=15[(a−2−x)2+(b−x)2+…+(e+2−x)2]=15[(a−x)2+(b−x)2+…+(e−x)2−4(a−x)+4+4(e−x)+4]=15[(a−x)2+(b−x)2+…+(e−x)2+4(e−a)+8]∴s22=S21+15[4(e−a)+8]∵a<e,∴s21<s22.故答案为s21<s22.13.8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,{3+a+2b+5=4×6a+6+b=3×6,解得{a=8b=4,这两组数合并成一组新数据为:3,8,8.5,8,6,4,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.14.6.9【分析】先根据甲种糖果6千克,乙种糖果10千克,丙种糖果4千克求出混合后的糖果甲、乙、丙比,再用各自所占比乘各自的售货单价相加即可.【详解】解:若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果甲、乙、丙比为3:5:2,∴混合后的糖果的售价每千克应定为310×6+510×7+210×8= 6.9(元),故答案为:6.9.15.4或7【分析】由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,可得{a+2=9a−2=b或{a+2=b a−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解方程组可得满足要求的a,b的值,然后根据中位数是第二、三位数的平均数求解即可.【详解】解:由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,∴{a+2=9a−2=b 或{a+2=ba−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解得{a=7b=5,{a=11b=13,{a=3b=59(舍去),{a=5b=73(舍去),当{a=7b=5时,2,3,5,7的中位数为3+52=4;当{a=11b=13时,2,3,11,13的中位数为3+112=7;∴数据a,b,2,3的中位数是4或7,故答案为:4或7.16.19【分析】根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.三.解答题17.解:①当x≤6时,这组数据按从小到大顺序排列为x,6,10,12由题意得x+6+10+124=6+102则x=4②当6<x≤10时,这组数据按从小到大顺序排列为6,x,10,12由题意得x+6+10+124=x+102则x=8③当10<x≤12时,这组数据按从小到大顺序排列为6,10,x,12由题意得x+6+10+124=x+102则x=8(舍)④当x>12时,这组数据按从小到大顺序排列为6,10,12,x由题意得x+6+10+124=10+122则x=16综上所述:x=4或8或16.18.(1)解:由题意可得:88+90+863=88(分)∴小成同学面试平均成绩为88分;(2)解:(88×6+92×4)÷(6+4)=89.6(分)∴小成同学的最终成绩为89.6分.19.解:(1)甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:d=110[(3−7)2+(4−7)2+(6−7)2+(7−7)2+3×(8−7)2+(9−7)2+(10−7)2]=110×(16+9+1+0+3+4+9)=110×42=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(1)解:根据八年级20名学生成绩,分数段在70≤x<80的有7人,即a=7;八年级20名学生成绩中,75分的有3人,人数最多,故b=75;根据八年级分数段可得,中位数在80≤x<90分数段中,将80≤x<90分数段中的分数按照从小到大排列为80,81,82,83,84,85,87,故八年级的中位数是80+812=80.5;故a、b、c的值分别为:7,75,80.5.(2)解:七、八年级“天宫课堂”竞赛成绩为优秀人数为:600×820+800×1120=680人;故根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有680人.(3)八年级对“天宫课堂”知识掌握情况更好一些,∵八年级的中位数和众数都高于八年级,且方差小于八年级的方差,说明八年级的成绩更加稳定一些.21.(1)由题意可得:a%=1−(5%+5%+30%+45%)=15%,∴a=15,由已知可得男生各组人数分别如下:A、B、C三组总人数为:20×(5%+5%+15%)=5,D组:20×30%=6,E组:20×45 %=9,∴男生成绩按照从低到高排序,排在第10和第11位的都为48,∴b=48,把女生成绩从低到高排序为:43,44,44,44,45,45,45,47,48,48,49,49,49,50,50,50,50,50,50,50,∴根据众数的意义可得c=50,故答案为:15;48;50;(2)∵在本次测试中,男生成绩和女生成绩的平均数相同,女生成绩的中位数与众数都比男生成绩的中位数与众数较高,∴此次的体育测试成绩女生更好;(3)由数据可知:男生E组数据48<x≤50均为优秀,女生优秀人数为10人,∴600×45%+550×1020=545(人),∴该校初2023届参加此次体育测试的学生中成绩为优秀的学生为545人.故答案为:545人.22.(1)根据数据可知中位数在C组,由C组数据同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.可得这50名学生1分钟跳绳个数的中位数是137.故答案为:137.(2)150(80×6+120×15+145×20+180×9)=150×7800=156.答:这50名学生1分钟跳绳个数的平均数为156;(3)14+950×800=368(人)答:该校八年级学生跳绳成绩优秀的约有368人.23.(1)解:由条形统计图可得成绩为7环的次数为10−2−1−1−2=4(次),故答案为:4;(2)解:平均数a=5×2+6×1+7×4+8×1+9×210=7,众数b=7,由折线统计图可得剩余两次的成绩和为7×10−3−6−4−8−7−8−10−9=15,∵众数为8,∴剩余两次的成绩为7和8,将乙的10次成绩从大到小依次排序为10,9,8,8,8,7,7,6,4,3,∴中位数c=8+72=7.5,故答案为:7,7,7.5;(3)解:∵方差1.8<2,∴甲队员的发挥更稳定,理由是方差越小稳定性越好,故答案为:甲;(4)解:由题意知,乙队员11次射箭成绩的中位数为7.5+0.5=8,即乙的11次成绩从大到小依次排序中第6次成绩为8,∴m≥8,∴m的最小值为8,故答案为:8..。
