高中物理---机械能守恒定律-----典型例题(含答案)【经典】
- 格式:docx
- 大小:706.65 KB
- 文档页数:15
图5-4-10图5-1-1物理机械能守恒经典例题1.如图5-4-6所示,质量为m 和3m 的小球A 和B ,系在长为L 的细线两端,桌面水平光滑,高h (h<L ),B 球无初速度从桌边滑下,落在沙地上静止不动,则A 球离开桌边的速度为( A ) A B .gh 2C .3/ghD .6/gh2.如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.【解析】绳的拉力对物体来说是个变力(大小不变,方向改变),但分析发现,人拉绳却是恒力,于是转换研究对象,用人对绳子做的功来求绳对物体所做的功W =F ·l =F (βαsin sin H H -)=100 J【答案】W =F ·l =F (βαsin sin H H -)=100J3..如图5-4-9所示,粗细均匀的U 形管内装有总长为4L 的水.开始时阀门K 闭合,左右支管内水面高度差为L .打开阀门K 后,左右水面刚好相 平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计) 【解析】由于不考虑摩擦阻力,故整个水柱的机械能守恒从初始状态 到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管 如图5-4-10所示.系统的重力势能减少, 动能增加.该过程中,整个水柱势能的减少 量等效于高L /2的水柱降低L /2重力势能的减少.设L/2水柱的质量为m ,则整个 水柱的质量为8mg ,由机械能守恒定律有28212v m L mg ⋅⋅=⋅,得8gL v =. 4.如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零;B.垂直于接触面,做功不为零;C.不垂直于接触面,做功为零;D.不垂直于接触面,做功不为零.图5-1-3【解析】由于斜面是光滑的,斜面对物体的作用力只有支持力N ,方向一定垂直于斜面.若斜面固定不动,物体沿斜面运动时,支持力N 与物体位移方向垂直,不做功,但当斜面不固定时,物体沿斜面下滑的同时,在N 的反作用力作用下,斜面要向后退,如图5-1-1所示,物体参与了两个分运动:沿斜面的下滑;随斜面的后移,物体的合位移l 与支持力N 的夹角α大于90°,故支持力N 对物体做负功,做功不为零.选项B 正确.5.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v m mg c 2= 得 gR m R v m c 2212=在圆轨道最高点小球机械能: mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律A C E E =列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B 62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下. 6.如图5-5-3所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,求:图5-5-1v 图5-5-4⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m .【解析】以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒.(1)过程中A 的重力势能减少,A 、B 的动能和B 的重力势能增加, A 的即时速度总是B 的2倍, 如图5-5-4所示. 由系统机械能守恒有:222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v =⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角.如图5-5-5所示, 由系统机械能守恒有:2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为 4cos α-3sin α=3,利用三角公式可解得 sin(53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G .设OA 从开始转过θ角时B 球速度最大,如图5-5-6所示.()223212221v m v m ⋅⋅+⋅⋅ =2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L , 解得114gL v m= 7.如图5-5-7所示,在质量不计长为L 的不能弯曲的轻直杆的一端和中点分别固定两个质量均为m 的小球A 、B ,杆的另一端固定在水平轴O 处,杆可以在竖直面内无摩擦地转动,让杆处于水平状态,从静止开始释放,当杆转到竖直位置时,两球速度v A 、v B 分别为多少?【解析】AB 两球和地球组成的系统由于只有重力势能跟动能的相互转化,所以机械能守恒.初、末态分别选在水平位置、竖直位置,零势面选在竖直位置时,A 球所在的水平面,由机械能守恒定律得:图5-5-7图5-5-622212122B A mv mv L mgmgL ++=…………① 由于两球转动时的角速度相同L v A ω=∴2Lv B ω=……………②由可解得:gL vA1552=gL v B 1551=8.如图5-5-9所示,总长L 的光滑匀质铁链跨过一个光滑轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,刚铁链刚脱离滑轮的瞬间速度为多少?【解析】取底面为零势面,下落过程只有重力做功,机械能守恒,初态时:4221L mg E ⋅⋅=末态时:2221mv E = 由12E E = 有2gLv =9..如图5-5-10所示,将楔木块放在光滑水平面上靠墙边处并用手固定,然后在木块和墙面之间放入一个小球,球的下缘离地面高度为H ,木块的倾角为θ,球和木块质量相等,一切接触面均光滑,放手让小球和木块同时由静止开始运动,求球着地时球和木块的速度.【解析】此题的关键是要找到球着地时小球和木块的速度的关系。
