7月14日-15统计与概率-2020年中考第二轮专项复习重难点突破(解析版)
- 格式:pdf
- 大小:730.27 KB
- 文档页数:16
2020年高考数学二轮复习重点专题冲刺复习指导 专题3 统计与概率【高考考场实情】统计与概率在高考考查中一般有一道选择题或填空题、一道解答题,共2道题,分值为17分.高考对这一部分的考查难度相对稳定,选择、填空题为容易题, 解答题为中等难度题.选择题在前六题的位置,填空题在前二题的位置,解答题在前三题的位置.选择、填空题常考古典概型、几何概型(理科时而考查对立事件、相互独立事件概率及独立重复试验的概率)。
【考查重点难点】解答题以频率分布表、频率分布直方图、柱形图、折线图、茎叶图等五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.下面对学生存在的主要问题进行剖析,并提出相应的教学对策.【存在问题分析】1.概念理解不透【指点迷津】本专题中,概念理解不到位的有事件、模型的判断等;容易混淆的概念有互斥事件与对立事件、超几何分布与二项分布、二项展开式的通项公式1y n r r r n T C a b -+=与n 次独立重复试验中事件A 发生k 次的概率()(1)k k n k n nP k C p p -=-等. 【例1】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性,则在另外2只中任取l 只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【解析】(Ⅰ)设1ξ、2ξ已分别表示依方案甲和依方案乙需化验的次数,P 表示对应的概率,则方案甲中1ξ的分布列为方案乙中2ξ的分布列为若甲化验的次数不少于乙化验的次数,则[][]1212212221(1)(1)(2)(1)(2)(3)(1)(2)(3)(4)P P P P P P P P P P P ξξξξξξξξξξ==⨯=+=⨯=+=+==+=+=+=131322=0+(0)(0)0.72555555⨯++⨯+++=. (Ⅱ)3212()1023 2.4555E ξ=⨯+⨯+⨯==. 【名师点睛】本题易错的主要原因是对事件不清.对于方案甲,患有疾病的一只动物在每一次化验时出现的概率是等可能的,学生对事件不清,易误认为化验次数的可能取值是1,2,3,4,5,且1(1)(2)(3)(4)(5)2P P P P P ξξξξξ==========.事实上,若前4次化验为阴性,第5次不需再化验即知最后一只是患病动物,所以化验次数只能取l ,2,3,4.类似地,对于方案乙,第一次化验呈阳性,再化验3只中的前2只呈阴性后也不需再化验,或第一次化验呈阴性,再化验另外2只中的第l 只呈阴性或阳性后也不需再化验,即ξ只能取2,3.在解决问题时,要理清事件,求随机变量的分布列时,要弄清随机变量可能取到的每一个值以及取每一个值时所表示的意义,然后再利用所学的概率知识求出随机变量取每一个值时的概率,从而求出分布列.2.审题析题不到位【指点迷津】审题析题不清是本专题解答错误的主要原因,主要包括题意不清,茫然作答;阅读肤浅,丢失信息;条件欠缺,鲁莽下笔;图形不准,缺乏严密;方向不明,目标模糊等情况.审题不清的最主要原因在于学生的阅读理解能力欠缺.【例2】(2017年全国卷Ⅰ理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(Ⅰ)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=, 160.997 40.959 2=0.0080.09≈.【解析】(Ⅰ)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故()16,0.0026X B -,因此()()1611010.99740.0408P X P X ≥=-==-≈,X 的数学期望为160.00260.0416EX =⨯=(Ⅱ)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97,μσ=的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查. 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-= 因此μ的估计值为10.02.162221160.212169.971591.134i i x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为 221(1591.1349.221510.02)0.00815--⨯≈,因此σ的估计值为0.0080.09≈. 【名师点睛】面对试题中冗长的文字表述,学生方寸大乱,不知所措,从而失去读题、解题信心;没有形成通读全题的习惯,未能发现试题所附相关公式;未能根据试题提供的相关公式,提取零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026;未能准确把握较长问句“生产线在这一天的生产过程可能出现了异常情况”的关键词等,导致回答问题含混不清、词不达意.3.读图识图能力弱【指点迷津】学生面对一堆数据无从下手,主要原因是对数据、图表的直观印象和积累储备的知识经验不够;没有形成“用数据说话”的统计观念;对抽象数据的数字特征理解不到位.