专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)1. 一组数据2,4,5,6,5.对该组数据描述正确的是( )A. 平均数是4.4B. 中位数是4.5C. 众数是4D. 方差是9.2(2022·黑龙江齐齐哈尔·统考中考真题)2. 数据1,2,3,4,5,x 存在唯一众数,且该组数据的平均数等于众数,则x 的值为( )A. 2B. 3C. 4D. 5(2022·内蒙古赤峰·统考中考真题)3. 下列说法正确的是( )A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,2 1.4s =乙,则甲的射击成绩比乙的射击成绩稳定D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5(2022·江苏镇江·统考中考真题)4. 第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A. ①②B. ①③C. ①④D. ③④(2022·辽宁抚顺·统考中考真题)5. 甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A. 甲的射击成绩比乙的射击成绩更稳定B. 甲射击成绩的众数大于乙射击成绩的众数C. 甲射击成绩的平均数大于乙射击成绩的平均数D. 甲射击成绩的中位数大于乙射击成绩的中位数(2019·湖北恩施·统考中考真题)6. 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A. 88.5B. 86.5C. 90D. 90.5(2022·辽宁锦州·中考真题)7. 某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如下表所示:决赛成绩/分100999897人数3764则这20名学生决赛成绩的中位数和众数分别是()A. 98,98B. 98,99C. 98.5,98D. 98.5,99(2022·山东济宁·统考中考真题)8. 某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是()A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是58(2020·四川·统考中考真题)9. 某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A. 19.5元B. 21.5元C. 22.5元D. 27.5元(2021·内蒙古呼和浩特·统考中考真题)10. 以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(2019·山东青岛·统考中考真题)11. 射击比赛中,某队员10 次射击成绩如图所示,则该队员的平均成绩是__________环.(2020·四川·统考中考真题)12. 小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图,这6次成绩的中位数是_____.(2019·四川巴中·统考中考真题)13. 如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为_______.(2019·四川·统考中考真题)14. 在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是_____.(2018·浙江丽水·中考真题)15. 如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.(2021·贵州铜仁·统考中考真题)16. 若甲、乙两人射击比赛的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙);(2019·广西柳州·统考中考真题)17. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是_____.(2017·重庆·中考真题)18. 某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.三、解答题(2022·江苏南通·统考中考真题)19. 为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县3.8533区B县3.854 2.5区(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.(2022·江苏盐城·统考中考真题)20. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.(2022·山东聊城·统考中考真题)21. 为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:众数中位数方差八年级竞赛成绩78 1.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2)请根据图表中的信息,回答下列问题.①表中的=a______,b=______;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?(2021·广西桂林·统考中考真题)22. 某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.(1)甲同学5次试投进球个数的众数是多少?(2)求乙同学5次试投进球个数的平均数;(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.(2013·江西·中考真题)23. 生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A:全部喝完;B:喝剩约13;C:喝剩约一半;D:开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)(2022·湖北襄阳·统考中考真题)24. 在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在70.5≤x <80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别50.5≤x <60.560.5≤x <70.570.5≤x <80.580.5≤x <90.590.5≤x <100.5A 学515x84校B学71012174校【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A学校7475y127.36B学校748573144.12根据以上信息,回答下列问题:(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 学校(选填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有 人.