验证机械能守恒定律典型例题例1如图5-47,一个质量为m的小球拴在长l的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,(1)可使小球绕钉来回摆动;(2)可使小球绕钉做圆周运动.分析小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.解(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图5-48),即钉子离悬点O′的距离h应满足条件0≤h≤lcosθ.(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为v C,并规定最低处O为重力势能的零位置(图5-49),由A、C两位置时的机械能守恒E A=E C,即①又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即②所以钉子P′离悬点O′的距离如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,在绕钉做圆运动时,钉子离悬点的距离h′应满足条件说明由本题的解答可知,位置P是小球能绕钉来回摆动的最低位置;位置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.例2一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是____.分析 A球运动到最低点时,由外壁对它产生的弹力N A和A球重力m1g的合力作为向心力,即①A球对外壁产生的压力N A′大小等于N A,方向沿半径背离圆心(图 5-50).要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一个等量的压力N B′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产生的弹力N B和球重m2g的合力作为向心力(图5-51).设B球在最高点的速度为v B,据向心力公式和机械能守恒有②根据题意 N A′=N B′,即要求例3 如图5-52所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m 的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:(1)当A球转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?分析两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转动过程中,只有两小球重力做功,根据机械能守恒即可列式算出A球的线速度和半径OA的最大偏角.解 (1)以通过O的水平面为零势能位置,开始时和A球转到最低点时两球重力势能之和分别为E P2=E P A+E P B=-mgr+0=-mgr.所以两球重力势能之和减少(2)由于圆盘转动过程中,只有两球重力做功、机械能守恒,因此,两球重力势能之和的减少一定等于两球动能的增加.设A球转到最低点时,A、B两球的速度分别为v A、v B,则因A、B两球固定在同一个圆盘上,转动过程中的角速度(设为ω)得 v A=2v B.(3)设半径OA向左偏离竖直线的最大角度为θ(图5-53),该位置的机械能和开始时机械能分别为由机械能守恒定律E1=E3,即即 2cosθ=1+sinθ.两边平方得 4(1-sin2θ)=1+sin2θ+2sinθ,5sin2θ+2sinθ-3=0,。
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
高中物理实验典型例题【典型例题1】a)所示的装置验证机械能守恒定律,打出一条纸带如图(b)所示.图(b)中O是打出的第一个点迹,A、B、C、D、E、F……是依次打出的点迹,量出OE间的距离为l,DF间的距离为s,已知打点计时器打点的周期是T.1)上述物理量如果在实验误差允许的范围内满足关系式____________________,即验证了重锤下落过程中机械能是守恒的.2)如果发现图(b)中OA距离大约是4 mm,则出现这种情况的原因可能是__________________________________________,如果出现这种情况,上述的各理量间满足的关系式可能是________________________________________.【典型例题2】不严格相等,如何用它准确地测量物体的质量(被测物体质量不超过天平的最大称量量)?3】1,图2分别表示用卡尺测量一金属棒的长度及千分尺测量它的直径的示意图,从图中可以知这金属棒的长度是_________mm,它的直径是__________mm.【典型例题4】1)把选择开关扳到“×1k”的欧姆档上.2)把表笔插入测试笔插孔中,先把两根表笔相接触,旋转调零旋纽,使指针指在电阻刻度的零位上.3)把两根表笔分别与某一等测电阻的两端相接,发现这时指针偏转较小.4)换用“×100”的欧姆档,发现这时指针偏转适中.随即记下欧姆数值.5)把表笔从测试笔插孔中拔出后,就把万用表放回桌上原处,不用手碰表笔的金属杆.这个学生在实验中违反了哪一或那些重要的使用规则?【典型例题5】I、U的数据如下表,试用图线法求出电源电动势与内电阻.【典型例题6】压的平方的关系曲线.已知小灯泡上标有“6V,3W”字样,电源是3个铅蓄电池串联组成的电池组,测动变阻器的规格是“52A”.要求:1中实物连成实验电路;2的4个图象中哪个可能是正确的?简单说明理由._______________________________________________________.【典型例题7】迹,小方格的边长l=1.25cm ,若小球在平抛运动途中的几个位置如图中的a 、b 、c 、d 所示,则小球平抛的初速度的计算式为__________(用l 、g 表示),其值是__________(取).【典型例题8】1为测量电阻的电路.为待测电阻. R 的阻值已知.为保护电阻,阻值未知. 电源E 的电动势未知. 均为单刀双掷开关. A 为电流表,其内阻不计.1)按图1所示的电路,在图2的实物图上连线.2)测量的步骤为:将向d 闭合,向________________闭合,记下电流表读数.再将向 闭合,向_____________闭合,记电流表读数.的公式是=__________________ .【典型例题9】之间,现要测量其内阻,实验室提供下列可选用的器材,待测电压表V(量程3V),电流表(量程),电流表(量程),电流表(量程),滑动阻器R(最大阻值),电源 (电动势4V),电键S .所提供的电流表中,应选用___________________________(填写字母代号).为了尽量减小误差,要求测多组数据.试在下图方框中画出符合要求的实验电路图其中电源和电键及其连线已画出).10】220V 40W”白炽电灯灯丝的伏安特性曲线,可以利用调压变压器供电。