【例3】(2016年全国卷Ⅲ理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20C ︒的月份有5个【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可知七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均气温高于20C ︒的月份只有7、8两个月,D 错误.【名师点睛】解答本题错误主要是读图识图能力弱,对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;其次,不会从图表中读取有用数据并进行判断;第三,估计平均温差时易出现错误,错选B .4.解题规范性较差【指点迷津】涉及本专题内容的考查,学生失误和失分最多的是会而不对、对而不全和全而不准,如不能用字母表示事件,导致在利用简单事件表示复杂事件书写混乱;解答过程缺失关键步骤,丢三落四,导致丢分等.【例4】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解析】(Ⅰ)设A 表示事件“三种粽子各取到1个”,则由古典概型的计算公式有()11123531014C C C P A C ==. (Ⅱ)X 的所有可能取值为0,1,2则()383107015C P X C ===,()12283107115C C P X C ===,()21283101215C C P X C === 所以X 的分布列为 X 1 2 3 P715 715 115 故()0121515155E X =⨯+⨯+⨯=个. 【名师点睛】从解题规范方面看,学生常出现错误有,没有用字母表示事件,即缺少“设A 表示事件‘三种粽子各取到l 个’”这一步骤;直接写出1()4P A =,过程没写出来,应写为1112353101()4C C C P A C ==,一但答案错误,就失去过程分数;忽视“X 的所有可能值为0,1,2”,导致丢分等.5. 运算能力弱【指点迷津】运算求解能力主要是指会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.本专题中,学生运算能力弱主要体现在不能根据问题的条件寻找与设计合理、简捷的运算途径,不能根据要求对数据进行估计和近似计算.【例5】(2017年全国卷Ⅰ文19)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(Ⅰ)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()n i ii n n i i i i x x y y r x x y y ===--=--∑∑∑.0.0080.09≈. 【解析】(Ⅰ)由样本数据得(,)(1,2,...,16)i x i i =的相关系数为16116162211()(8.5)0.180.2121618.439()(8.5)ii ii i x x i r x x i ===--==≈-⨯⨯--∑∑∑. 由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(Ⅱ)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.92)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈.[来源:学+科+网] 这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09≈.【名师点睛】从运算方面看,学生不懂从16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑中解出 16221()160.212i i x x =-=⨯∑;不会计算0.2121618.439r =⨯⨯的值,不懂根据保留小数点后两位的要求,实施近似处理以简化运算;不懂直接由0.2121618.439r =⨯⨯采用放缩方法判断是否满足||0.25r <;不会由9.97x =和0.212s ≈计算出区间(3,3)x s x s -+的端点值9.334,10.606;计算151115i i x x ==∑时,不懂得先做相反数相消处理或各项统一分离10后转化为15'111015i i x x ==+∑计算;计算15'1115iix x==∑时,不懂得转化为1613115iix xx=-=∑,再利用16119.9716iix x===∑简化运算;计算222222221[0.070.10.060.060.010.10.0415s=++++++22220.020.240.110.11+++++222200.020.030.07]++++0.008130.008=≈,不懂得各项统一提取20.01的技巧;计算222221[160.212169.979.221510.02]15s=⨯+⨯--⨯时,不懂得在保证精确度要求的前提下作近似处理以简化运算.【解决问题对策】1.关注统计图表的教学【指点迷津】高考试卷的解答题往往以频率分布表、频率分布直方图、柱形图、折线图、茎叶图五个样本频率分布图表为载体,理科侧重考查随机变量的分布列及期望,文科侧重考查样本数字特征的应用,突出了对应用意识、数据处理能力及创新能力的考查.