专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)【1题答案】【答案】A 【解析】【分析】将数据按照从小到大重新排列,再根据众数、中位数、算术平均数的定义计算,最后利用方差的概念计算可得.【详解】解: A 、平均数为245565++++=4.4,故选项正确,符合题意;B 、中位数为5,故选项错误,不符合题意;C 、将这组数据重新排列为2,4,5,5,6,所以这组数据的众数为5,故选项错误,不符合题意;D 、方差为15⨯[(2﹣4.4)2+(4﹣4.4)2+2×(5﹣4.4)2+(6﹣4.4)2]=1.84,故选项错误,不符合题意.故选:A .【点睛】本题主要考查方差,众数,中位数,算术平均数,解题的关键是掌握众数、中位数、算术平均数及方差的定义.(2022·黑龙江齐齐哈尔·统考中考真题)【2题答案】【答案】B 【解析】【分析】由题意知,该组数据的平均数为123451566x x++++++=,且3x +是6的倍数,然后根据题意求解即可.【详解】解:由题意知,该组数据的平均数为123451532666x x x+++++++==+,∴3x +是6的倍数,且x 是1-5中的一个数,解得3x =,则平均数是3.故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解.(2022·内蒙古赤峰·统考中考真题)【3题答案】【答案】D 【解析】【分析】根据普查、抽查、概率、方差、中位数和众数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意;B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,21.4s =乙,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D【点睛】本题考查了全面调查与抽样调查,中位数、众数、方差和概率的意义,理解各个概念的内涵是正确判断的前提.(2022·江苏镇江·统考中考真题)【4题答案】【答案】B 【解析】【分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.【详解】解:①第1组数据的平均数为:0001110.56+++++=,当m =n 时,第2组数据的平均数为:010.52m n mm n m ⨯+⨯==+,故①正确;②第1组数据的平均数为:0001110.56+++++=,当m n >时,m +n >2n ,则第2组数据的平均数为:01=0.52m n n nm n m n n⨯+⨯<=++,∴第1组数据的平均数大于第2组数据的平均数;故②错误;③第1组数据的中位数是010.52+=,当m n <时,若m +n 是奇数,则第2组数据的中位数是1;当m n <时,若m +n 是奇数,则第2组数据的中位数是1112+=;即当m n <时,第2组数据的中位数是1,∴当m n <时,第1组数据的中位数小于第2组数据的中位数;故③正确;④第1组数据的方差为()()2200.5310.530.256-⨯+-⨯=,当m n =时,第2组数据的方差为()()2200.510.5m nm n-⨯+-⨯+,0.250.252m mm+=0.25=,∴当m n =时,第2组数据的方差等于第1组数据的方差.故④错误,综上所述,其中正确的是①③;故选:B【点睛】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键.(2022·辽宁抚顺·统考中考真题)【5题答案】【答案】A 【解析】【分析】根据统计图上数据的变化趋势,逐项分析即可得出结论.【详解】解:A 、甲的成绩在6环上下浮动,变化较小,乙的成绩变化大,所以,甲的射击成绩比乙的射击成绩更稳定,此选项正确,符合题意;B、甲射击成绩的众数是6(环),乙射击成绩的众数是9(环),所以,甲射击成绩的众数小于乙射击成绩的众数,此选项错误,不符合题意;C、甲射击成绩的平均数是52+66+72=610⨯⨯⨯(环),乙射击成绩的平均数是3+4+5+6+7+8+93+10=710⨯(环),所以,甲射击成绩的平均数小于乙射击成绩的平均数,此选项错误,不符合题意;D、甲射击成绩的中位数是6(环),乙射击成绩的中位数是7+8=7.52(环),所以,甲射击成绩的中位数小于乙射击成绩的中位数,此选项错误,不符合题意;故选:A【点睛】本题主要考查了数据的稳定性,众数,平均数和中位数,熟练掌握相关知识是解答本题的关键.(2019·湖北恩施·统考中考真题)【6题答案】【答案】A【解析】【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.(2022·辽宁锦州·中考真题)【7题答案】【答案】D【解析】【分析】根据众数,中位数的定义计算选择即可.【详解】∵99出现的次数最多,7次,∴众数为99;∵中位数是第10个,11个数据的平均数即999898.52+=,故选D.【点睛】本题考查了中位数将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数),众数在一组数据中出现次数最多的数据,熟练掌握定义是解题的关键.(2022·山东济宁·统考中考真题)【8题答案】【答案】D【解析】【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C. 每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.(2020·四川·统考中考真题)【9题答案】【答案】C【解析】【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C .【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.(2021·内蒙古呼和浩特·统考中考真题)【10题答案】【答案】B 【解析】【分析】①根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;②由单循环赛对A 队,E 队进行推理即可;③根据正六边形的性质、位似的定义解题;④由平均数定义解题.