高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
汽车启动问题考点四:汽车启动问题1.(单选)一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,物体上升的高度为h ,则整个过程中,下列说法正确的是( )A .钢绳的最大拉力为P v 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为P mgD .重物匀加速运动的加速度为P mv 1-g 答案 D 2. (单选)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( ) 答案 A3.(多选)一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v 图像如图8所示。
若已知汽车的质量,则根据图像所给的信息,能求出的物理量是( )A .汽车的功率 选ABCB .汽车行驶的最大速度C .汽车所受到的阻力D .汽车运动到最大速度所需的时间解析:选ABC 由F -F f =ma ,P =F v 可得:a =P m ·1v -F f m ,对应图线可知,P m =k =40,可求出汽车的功率P ,由a =0时,1v m=0.05可得:v m =20 m/s ,再由v m =P F f,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度的时间。
4.(单选)把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车.几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等.若1节动车加3节拖车编成的动车组的最大速度为120 km/h ;则6节动车加3节拖车编成的动车组的最大速度为( ).答案 CA .120 km/hB .240 km/hC .320 km/hD .480 km/h5.(单选)两辆完全相同的汽车,都拖着完全相同的拖车以相同的速度在平直公路上匀速齐头并进,某一时刻两拖车同时与汽车脱离,之后甲汽车保持原来的牵引力继续前进,乙汽车保持原来的功率继续前进,则一段时间后(假设均未达到最大功率)( ).答案 AA .甲车超前,乙车落后B .乙车超前,甲车落后C .它们仍齐头并进D .甲车先超过乙车,后乙车又超过甲车6.(多选)某科技创新小组设计制作出一种全自动升降机模型,用电动机通过钢丝绳拉着质量为m 的升降机由静止开始匀加速上升,当升降机的速度为v1时,电动机的功率达到最大值P,以后电动机保持该功率不变,直到升降机以最大速度v2匀速上升为止.整个过程中忽略一切阻力和钢丝绳的质量,重力加速度为g,则下列说法正确的是().答案BDA.钢丝绳的最大拉力为Pv2B.升降机的最大速度v2=P mgC.钢丝绳的拉力对升降机所做的功等于升降机克服升降机重力所做的功D.升降机速度由v1增大至v2的过程中,钢丝绳的拉力不断减小7、某汽车发动机的额定功率为60 kW,汽车质量为5 t,汽车在运动中所受阻力的大小恒为车重的0.1倍.(g 取10 m/s2) 答案(1)12 m/s 1.4 m/s2(2)16 s(1)若汽车以额定功率启动,则汽车能达到的最大速度是多少?当汽车速度达到5 m/s时,其加速度是多少?(2)若汽车以恒定加速度0.5 m/s2启动,则其匀加速过程能维持多长时间?8.质量为2 000 kg、额定功率为80 kW的汽车,在平直公路上行驶的最大速度为20 m/s.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s2,运动中汽车所受阻力的大小不变.求:(1)汽车所受阻力的大小.答案(1)4 000 N(2)4.8×104 W(3)5 s(4)2×105 J(2)3 s末汽车的瞬时功率.(3)汽车做匀加速运动的时间.(4)汽车在匀加速运动中牵引力所做的功.9.修建高层建筑常用塔式起重机.在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02m/s的匀速运动.取g=10m/s2,不计额外功.求:(1)起重机允许输出的最大功率.(2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率.答案:(1)5.1×104 W(2)5 s 2.04×104 W10.如图甲所示,在水平路段AB 上有一质量为2×103 kg 的汽车,正以10 m/s 的速度向右匀速运动,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图象如图乙所示(在t =15 s 处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20 kW 不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)各自有恒定的大小.(1)求汽车在AB 路段上运动时所受的阻力F f 1;(2)求汽车刚好到达B 点时的加速度a ;(3)求BC 路段的长度.答案 (1)2 000 N (2)-1 m/s 2 (3)68.75 m解析:(1)汽车在AB 路段时,有F 1=F f1,P =F 1v 1,F f1=P /v 1,联立解得:F f1=20×10310N =2 000 N 。