复习过程中,应充分利用五个样本频率分布图表,让学生会从图表中读取有用数据,或根据问题需要选择合适图表,依据统计学中的方法对数据进行分析,作出合理的决策.【例6】【2015年全国卷Ⅱ文、理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】A2.关注样本数字特征的含义【指点迷津】在复习中,应关注众数、中位数、平均数(期望)、方差与标准差有的含义,并能根据解决问题的需要选择合理的数字特征说明问题.【例7】【2014年课标卷Ⅱ文19】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(Ⅰ)67;(Ⅱ)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分)3. 厘清事件及其概率【指点迷津】复习过程中,应厘清事件间的关系,准确计算相关事件的概率.特别要求学生能将复杂事件进行分解,先分解为互斥事件,每个互斥事件又分解为两个相互独立事件的积事件.【例8】(2013年全国卷Ⅰ理19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果3n=,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n=,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【解析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=41113 161616264⨯+⨯=.(Ⅱ)X可能的取值为400,500,800,并且P(X=400)=41111161616--=,P(X=500)=116,P(X=800)=14,所以X的分布列为EX=1111400+500+80016164⨯⨯⨯=506.25.4.关注概率模型的识别与应用【指点迷津】复习过程中,应关注概率模型的识别与应用,一定要注意弄清题意,找出题中的关键字词,厘清各种概率模型及适用范围.如超几何分布和二项分布是教材中两个重要概率分布,二项分布与超几何分布的区别为,二项分布是有放回的抽样,每做一次事件,事件A 发生的概率是相同的;超几何分布是不放回的抽样,每做一次事件,事件A发生的概率是不相同的.【例9】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望()E X ;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率.【解析】(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=. 所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===;()11832240641195C C P X C ===;()2322401242195C P X C ===, 因此X 的分布列为 X0 1 2 P 7195 64195 124195 故X 数学期望7641243128()0121951951951955E X =⨯+⨯+⨯==. (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.学1科·网 5.关注用样本估计总体的思想分析解决问题【指点迷津】复习过程中,应让学生掌握,为了考察一个总体的情况,在统计中通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况.这种估计大体分为两类:用样本的频率分布估计总体的分布、用样本的数字特征估计总体的数字特征.其次,“预测与决策”与人们的生活休戚相关.随着社会的不断进步,人们对许多实际问题会有多种解决方案,但哪种方案最有利于解决问题,需要进行科学的决策.而通过期望、方差等的计算,并进行大小比较,就是其中的一种科学预测与决策的手段.【例10】【2016年课标Ⅰ理19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X的分布列;(Ⅱ)若要求()0.5≤≥,确定n的最小值;P X n(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19n=之中选其一,应选用哪n=与20个?【答案】(Ⅰ)由柱状图并一频率代替概率知,一台机器在三年内需要更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P X==⨯=;(16)0.20.20.04P X==⨯⨯=;(17)20.20.40.16(18)20.20.20.40.40.24P X==⨯⨯+⨯=;P X==⨯⨯+⨯⨯=;(19)20.20.220.40.20.24P X==⨯⨯+⨯=;(20)20.20.20.20.20.2P X==⨯⨯=;(21)20.20.20.08P X==⨯=(22)0.20.20.04所以X的分布列为X 16 17 18 19 20 2122P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+. 当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .6.