【详解】解:①如图,AD 是ABC 的中线,EF 是ABC 的中位线,连接ED FD 、,由中位线定义可知,//,//ED AF FD AE∴四边形AEDF 是平行四边形∴对角线AD EF 、互相平分,故①正确;②由单循环比赛可知,每支队伍最多赛5场,A 队已经赛5场,即每支队伍都与A 队比赛过,而E 队只比赛1场,据此可知,E 队没有与B 对比赛过,故②错误;③两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③错误;④小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可正确在第12位,故原命题正确,是真命题,符合题意B 故④正确,其中真命题的个数有①④,2个,故选:B.【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.二、填空题(2019·山东青岛·统考中考真题)【11题答案】【答案】8.5【解析】【分析】由加权平均数公式即可得出结果.【详解】该队员的平均成绩为110(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为8.5.【点睛】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.(2020·四川·统考中考真题)【12题答案】【答案】9.75【解析】【分析】将这组数有小到大排列,因为共有6个数,所以中位数为第3、4个数的平均数.【详解】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.79.82=9.75.故答案为:9.75.【点睛】本题考查了中位数的定义,根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2019·四川巴中·统考中考真题)【13题答案】【答案】145.【解析】【分析】先根据平均数的定义确定出a 的值,再根据方差公式进行计算即可求出答案.【详解】解:根据题意,得:45385a a ++++=,解得:5a =,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为22222114(45)(55)(55)(35)(85)55⎡⎤⨯-+-+-+-+-=⎣⎦,故答案为145.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.(2019·四川·统考中考真题)【14题答案】【答案】90分.【解析】【分析】根据众数的定义求解可得.【详解】众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故答案为90分.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2018·浙江丽水·中考真题)【15题答案】【答案】6.9%【解析】【分析】根据众数的概念判断即可.【详解】这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为6.9%.【点睛】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.(2021·贵州铜仁·统考中考真题)【16题答案】【答案】乙【解析】【分析】分别计算甲乙二人成绩的方差,比较方差,较小的比较稳定即可求解.【详解】解:甲乙二人的平均成绩分别为:678910==85x ++++甲,78889==85x ++++乙,∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙,∵22S S 乙甲>,乙的成绩比较稳定.故答案为:乙【点睛】本题考查了方差的计算和根据方差判断数据的稳定性,正确求出方差是解题关键.(2019·广西柳州·统考中考真题)【17题答案】【答案】7【解析】【分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【详解】解:∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,---=,∵4088915由方差是0.4得:前面的2个数的为7和8,∴最小的数是7;故答案为7..【点睛】本题考查了方差、平均数、中位数、众数;熟练掌握方差、平均数、中位数、众数的定义是解题的关键.(2017·重庆·中考真题)【18题答案】【答案】183.【解析】【详解】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为183.【点睛】本题考查折线统计图;中位数.三、解答题(2022·江苏南通·统考中考真题)【19题答案】【答案】(1)3750(2)见详解【解析】【分析】(1)根据A县区统计图得不小于三天的比例,根据总数乘以比例即可得到答案;(2)根据平均数、中位数和众数的定义进行比较即可.【小问1详解】解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:30%25%15%5%75%+++=,∴该县区八年级学生参加社会实践活动不少于3天的学生约为:⨯=名,500075%3750故答案为:3750;【小问2详解】∵A县区和B县区的平均活动天数均为3.85天,∴A县区和B县区的平均活动天数相同;∵A县区的中位数是3,B县区的中位数是2.5,∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.【点睛】本题考查数据统计、平均数、中位数和众数,解题的关键是熟练掌握扇形统计图、平均数、中位数和众数的相关知识.(2022·江苏盐城·统考中考真题)【20题答案】【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825% (3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.(2022·山东聊城·统考中考真题)【21题答案】【答案】(1)无法判断,计算见解析(2)①8,1.56;②给九年级颁奖(3)九年级获奖率高【解析】【分析】(1)分别求出两个年级的平均数即可;(2)①分别根据众数和方差的定义解答即可;②根据两个年级众数和方差解答即可;(3)根据题意列式计算即可.【小问1详解】解:无法判断,计算如下:由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好;【小问2详解】解:①九年级竞赛成绩中8分出现的次数最多,故众数a =8分;九年级竞赛成绩的方差为:()()()()()2222221868978148813986108 1.5650s ⎡⎤=⨯⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,故答案为:8;1.56;②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖,故如果分别从众数和方差两个角度来分析,应该给九年级颁奖;【小问3详解】解:八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高.【点睛】本题主要考查了中位数、众数、方差以及加权平均数,掌握各个概念和计算方法是解题的关键.(2021·广西桂林·统考中考真题)【22题答案】【答案】(1)众数是8个,(2)8x =个;(3)甲投篮成绩更加稳定;(4)推荐乙参加投篮比赛,理由见解析.。