机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1m,长2m,补给空气阻力,物体滑到斜面底端的速度是多大,拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大-题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大~2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂直于桌边,如图所示,现由静止开始链条自由滑落,当它全部脱离桌面时的速度多大·3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面高度相等时,右侧液面下降的速度是多大¥题型三:机械能守恒定律在平抛运动、圆周运动中的应用(当个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平轨道相切,一小球自A点起由静止开始沿轨道下滑。
已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。
求:(1)小球运动到B点时的动能R时的速度大小和方向(2)小球下滑到距水平轨道高度为12(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大*2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m运动到最高点B 时,对轨道的压力是多大…3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道。
若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且 l>2π R,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大!5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大不考虑摩擦等阻力。
机械能及其守恒定律典型例题剖析一、选择题1.从高处自由下落的物体,它的重力势能E p 和机械能E 随下落高度h 的变化图线如图6-1所示,正确的是( )【答案】C2. 行驶中汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降.上述不同现象所包含的相同的物理过程是() ①物体克服阻力做功②物体的动能转化为其他形式的能量 ③物体的势能转化为其他形式的能量 ④物体的机械能转化为其他形式的能量 A .②B .①②C .①③D .①④ 【答案】D3.下面关于摩擦力做功的叙述,正确的是( ) A.静摩擦力对物体一定不做功 B.动摩擦力对物体一定做负功C.一对静摩擦力中,一个静摩擦力做正功,另一静摩擦力一定做负功D.一对动摩擦力中,一个动摩擦力做负功,另一动摩擦力一定做正功【解析】一对静摩擦力的作用点不发生相对移动,它们的合功为零,它们的功可以一正一负;可以都为零;一对动摩擦力的作用点发生相对移动,它们的合功为负值,它们的功可以一正一负;可以一零一负;可以两负. 【答案】C4. (2003上海综合)在交通运输中,常用“客运效率” 来反映交通工具的某项效能,“客运效率”表示消耗单位能量对应的载客数和运送路程的乘积,即客运效率=消耗能量路程人数 .一个人骑电动自行车,消耗1MJ (610J )的能量可行驶30Km ;一辆载有4个人的普通轿车,消耗320MJ 的能量可行驶100Km ,则电动自行车与这辆轿车的客运效率之比是 A. 6∶1 B.12∶5 C.24∶1 D.48∶1hA hBhDhC图6-1【答案】C5.如图6-2所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A.重力势能和动能之和总保持不变 B.重力势能和弹性势能之和总保持不变 C.动能和弹性势能之和保持不变D.重力势能、弹性势能和动能之和总保持不变【解析】 在球从高处下落到弹簧压缩到最短的过程中,只有重力、弹簧弹力做功,重力势能、动能、弹性势能相互转化,其总和不变,选项D 正确. 【答案】D6.飞行员进行素质训练时,抓住秋千杆由水平状态下摆,到达竖直状态的过程中如图6-3所示,飞行员所受重力的瞬时功率变化情况是( )A.一直增大B.一直减小C.先增大后减小D.先减小后增大【解析】易知飞行员竖直分速y v 先增后减,由y G v mg P ⋅=得出飞行员所受重力的瞬时功率G P 先增大后减小. 【答案】C的水7.如图6-4所示,质量为m 的物体沿动摩擦因素为μ设同平面以初速度0υ从A 点出发到B 点时速度变为υ,B C '到一物体以初速度0υ从A '点先经斜面C A ',后经斜面B '点时速度变为υ',两斜面在水平面上投影长度之和等于AB 的长度,则有( ) A.υυ>' B.υυ='C.υυ<'D.不能确定 【解析】在水平面上,由动能定理2022121mv mv s mg -=⋅-μ 在斜面上,设左、右斜面倾角分别为α、β,左、右斜面长度分别为1L 、2L由动能定理 202212121cos cos mv v m L mg L mg -'=⋅-⋅-βμαμ()202212121cos cos mv v m s mg L L mg -'=⋅-=+-μβαμ 所以 υυ=/ 【答案】B8. 如图6-5,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球;B 处固定质量为m的小球,支架悬挂图6-2图6-3 图6-4A图6-5在O 点,可绕过O 点与支架所在平面相垂直的固定轴转动.开始时OB 与地面相垂直,放手后开始运动.在无任何阻力的情况下,下列说法中正确的是( ) ①A 球到达最低点时速度为零②A 球机械能减小量等于B 球机械能增加量③B 球向左摆动所能达到的最高位置应高于A 球开始运动的高度 ④当支架从左向右回摆时,A 球一定能回到起始高度A. ①②③B.②③④C. ①③④D. ①②【解析】A 、B 两球以及地球所组成的系统机械能守恒,A 球机械能减少量等于B 球机械能增加量.若以初始状态B 球所在平面为零势面,则系统总机械能为2mgh ,当A 球在最低点时B 球势能为mgh.另外mgh mgh -2mgh =的机械能是A 和B 共有的动能,因此B 还要继续上升,正确答案为B. 【答案】B 二、填空题9.质量为0.7Kg 的足球,以4m/s 的速度水平飞来,运动员以5m/s 的速度将球反方向顶出,则运动员在顶球的过程中对球做的功为.【解析】运动员先对足球做负功再做正功,对球做的总功为足球的动能改变量。