关注“冷门”知识的复习【指点迷津】高考是对高中阶段学习结果的大检阅,统计与概率的考查,在突出核心知识考查的同时,也关注知识点的覆盖面.因此,在复习教学中,要全面检索高中阶段的所有知识,特别是不能忽视对所谓的“冷门知识”的复习,如正态分布、条件概率、相关系数、残差图、拟合效果等.【例11】【2015年课标Ⅰ理18】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,,8i =⋅⋅⋅)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w 281(x )ii x =-∑ 281()i i w w =-∑ 81()(y )i i i x x y =--∑ 81()()i i i w w y y =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i i w x =,8118i i w w ==∑ (Ⅰ)根据散点图判断,y a bx =+y 与y c b x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题: (i )年宣传费49x =时,年销售量及年利润的预报值是多少?(ii)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,),,u v ⋅⋅⋅(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为µ121()()()n i i i n i i u u v v uu β==--=-∑∑,µµv u αβ=-. 【解析】(Ⅰ)100.668y x =+(Ⅲ) (i )由(Ⅱ)知,当49x =时,年销售量y 的预报值$100.66849576.6y =+=,年利润的预报值0.2576.64966.32z=⨯-=$. ②根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.668)13.620.12zx x x x =+-=-++$, 所以当13.6 6.82x ==,即46.24x =时,z 取得最大值. 7.加强阅读理解能力培养与训练【指点迷津】统计与概率进一步强化应用意识的考查,已成高考命题改革的必然趋势,试卷试题文字阅读量的逐年增加,或成高考试卷的发展趋势.复习中,应规范教学的阅读指导.应该呈现读题提取关键信息、析题形成解题思路、解题示范规范表达、反思积淀解题经验的“四步曲”完整过程,才能充分发挥解题教学的效益.其次,加强平时的阅读训练.需要适当增加平时作业习题的阅读量,尤其是应用性试题的读题训练,提高学生的阅读理解能力及应试心态.【例12】【2014年课标Ⅰ理18】从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.【解析】(Ⅰ) 2200,150x s ==(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=,(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826, 依题意知(100,0.6826)X B :,所以1000.682668.26EX =⨯=.8.规范答题表达形式【指点迷津】规范答题,一方面,思考问题要规范.也就是从知识的源头出发,弄清知识的来龙去脉.知识是怎么要求的,就怎么想、怎么用、怎么写,不能模棱两可,要会运用知识进行思考;另一方面,书写要规范.书写规范是一个重要的高考增分点,这一点应引起足够重视.如解题中应注意用字母表示事件,注意作答等.【例13】(2015年全国卷Ⅱ理18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级” .假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【解析】(Ⅰ)略;(Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或者非常满意”;记2A C 表示事件:“A 地区用户满意度等级为非常满意”;记1B C 表示事件:“A 地区用户满意度等级为不满意”;记2B C 表示事件:“A 地区用户满意度等级为满意”;则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122()()B A B A C C C C C =U ,1122()(()())B A B A P C P C C C C =U 1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+, 由所给数据得1212,,,A A B B C C C C 发生的频率分别为164108,,,20202020,故1212164108(),(),(),()20202020A A B B P C P C P C P C ====,所以164108()0.4820202020P C =⨯⨯⨯=.。
秘籍08统计与概率概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①数据的整理、描述和分析。
②概率问题。