初二下册方差练习题方差是统计学中一个重要的概念,用于衡量一组数据的离散程度。
初中数学下册的学习中,我们已经初步接触了统计学的基本知识,包括求平均数、中位数等。
而方差作为进一步探讨数据分散程度的指标,也开始出现在我们的学习中。
为了更好地理解方差的概念和计算方法,下面我们来做一些方差的练习题。
题目一:某班有10位学生的数学成绩如下:85、78、92、70、88、84、90、82、80和87。
请计算这组数学成绩的方差。
解答:首先,我们计算这组数据的平均数。
将每个数相加并除以10,可得到平均数为:(85 + 78 + 92 + 70 + 88 + 84 + 90 + 82 + 80 + 87) ÷ 10 = 846 ÷ 10 = 84.6接下来,我们计算每个数与平均数之差的平方,并将这些平方差相加。
计算结果如下:(85 - 84.6)² + (78 - 84.6)² + (92 - 84.6)² + (70 - 84.6)² + (88 - 84.6)² +(84 - 84.6)² + (90 - 84.6)² + (82 - 84.6)² + (80 - 84.6)² + (87 - 84.6)² =6.76 + 38.44 + 58.44 + 182.44 + 3.24 + 0.16 + 30.24 + 4.84 + 22.44 +5.76 = 352最后,我们将上述结果除以数据的个数,即10,得到方差的值:352 ÷ 10 = 35.2因此,这组数学成绩的方差为35.2。
题目二:一家服装店上个月每天的销售额如下:850元、720元、980元、690元、820元、760元、930元。
请计算这组销售额的方差。
解答:同样地,我们首先计算这组数据的平均数。
将每个数相加并除以7,可得到平均数为:(850 + 720 + 980 + 690 + 820 + 760 + 930) ÷ 7 = 5750 ÷ 7 ≈ 821.4接下来,我们计算每个数与平均数之差的平方,并将这些平方差相加。
20.20专题:综合分析数据--平均数、中位数、众数、方差一.【知识要点】1.平均数、中位数、众数、方差的综合运用。
二.【经典例题】1.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:(1)在图①中,“80分”所在扇形的圆心角度数为___;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知=135,=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价。
2. 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):b.A课程成绩在70≤x<80这一组的是:三.【题库】【A】【B】【C】1.(本题满分7分)如图是甲.乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次。
(1)请用列表法将他俩的射击成绩统计出来;(2分)(2)请你用学过的统计知识(平均数,中位数,众数,方差等),将他俩的射击成绩进行比较;(5分)2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【D】1.某排球6名队员的身高(单位:cm)是180,184,188,190,192,194。
现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大。
《平均数、中位数、众数、方差》提高训练一、选择题:1、经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差2、如果鞋店要购进100双这种女鞋,那么购进24厘米、24。
5厘米和25厘米三种女鞋数量之和最合适...的是().(A)20双(B)30双(C)50双(D)80双商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是() A.平均数B.众数C.中位数D.方差4、某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增大D。
平均数和中位数都增大5、有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的() A.众数 B.中位数C.平均数 D.极差6:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大,上述结论正确的是()(A)①②③ (B)①②(C)①③ (D)②③7、甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:班级 参加人数 中位数 方差 平均字数 甲 55 149 191 135 乙 55151110 135分析此表得出如下结论:( ) (1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀) (3)甲班学生成绩的波动情况比乙班成绩波动大.A .(1)(2)B .(1)(2)(3)C .(2)(3)D .(1)(3)8、已知5个正数12345,,,,a a a a a 的平均数是a ,且12345a a a a a >>>>,则数据12345,,,0,,a a a a a 的平均数和中位数分别是( ) A .B .C .D .