机械能守恒定律知识点和典型例题机械能守恒定律复习【知识要点】⼀功1、做功的两个必要因素⼀个⼒作⽤在物体上,物体在⼒的⽅向上发⽣了位移,就说此⼒对物体做了功.功是⼒在其作⽤空间上的累积,过程量,是能量转化的标志和量度.做功的两个必要因素:⼒和在⼒的⽅向上发⽣的位移.2公式W=Fscosα(恒⼒求功)即式中的F必须为恒⼒,s是对地的位移,α指的是⼒与位移间的夹⾓.功的国际单位:焦⽿,符号J.3、正功和负功功是标量,但也有正,负之分.功的正负仅表⽰⼒在物体运动过程中,是起动⼒还是阻⼒的作⽤.从表达式看,功的正,负取决于⼒F与位移s的夹⾓α.当0≤α<90°时,W为正,表⽰⼒F对物体做正功,这时的⼒是动⼒.当a=90°时,W=0,表⽰⼒对物体不做功,这时的⼒既不是动⼒,也不是阻⼒.当90°<α≤180°时,W为负,表⽰⼒F对物体做负功,这时的⼒是阻⼒.4、总功的计算总功的计算有两种⽅法:(1)若合⼒是恒⼒,先求合⼒F的⼤⼩和⽅向,再求合⼒F所做的功,即为总功.W=Fscosα(合⼒为恒⼒)(2)先求作⽤在物体上的各个⼒所做的功,再求其代数和.(不要⽤平⾏四边形定则,要带⼊正负)W=W1+ W2+ W3+ W4+……(⼀般情况下采⽤第⼆种⽅法计算总功)5、变⼒做功(1)对于随位移均匀变化的⼒F,可先求平均⼒F,再利⽤W=F平均s cosα求功;或利⽤F-S图像与(必是⼀条倾斜的直线)坐标轴围成的图形⾯积表⽰功例:物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?(2)若⼒是⾮均匀变化的,则⼀般⽤动能定理间接地求功.⼆功率功与完成这些功所⽤时间的⽐值叫做功率,它是描述⼒做功快慢的物理量.在国际单位制中,功率的单位是w(⽡特).1、平均功率:P平均=W/t ,由W=FScosα可知,平均功率也可表⽰为P平均=Fv平均cosα,其中v平均为时间t内的平均速度,α则为⼒与平均速度之间的夹⾓。
机械能守恒定律的综合运用(含典型例题变式练习题和答案)一.教学内容:机械能守恒定律的综合运用二.学习目标:1、掌握机械能守恒定律的表达式及应用机械能守恒定律解题的一般方法和步骤。
2、深刻掌握关于机械能守恒定律的习题类型及其相关解法。
三•考点地位:机械能守恒定律的综合应用问题是高考考查的重点和难点,题目类型通常为计算题目形式,从出题形式上常与牛顿定律、圆周运动、电磁学、热学等问题进行综合,从习题模型化的角度上来看,常与线、轻杆、弹簧等模型综合,题目灵活性很强,在高考当中常做为压轴题形式出现,2007年天津理综卷第5题,2006年全国H卷理综卷第23题、2006年广东大综合卷第34题、2006年北京理综卷第22题、2005年北京理综卷的第23题均通过大型计算题目形式考查。
知识体系:(一)机械能守恒定律的表达式:当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①二打f二-匕,-二,即初状态的动能与势能之和等于末状态的动能与势能之和。
②△ \ =—―耳,或△匕」 - -I-,即动能(或势能)的增加量等于势能(或动能)的减少量。
③△ - - ■二-:•,即卩A物体机械能的增加量等于B物体机械能的减少量。
(二)应用机械能守恒定律解题的步骤及方法:(1)根据题意选取研究对象(物体或系统) 。
(2)明确研究对象的运动过程,分析对象在运动过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒。
(3)恰当地选取零势面,确定研究对象在运动过程中的始态和末态的机械能。
(4)根据机械能守恒定律的不同表达式列方程,并求解结果。
说明:(1)机械能守恒定律只关心运动的初、末状态,而不必考虑这两个状态之间变化过程的细节,因此,如果能恰当地选择研究对象和初、末状态,巧妙地选定势能参考平面,问题就能得到简捷、便利的解决,可避免直接应用牛顿定律可能遇到的困难,机械能守恒定律为解决力学问题提供了一条简捷的途径。
(2)如果物体运动由几个不同的物理过程组成,则应分析每个过程机械能是否守恒,还要分析过程的连接点有无能量损失,只有无机械能损失才能对整体列机械能守恒式,否则只能列出每段相应的守恒关系。
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
高中物理-机械能守恒定律专题强化训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.两个质量分别为m和2m的小球,分别从高度为2h和h处自由下落,忽略空气阻力,则它们落地时的动能之比为A.1:1B.1:2C.2:1D.4:12.发射通信卫星常用的方法是:先用火箭将卫星送入近地圆形轨道运行,然后再适时开动卫星上的小型喷气发动机,经过过渡轨道将其送入与地球自转同步的圆形运行轨道.比较卫星在两个圆形轨道上的运行状态,在同步轨道上卫星的()A.机械能大,动能小B.机械能小,动能大C.机械能大,动能也大D.机械能小,动能也小3.如图所示为某次NBA比赛时篮球运动员起跳投篮时的情形.运动员先由站立状态曲腿下蹲再竖直向上跃起,这个过程中,关于运动员下列说法正确的是()A.重力势能不变B.机械能不变C.他的动能增大,所以地面对他做正功D.地面对他有支持力,但作用点没有位移,所以地面对他不做功4.如图所示,两个质量相同的物体从A点静止释放,分别沿光滑面AB与AC滑到同一水平面上的B点与C点,则下列说法中正确的是A.两物体到达斜面底端时的速度相同B .两物体到达斜面底端时的动能相同C .两物体沿AB 面和AC 面运动时间相同D .两物体从释放至到达斜面底端过程中,重力的平均功率相同5.如图所示,劲度系数为k 的轻质弹簧一端固定于O 点,另一端固定一个质量为m 的小球。