统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!1.平均数2.中位数:几个数据按从小到大的顺序排列时,①m=,n=;②补全条形统计图;③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④180×10%=18(万户).信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的中考统计与概率是基础题。
条形统计图和扇形统计图的结合经常考查求总量、画条形统计图、求扇形度数和估计等。
数据整理和分析常考的知识点有众数、中位数、平均数和方差。
有时也会考查频率和频数。
请根据图表信息,回答下列问题.(1)参加此次调查的总人数是______人,频数统计表中a=(2)在扇形统计图中,D组所在扇形的圆心角度数是______°(3)该校准备开展以“劳动美”为主题的教育活动,要从报名的得,请用树状图或列表法求恰好抽到一名男生和一名女生的概率.【答案】(1)150,60(2)36(3)恰好抽到一名男生和一名女生的概率为2请根据所给信息解答下列问题:(1)填空:① a____________,②(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为种等可能的结果,其中甲、乙两人选到的两本名著是《三国演义》和《红楼梦》的结果有(1)扇形统计图中的%n ________%,B项活动所在扇形的圆心角的大小是________ .(2)甲同学想参加A、B、C三个活动中的一个,乙同学想参加B、C、E这三个活动中的一个,若他们随机抽选其中一个活动的概率相同,请用列表法或画树状图法,求他们同时选中同一个活动的概率.【答案】(1)15,72(2)13已知测试成绩F组的全部数据为96,95,97,96,99请根据以上信息,完成下列问题:(1)m=,a=,并补全条形统计图.(2)F组成绩的中位数是.组同学中有两名是九年级的,其余两名是其他年级的,现从故答案为:50,72 .(2)解:将F组成绩的成绩从低向高排列为:则中位数为969796.5 2.故答案为96.5.共有12种等可能情况,其中恰好有一名是九年级学生的有∴P(恰好有一名是九年级学生【点睛】本题主要考查了扇形统计图和条形统计图的结合、中位数、用树状图求概率等知识点,正确画出请根据图表中的信息,解答下列问题:(1)填空:b ,抽取的学生竞赛成绩的中位数落在,请你估计全校此次抽取的学生竞赛成绩的平均数为1 100(3)解:此次竞赛成绩为“优秀”的学生人数为此次竞赛成绩为“优秀”的学生人数为720【点睛】本题考查频数分布直方图、统计表、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.5.(2023·江苏徐州·统考一模)校园安全问题受到全社会的广泛关注,.十分熟悉、根据以上信息解答下列问题:(1)本次接受调查的学生共有人,扇形统计图中A部分所对应的扇形圆心角是(2)请补全条形统计图;(3)若该中学共有学生1800人,估计该校学生中对校园安全知识的了解程度达到【答案】(1)60,90(2)见解析(3)根据题意,155 180060060(人)答:该校学生中对校园安全知识的了解程度达到【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.(2023·江苏苏州·统考二模)2023年春节假期,苏州文旅全面复苏,接待人次、旅游收入双创新高:重请你根据统计图中的信息,解决下列问题:(1)这次调查一共抽取了___名同学:扇形统计图中,旅游地点D所对应的扇形圆心角的度数形统计图.(2)若小志所在学校共有3000名学生,请你根据调查结果估计该校最喜爱生总人数.(2)解:189 ********60(名),答:估计该校最喜爱“穹窿山景区”和“灵岩山景区【点睛】本题考查了条形统计图和扇形统计图,补全条形统计图,利用样本估计总体的知识,将条形统计图和扇形统计图的数据加以联系,并注重数形结合是解答本题的关键.7.(2023·广东河源·统考一模)某校为了解本校学生对十大”知识竞赛(百分制),从中分别随机抽取了根据以上信息,解答下列问题:(1)直接写出上述a,b,c(2)你认为这次竞赛中哪个年级成绩更好,为什么?(3)若该校九年级共500人参加了此次竞赛活动,估计竞赛成绩优秀(【答案】(1)40;96;91.5(2)九年级成绩相对更好,理由见解析(1)本次调查的学生共有人;扇形统计图中,区域A所对应的扇形圆心角的度数是(2)将条形统计图补充完整;(3)该中学共有学生2400人,请估算该校参与声乐类和书法类社团的学生总人数;(4)校园艺术节到了,学校将从符合条件的4名社团学生(男女各持人.请用列表或画树状图的方法,求恰好选中1名男生和【答案】(1)50,100.8(3)解:14162400144050(人),答:该校参与声乐类和书法类社团的学生总人数约有(4)解:用1A ,2A 表示男同学,1B ,1A 2A 1B 1A (2A ,1A )(四个等级,并绘制了如图所示的两幅不完整的统计图表,根据图表信息,(1)随机抽取的学生共______(2)若全校有1400人参加了知识竞赛,请你估计其中等级为(3)若成绩为100分的学生有甲、乙、丙、丁四人,学校将从这四人中随机选出表或画树状图的方法,求甲、乙两人被同时选中的概率.