二、填空题:1、已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是________.2、若x ,y ,z 的平均数是6,则5x +3,5y -2,5z +5的平均数是 .3、数据1,x ,2,5的中位数是3,则x =______.4、已知x 1,x 2,…,x 10的平均数是a ;x 11,x 12,…,x 30的平均数是b ,则x 1,x 2,…,x 30的平均数是 .5、若x 1、x 2、x 3的方差为4,则2x 1+3,2x 2+3,2x 3+3的方差为______.6、 如果一组数据3,x,1,7的平均数是4,则x=__________.7、小明骑自行车的速度是15千米/时,步行的速度是5千米/时,如果小明先骑车2小时,然后步行了3小时,那么他的平均速度为 千米/时.8、已知样本x l ,x 2,x 3,x 4的方差是2,那么样本x l +3,x 2+3,x 3+3,x 4+3的方差 是 .9、一组数据5,7,7,x 的中位数与平均数相等,则x 的值为________.10、如果一组数据1a ,2a ,3a ,…,n a 的方差是2,那么一组新数21a ,22a ,23a ,…,2n a 的方差是 .10、东海县素有“水晶之乡"的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)13967 31 6642下次进货时,你建议该商店应多进价格为元的水晶项链.11、某市广播电视局欲招聘播音员一名,对A 、B 两名候选人进行了两项素质测试.两人的两项测试成绩如右表所示:根据实际需要,广播电视局将面试、综合知识测试的得分按3∶2的比例计算两人的总成绩,那么 (填A 或B )将被录用. 12、甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、11、7, 则测试项目测试成绩A B面 试 9095 综合知识测 试 8580这组数据的:①众数为_____________;②中位数为____________;③平均数为__________。
八年级数学《众数、中位数、方差》专题练习年 班 号 姓名知识回顾:设有一组数据、1x 、2x 、 n x ,则 (1)平均数=x ;(2)方差=2s ; (3)一组数据的极差= .说明:(1)平均数、中位数、众数是反映一组数据的 ; (2)方差、极差是反映一组数据的 . 基础训练:1.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如右图所示,那么三人中成绩最稳定的是_________.2.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为21S 、22S ,根据图中的信息判断两人方差的大小关系为 .3. 已知甲数据的平均数为x 甲,乙数据的平均数为x 乙,且x x =乙甲,而甲数据的方差为21.25S =甲;乙数据的方差为23S=乙,则_______较稳定4.甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为2S 甲=0.9,2S 乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是________仪仗队.5.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中.每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是__________.甲 乙 丙 丁 平均数 8 .2 8 .0 8 .2 8 .0 方差2 .01 .81 .51 .66.已知一组数据是:6,6,6,6,6,6,则这组数据的方差是 .7.一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的平均数= ;方差是__________.8.一组数据 -1、2、3、4的极差是 .第1题109876543210108642小苗小华第2题9.某班数学学习小组某次测验成绩分别是63,72,70,49,66,81,53,92,69,则这组数据的极差是 .10.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9; 乙:5,9,7,10,9. (1)填写下表:平均数 众数 中位数 方差 甲 8 8 0 .4 乙93 .2(2)教练根据这5次成绩,要选择谁参加射击比赛?请说明理由.11.八(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.请根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整.(2)已求得甲组成绩优秀人数的平均数=7x 甲组,方差2=1.5S 甲组,请通过计算说明,哪一组成绩优秀的人数较稳定?。
八年级数据分析练习题1、若1,3,x ,5,6五个数的平均数为4,则x 的值为( )A .3B .4C .5D .62、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A .4B .5C .6D .73、某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加4、某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C . 中位数D .平均数5、某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是(A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大5、(A )A 班 (B )B 班 (C )C 班 (D )D 班6、张大娘为了提高家庭收入,买来10头小猪.经过精心饲养,不到7个月就可以出售了,下表为这些A .,126 B .,126 C .,135 D .,135、7、有一组数据3、5、7、a 、4,如果它们的平均数是5,那么这组数据的方差是( ) (A)2(B)5 (C)6 (D)78、(2010?泸州)4.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两 班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )A .学习水平一样 B. 成绩虽然一样,但方差大的班学生学习潜力大C .虽然平均成绩一样,但方差小的班学习成绩稳定 D. 方差较小的学习成绩不稳定,忽高忽低9、上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是A .19岁 B.20岁 C.21岁 D.22岁10、2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某A.中位数是6吨 B.平均数是吨 C.众数是6吨 D.极差是4吨11、某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为( )A .2、2 B .2、3 C .2、1 D .3、112、小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):,,,,,.