将小球拉至A 点处时,弹簧恰好无形变。
现将小球从A 点处由静止释放,小球运动到O 点正下方B 点时速度大小为v 。
A 、B 两位置间的高度差为h ,不计空气阻力,重力加速度为g 。
则下列说法错误的是( )A .由A 到B 的过程中,小球克服弹簧弹力所做的功为mghB .由A 到B 的过程中,小球重力所做的功为mghC .由A 到B 的过程中,弹性势能增加量为212mgh mv D .小球到达B 点处时,其加速度的方向为竖直向上6.如图所示,竖直平面内的半圆形光滑轨道,其半径为R ,小球A 、B 质量分别为m A 、m B ,A 和B 之间用一根长为l (l <R )的轻杆相连,从图示位置由静止释放,球和杆只能在同一竖直面内运动,下列说法正确的是( )A .若m A <mB ,B 在右侧上升的最大高度与A 的起始高度相同B .若m A >m B ,B 在右侧上升的最大高度与A 的起始高度相同C .在A 下滑过程中轻杆对A 做负功,对B 做正功D .A 在下滑过程中减少的重力势能等于A 与B 增加的动能7.某城市边缘的一小山岗,在干燥的春季发生了山顶局部火灾,消防员及时赶到,用高压水枪同时启动了多个喷水口进行围堵式灭火。
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
必修二第五讲P62【小题快练】基础小题测基本能力1.(多选)(正、负功的判断)如图所示,重物P放在一长木板OA上,将长木板绕O端转过一个小角度的过程中,重物P相对于木板始终保持静止。
关于木板对重物P的摩擦力和支持力做功的情况是(AD)A.摩擦力对重物不做功B.摩擦力对重物做负功C.支持力对重物不做功D.支持力对重物做正功2.(功的计算)如图a、b、c、d中,质量为M的物体甲受到相同的恒力F的作用,在力F作用下使物体甲在水平方向移动相同的位移。
μ表示物体甲与水平面间的动摩擦因数,乙是随物体甲一起运动的小物块,比较物体甲移动的过程中力F对物体甲所做的功的大小(D)A.Wa最小B.Wd最大C.Wa>WcD.四种情况一样大3.(平均功率)在光滑的水平面上,用一水平拉力F使物体从静止开始移动x,平均功率为P,如果将水平拉力增加为4F,使同一物体从静止开始移动x,平均功率为(D)A.2PB.4PC.6PD.8P【过关题组】P631.(2016·西青区模拟)物体受到两个互相垂直的作用力F1、F2而运动,已知力F1做功6J,物体克服力F2做功8J,则力F1、F2的合力对物体做功(D)A.14JB.10JC.2JD.-2J2.(2016·保定模拟)质量为2kg的物体置于水平面上,在运动方向上受拉力F作用沿水平面做匀变速运动,物体运动的速度—时间图象如图所示,若物体所受摩擦力为10N,则在这段运动过程中做功情况正确的是(A)A.拉力做功150JB.拉力做功100JC.摩擦力做功250JD.物体克服摩擦力做功200J3.(多选)如图所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面体以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止。
则关于斜面对m的支持力和摩擦力的下列说法中正确的是(ACD)A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功【加固训练】1.(多选)如图所示,B物体在拉力F的作用下向左运动,在运动过程中,A、B之间有相互作用的摩擦力,则这对摩擦力做功的情况,下列说法中正确的是(BC)A.A、B都克服摩擦力做功B.摩擦力对A不做功C.摩擦力对B做负功D.摩擦力对A、B都不做功2.(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图,则(AD)A.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3s内,力F做的功为零C.除力F外,其他外力在第1s内做正功D.力F在第3s内做的功是第2s内做功的3倍【典例1】P63(多选)(2015·浙江高考)我国科学家正在研制航母舰载机使用的电磁弹射器。
机械能守恒定律测试题1.下列说法正确的是 ( )A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒B .如果合外力对物体(或系统)做功为零,则机械能一定守恒C .物体沿固定光滑曲面自由下滑过程中,不计空气阻力,机械能一定守恒D .做匀加速运动的物体,其机械能可能守恒2.如图所示,木板O A 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( )A .支持力对物体做的总功为m g L s i n αB .摩擦力对物体做的总功为零C .木板对物体做的总功为零D .木板对物体做的总功为正功3、设一卫星在离地面高h 处绕地球做匀速圆周运动,其动能为1K E ,重力势能为1P E 。
与该卫星等质量的另一卫星在离地面高2h 处绕地球做匀速圆周运动,其动能为2K E ,重力势能为2P E 。