【答案】(1)60,84结果:(甲,乙),(甲,丙),(甲,丁),(乙,甲),(丁,甲),(丁,乙),(丁,丙)∴共有12种等可能性的结果,其中甲、乙两人被同时选中的结果有设甲、乙两人被同时选中的事件为M,请结合图中的信息,解决下列问题:(1)请求出接受问卷调查的人数,并补全条形统计图;(2)请求出扇形统计图中“满意”部分的圆心角度数;(3)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这性,2位女性.请用画树状图或列表的方法求出选择回访的市民为“一男一女【答案】,统计图见解析(2)20360144 50,(3)画树状图得:∵共有12种等可能的结果,其中是“一男一女”的有8种情况,∴一男一女的概率为82=123.【点睛】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率b.七年级成绩在8090x 的数据如下(单位:分)808185858585858585c.七、八年级各抽取的30名学生成绩的平均数、中位数、众数、方差如下表:年级平均数中位数众数方差分,可以推断他的成绩超过了该校八年级一半以上学生的成绩.名学生,估计七年级成绩优秀的学生人数.(1)这次被调查的学生共有_______人;(2)请补全条形统计图;(3)在数独比赛项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中随机选取两名参加数独决赛,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)200人(2)见解析(3)解:甲乙(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这体育社团活动课的看法,请你用列表或画树状图的方法,求选出的)利用选足球的学生的百分比乘以总人数求得选足球的人数,再利用总人数减去其他课程的人数求得选(3)解:画树状图如下:共有12种等可能的情况,其中选出的2人恰好∴选出的2人恰好1人选修篮球,1人选修足球的概率为(1)训练前成绩的中位数是分,训练后成绩的众数是(2)训练后比训练前平均分增加了多少分?(3)如果该校九年级有400名学生,那么估计训练后成绩为满分的人数有多少人?【答案】(1)8,10(2)训练后平均分增加了1.08分(3)192人。
考点回放1.普查与抽样调查地区别用选择合适地方式进行数据统计2.总体.个体. 样本地描述3.扇形统计图.条形统计图.折线统计图特点及应用4.从各种统计图中获取正确地信息5.根据各统计图地特点和题目地要求正确地选择统计图,解决相应问题6.制作扇形统计图表示数据7.计算一组数据地平均数或加权平均数8.众数和中位数地意义与应用9.根据具体问题,选择合适地统计量表示数据地集中程度10.极差.方差及标准差地意义,方差.标准差地计算以11.根据方差.标准差表示数据地离散程度12.用样本估计总体地思想,利用样本地平均数.方差来估计总体地平均数和方差13.频数.频率地概念与计算14.频数分布地意义和作用,列频数分布表,画频数分布直方图和频数折线图,解决简单地实际问题15.根据统计结果作出合理地判断和预测,清晰地表达自己地观点16.必然事件.不可能事件.不确定事件地判断17.概率地意义,运用列举法(包括列表.画树状图)计算简单事件发生地概率.18.通过大量重复实验得到地频率估计事件发生概率地值19.利用概率地知识解决一些实际问题,如利用概率判断游戏地公平性典型题例1(娄底)去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生地数学成绩,从中抽取 1 000名考生地数学成绩进行统计分析,以下说法正确地是()A.这1 000名考生是总体地一个样本B.7.6万名考生是总体C.每位考生地数学成绩是个体D.1 000名学生是样本容量例2 (南充)某校为了举办“庆祝建国60周年”例6(北京)某班共有41学习惯用左手写字,老师随机请1地同学被选中地概率是( A.0 B.141例6 小球,分别标有数字3,4,5个小球,放回;再取出一个小球,上地数字,地数字之和为9中考真题一.选择题:1.A B C D .对甲型H1N1医学检查2.(杭州) 况,A .调查全体女生C .调查九年级全体学生D .调查七.八.九年级各3.任意抽取40中,40是( ) A .个体B C .样本容量D 4.9.3, 9.7,9.0,所剩数据地平均数是(A .9.2B .5.(齐齐哈尔)一组数据和众数分别是( )A .7,7 BC .5.5,7D 6.全相同,.全年级学生地平均成绩一定在这六个平均成.将六个平均成绩之和除以6,就得到全年级学.这六个平均成绩地中位数就是全年级学生地.这六个平均成绩地众数不可能是全年级学生鄂州)有一组数据如下:3.a.4.6.7,它们地平5,那么这组数据地方差是( ) 10C.2D.2(嘉兴)已知数据:2,1-,3,5,6,5,则这组 ) .5和7 B .6和7 C .5和3 D .6和3 (宜宾)已知数据:23231-,,,,π.其 ) % B. 40% % D. 80%(包头)某校为了了解九年级学生地体能情,随机抽查了其中30名学生,测试了分钟仰卧起座地次,并绘制成如图所,,仰15~次之间地频率是( ) .0.1 B .0.17 C .0.33D .0.4(长沙)甲.乙.丙.丁四人进行射击测试,每10次射击成绩地平均数均是9.2环,方差分别0.56=2甲,0.60s =2乙,20.50s =丙,20.45=丁,则成绩最稳定地是( ).