那么,下列结论正确的是(A )众数是3 .9 m (B )中位数是3.8 m (C )平均数是4.0m (D )极差是0.6m13、某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图. 则这组数据的众数和中位数分别是 A .7、7 B . 8、7.5 C .7、 D . 8、614、4个数据8,10,x,10的平均数和中位数相等,则x 等于( )A 、8B 、10C 、12D 、8或1215、某班5010分16、某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A. 82,76B. 76,82C. 82,79D. 82,8217、“一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下列A .15B .30C .50D .2018则这15(A )3,3 (B )2,3 (C )2,2 (D )3,519、某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份与3月份相........A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、3020、要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的A .方差B .中位数C .平均数D .众数21、10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正确的是(A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C)甲x >乙x ,2甲S >2乙S (D) 甲x <乙x , 2甲S >2乙S 。
22、右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于该班40名同学一周参加体育锻炼时间的说法错误..的是( ) A .极差是3 B .中位数为8 (小时)(第5题图)C .众数是8D .锻炼时间超过8小时的有21人23、一组数据6,0,4,6.这组数据的众数、中位数、平均数分别是( )A. 6,6,4 B .4,2,4 C .6,4,2 D .6,5,4二、填空题(每小题x 分,共y 分)1、(2010?怀化)17. 一组数据31,0,,3--,x 的平均数是1,则这组数据的极差为 . (2010?广西河池)7.现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为20.32S =甲,20.26S =乙,则身高较整齐的球队是 队.2、(2010?福建省德化)9、某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的众数..是 分. 3.(2010广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S =12.则成绩比较稳定的是______(填“甲”、“乙”中的一个).4、(2010?东营)15.有一组数据如下: 3, a , 4, 6, 7. 它们的平均数是5,那么这组数据的方差为________.5、( 2010?长沙)16.2010年4月14日青海省玉树县发生级大地震后,湘江中学九年级(1)班的60名同学踊跃捐款.有15人每人捐30元、14人每人捐100元、10人每人捐70元、21人每人捐50元.在这次每人捐款的数值中,中位数是 .6、 (2010?常德)已知一组数据为:8,9,7,7,8,7,则这组数据的众数为___.三、解答题:(共x 分)(2010?株洲)1.(本题满分8分)学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩. 项 目 选 手形 象 知识面 普通话 李 文 70 80 88孔 明 80 75(1(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x 应超过多少分?(2010?内蒙古包头)21.(本小题满分8分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100测试项目 测试成绩 甲 乙 丙教学能力85 73 73 科研能力70 71 65 组织能力 64 72 84(1(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.(2010?荆州)20.(8分)2010年,世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题:(1)求出这10天持票入园人数的平均数、中位数和众数;(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过..30万人的有多少天? (2010?甘肃省9市联考)21.(8分)甲、乙两名运动员在6次百米跑训练中的成绩如下表:(单位:秒)甲乙.(2010?凉山)21.高一某班在入学体检中,测得全班同学平均体重是48千克,其中男同学平均体重比女同学平均体重多20%,而女同学人数比男同学人数多20%.求男、女同学的平均体重各是多少?(2010?德州)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲95 82 88 81 93 79 84 78乙83 92 80 95 90 80 85 75(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.(2010?遵义)23.(10分)某校七年级(1)班为了在王强和李军两同学中选班长,进行了一次“演讲”与“民主测评”活动,A、B、C、D、E五位老师作为评委对王强、李军的“演讲”打分;该班50名同学分别对王强和李军按“好”、“较好”、“一般”三个等级进行民主测评。
统计结果如下图、表.计分规则:①“演讲”得分按“去掉一个最高分和一个最低分后计算平均分”;②“民主测评”分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③综合分=“演讲”得分×40%+“民主测评”得分×60%.解答下列问题:(1)演讲得分,王强得▲分;李军得▲分;(2)民主测评得分,王强得▲分; 李军得▲分;(3)以综合得分高的当选班长,王强和李军谁能当班长?为什么?演讲得分表(单位:分)评委姓名A B C DE王强992949782李军8982879691 (23题图)。