则下列关系式中正确的是( )A .1K E >2K EB .1P E >2P EC .2211P K P K E E E E +=+D .11K PE E +< 22K P E E +4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为g 54,在物体下落h 的过程中,下列说法正确的是( )A .物体动能增加了mgh 54B .物体的机械能减少了mgh 54C .物体克服阻力所做的功为mgh 51D .物体的重力势能减少了mgh5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为( )A .mgL μB .2mgL μC .2mgLμD .gL m M )(+μ6.如图所示,一轻弹簧左端固定在长木板2m 的左端,右端与小木块1m 连接,且1m 、2m 及 2m 与地面之间接触面光滑,开始时1m 和2m 均静止,现同时对1m 、2m 施加等大反向的 水平恒力1F 和2F ,从两物体开始运动以后的整个过程中,对1m 、2m 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( ) A .由于1F 、2F 等大反向,故系统机械能守恒B .由于1F 、2F 分别对1m 、2m 做正功,故系统动能不断增加C .由于1F 、2F 分别对1m 、2m 做正功,故系统机械能不断增加D .当弹簧弹力大小与1F 、2F 大小相等时,1m 、2m 的动能最大7.如图所示,滑雪者由静止开始沿斜坡从A点自由滑下,然后在水平面上前进至B 点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者经过A B 段的过程中,摩擦力所做的功( )A .大于mgL μB .小于mgL μC .等于mgL μD .以上三种情况都有可能8.嫦娥一号奔月旅程的最关键时刻是实施首次“刹车”减速.如图所示,在接近月球时,嫦娥一号将要利用自身的火箭发动机点火减速,以被月球引力俘获进入绕月轨道.这次减速只有一次机会,如果不能减速到一定程度,嫦娥一号将一去不回头离开月球和地球,漫游在更加遥远的深空;如果过分减速,嫦娥一号则可能直接撞击月球表面.该报道的图示如下.则下列说法正确的是( )A .实施首次“刹车”的过程,将使得嫦娥一号损失的动能转化为势能,转化时机械能守恒.B .嫦娥一号被月球引力俘获后进入绕月轨道,并逐步由椭圆轨道变轨到圆轨道.C .嫦娥一号如果不能减速到一定程度,月球对它的引力将会做负功.D .嫦娥一号如果过分减速,月球对它的引力将做正功,撞击月球表面时的速度将很大9、如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量都为m 。
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
解析:(1)工人拉绳子的力:F =12mg sin θ工人将料车拉到斜面顶端时,拉绳子的长度:l =2L ,根据公式W =Fl cos α,得W 1=12mg sin θ·2L =2 000 J 。
(2)重力做功:W 2=-mgh =-mgL sin θ=-2 000 J 。
(3)由于料车在斜面上匀速运动,则料车所受的合力为0,故W 合=0。
答案:(1)2 000 J (2)-2 000 J (3)0考点二:功率的理解和计算1.(单选)一质量为m 的木块静止在光滑的水平面上,从t =0开始,将一个大小为F 的水平恒力作用在该木块上,在t =t 1时刻力F 的瞬时功率是( ). 答案 CA.F 22m t 1 B .F 22m t 21 C .F 2m t 1 D .F 2m t 212.(单选)质量为m 的物体从倾角为α且固定的光滑斜面顶端由静止开始下滑,斜面高为h ,当物体滑至斜面底端时,重力做功的瞬时功率为( ).答案 CA .mg 2ghB .12mg 2gh sin αC .mg 2gh sin αD .mg 2gh sin α3、(单选)如图所示,质量相同的两物体从同一高度由静止开始运动,A 沿着固定在地面上的光滑斜面下滑,B 做自由落体运动.两物体分别到达地面时,下列说法正确的是( ).答案 DA .重力的平均功率P A >PB B .重力的平均功率P A =P BC .重力的瞬时功率P A =P BD .重力的瞬时功率P A <P B4.(单选)如图所示,分别用F 1、F 2、F 3将质量为m 的物体由静止沿同一光滑斜面以相同的加速度从斜面底端拉到斜面的顶端,物体到达斜面顶端时,力F 1、F 2、F 3的功率关系为( ).答案 AA .P 1=P 2=P 3B .P 1>P 2=P 3C .P 3>P 2>P 1D .P 1>P 2>P 35.(单选)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( ). 答案 AA .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大6.(多选)如图所示,在外力作用下某质点运动的v -t 图象为正弦曲线.从图中可以判断( ).0、t 1、t 2、t 3四个时刻功率为零答案 ADA .在0~t 1时间内,外力做正功B .在0~t 1时间内,外力的功率逐渐增大C .在t 2时刻,外力的功率最大D .在t 1~t 3时间内,外力做的总功为零7.(单选)质量为1 kg 的物体静止于光滑水平面上.t =0时刻起,物体受到向右的水平拉力F 作用,第1 s 内F =2 N ,第2 s 内F =1 N .下列判断正确的是( ). 答案 CA .2 s 末物体的速度是2 m/sB .2 s 内物体的位移为3 mC .第1 s 末拉力的瞬时功率最大D .第2 s 末拉力的瞬时功率最大8. (多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图所示.下列判断正确的是( )A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4 答案 AD9、质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图5所示,力的方向保持不变,则( ) 答案 BDA.3t 0时刻的瞬时功率为5F 20t 02mB.3t 0时刻的瞬时功率为15F 20t 0mC.在t =0到3t 0这段时间内,水平力的平均功率为23F 20t 04mD.在t =0到3t 0这段时间内,水平力的平均功率为25F 20t 06m10.(单选)质量为2 kg 的物体,放在动摩擦因数为μ=0.1的水平面上,在水平拉力F 的作用下,由静止开始运动,拉力做的功W 和物体发生的位移x 之间的关系如图所示,g =10 m/s 2,下列说法中正确的是( ).答案 DA .此物体在AB 段做匀加速直线运动,且整个过程中拉力的最大功率为15 WB .此物体在AB 段做匀速直线运动,且整个过程中拉力的最大功率为6 WC .此物体在AB 段做匀加速直线运动,且整个过程中拉力的最大功率为6 WD .此物体在AB 段做匀速直线运动,且整个过程中拉力的最大功率为15 W11.如图所示,水平传送带正以2 m /s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动,若物块与传送带间的动摩擦因数μ=0.1,求把这个物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率(不计物块的大小,g 取10 m/s 2)。
解析:物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功,物块受向右的摩擦力为:F f =μmg =0.1×2×10 N =2 N ,加速度为a =μg =0.1×10 m /s 2=1 m/s 2物块与传送带相对静止时的位移为:x =v 22a=2 m 。
摩擦力做功为:W =F f x =2×2 J =4 J 相对静止后物块与传送带之间无摩擦力,此后物块匀速运动到B 端,物块由A 端到B 端所用的时间为: t =v a +l -x v =5 s 则物块在被传送过程中所受摩擦力的平均功率为:P =W t=0.8 W第二讲:动能定理考点一:动能定理的基本应用1.(单选)一质量为2 kg的滑块,以4 m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s,在这段时间里水平力所做的功为() 答案DA.32 JB.16 JC.8 JD.02.(单选)物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则() 答案DA.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,A的动能较大3.(多选)以初速度v0竖直上抛一个质量为M的物体,物体上升过程中所受阻力F大小不变,上升最大高度为H,则抛出过程中人对物体做的功为() 答案CDA.M v20/2+MgHB.MgHC.M v20/2D.MgH+FH4.(单选)一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行x1=3.6 m,如果以v2=8 m/s 的速度行驶,在同样的路面上急刹车后滑行的距离x2应为() 答案AA.6.4 mB.5.6 mC.7.2 mD.10.8 m5.(单选)如图所示,分别将两个完全相同的等腰直角三角形木块的一直角边和斜边固定在水平地面上.现一小物块分别从木块顶点由静止开始下滑,若小物块与木块各边之间的动摩擦因数均相同,当小物块分别滑到木块底端时动能之比为().答案AA.2∶1B.1∶2C.2∶1D.1∶26.(单选)如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W1和W2,则()选BA.E k1>E k2W1<W2B.E k1>E k2W1=W2C.E k1=E k2W1>W2D.E k1<E k2W1>W27.(单选)子弹的速度为v,打穿一块固定的木块后速度刚好变为零.若木块对子弹的阻力为恒力,那么当子弹射入木块的深度为其厚度的一半时,子弹的速度是().答案BA.v2B.22v C.v3D.v48.(单选)速度为v的子弹,恰可穿透一块固定的木板,子弹穿透木板时所受阻力视为不变,如果子弹速度为2v,则可穿透多少块同样的固定木板()答案CA.2块B.3块C.4块D.8块9.(单选)如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离().答案BA.不变B.变小C.变大D.变大变小均可能10、质量为m 的物体静止在水平桌面上,它与桌面之间的动摩擦因数为μ,物体在水平力F 作用下开始运动,发生位移x 1时撤去力F ,问物体还能运动多远? 答案 (F -μmg )x 1μmg解析 研究对象:质量为m 的物体.研究过程:从静止开始,先加速,后减速至零.受力分析、运动过程草图如图所示,其中物体受重力(mg )、水平外力(F )、弹力(F N )、滑动摩擦力(F f ),设加速位移为x 1,减速位移为x 2.解法一:可将物体运动分成两个阶段进行求解物体开始做匀加速运动位移为x 1,水平外力F 做正功,F f 做负功, mg 、F N 不做功;初动能E k0=0,末动能E k1=12m v 21根据动能定理:Fx 1-F f x 1=12m v 21-0又滑动摩擦力F f =μF N ,F N =mg 则:Fx 1-μmgx 1=12m v 21-0 撤去外力F 后,物体做匀减速运动位移为x 2,F f 做负功,mg 、F N 不做功;初动能E k1=12m v 21,末动能E k2=0根据动能定理:-F f x 2=0-12m v 21,又滑动摩擦力F f =μF N ,F N =mg 则-μmgx 2=0-12m v 21 即Fx 1-μmgx 1-μmgx 2=0-0,x 2=(F -μmg )x 1μmg解法二:从静止开始加速,然后减速为零,对全过程进行分析求解. 设加速过程中位移为x 1,减速过程中位移为x 2;水平外力F 在x 1段做正功,滑动摩擦力F f 在(x 1+x 2)段做负功,mg 、F N 不做功;初动能E k0=0,末动能E k =0在竖直方向上:F N -mg =0 滑动摩擦力F f =μF N 根据动能定理:Fx 1-μmg (x 1+x 2)=0-0得x 2=(F -μmg )x 1μmg11.如图所示,质量为m 的物体从高为h 、倾角为θ的光滑斜面顶端由静止开始沿斜面下滑,最后停在水平面上,已知物体与水平面间的动摩擦因数为μ,求:(1)物体滑至斜面底端时的速度;(2)物体在水平面上滑行的距离.(不计斜面与水平面交接处的动能损失)答案 (1)2gh (2)h μ解析 (1)物体下滑过程中只有重力做功,且重力做功与路径无关,由动能定理:mgh =12m v 2, 可求得物体滑至斜面底端时速度大小为v =2gh ;(2)设物体在水平面上滑行的距离为l ,由动能定理:-μmgl =0-12m v 2,解得:l =v 22μg =h μ.12.右端连有光滑弧形槽的水平桌面AB 长L =1.5 m ,如图所示。