甲 B .乙 C .丙D .丁(龙岩)为了从甲.乙.丙.丁四位同学中选派,老师对他们地五次数学测,得出他们地平均分均为85分,且1002=甲.1102=乙s .1202=丙s .902=丁s . 根据,派去参加竞赛地两位同学是( ) A .甲.乙B .甲.丙C .甲.丁(泰州)有下列事件:①367人中必有2人地DC 20% B20% A 35%各型号参展轿车数的百分比(1)(例(第12题)下,温度低于0那么a+b=bA.1个20.间放一个圆锥米粒,米粒数地比值上面地实验中, A.0个B.21.有1~6这6A.1 322.定从内科5成,A.3 5二.填空题:1.尝,调查)2.(钦州)是_ _.4.(河池)是4,5.(牡丹江)中位数都是3, 6.(杭州)确到0.1)是息,谈谈自己地感想.(不超过30个字) 3.(包头)某校欲招聘一名数学教师,学校对甲.乙.丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人地各项测试成绩如下表所示:(1)如果根据三项测试地平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学.科研和组织三项能力测试得分按5∶3∶2地比例确定每人地成绩,谁将被录用,说明理由.4.(聊城)某百货商场经理对新进某一品牌几种号码地男式跑步鞋地销售情况进行了一周地统计,得到一组数据后,绘制了频数(双)频率统计表与频数分布直方图如下:(1(2(35.小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明地袋子里装有除数字以外其它均相同地4个小球,上面分别标有数字1.2.3.4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下地3个小球中随机摸出一个小球.若摸出地两个小球上地数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选地概率; (2)你认为这个游戏公平吗?请说明理由. 参考答案 一.选择题:1.D2.D3.C4.D5.D6.A7.B8.C9.A 10.A 11.C 12.A 13.B 14.B 15.C 16.D 17.C 18.C 19.C 20.A 21.C 22.A 二.填空题:1.抽样调查2.23.9.34.35.1,3,5或2,3,46.23;2.67.=8.小林9.1600 10.0.94 11.13 12.2713.814.12 15.45三.解答题:1.(1)抽样调查;(2)2040A B ==,;(3)2.(1)200;(2)200-20-110-10=60,补全统计图如下:(3)18;(4)感想略. 3.A 地频率=61305= 4.(1)甲地平均成绩为:(857064)373++÷=,乙地平均成绩为:(737172)372++÷=, 丙地平均成绩为:(736584)374++÷=,(第39题) (第45题)39 40 41 42 43 44 号码(第2题)∴候选人丙将被录用. (2)甲地测试成绩为:(855703642)(532)76.3⨯+⨯+⨯÷++=,乙地测试成绩为:(735713722)(532)72.2⨯+⨯+⨯÷++=,丙地测试成绩为:(735653842)(532)72.8⨯+⨯+⨯÷++=,∴候选人甲将被录用. 5.1(11.6211.5111.9411.1711.01)11.455x =++++=甲,18.50x =乙215S =甲[22(11.6211.45)(11.5111.45)-+-222(11.9411.45)(11.1711.45)(11.0111.45)+-+-+-]222221(0.170.060.490.280.44)5=++++10.54465=⨯0.10892=0.11≈,20S =乙,甲地极差0.93=,乙地极差0=.6.(1)30250.25a b c ===,,;(2)补画地直方图如图:(3右. 7.(18.(1)根据题意可列表如下:从表中可以看出所有可能结果共有12种,且每种结果发生地可能性相同,符合条件地结果有8种,∴P (和为奇数)23=;(2)不公平.∵小明先挑选地概率是P (和为奇数)23=,小亮先挑选地概率是P (和为偶数)13=,∵2133≠,∴不公平.50 3940414243 44 号码。
备考2020中考数学高频考点分类突破统计和概率一.选择题(共10题)1.(2019•盘锦)下列说法正确的是()A.方差越大,数据波动越小B.了解辽宁省初中生身高情况适合采用全面调查C.抛掷一枚硬币,正面向上是必然事件D.用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件【解答】解:A、方差越大,数据波动越大,故本选项错误;B、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误;C、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D、用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件,故本选项正确;故选:D.2.(2019•莱芜区)某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了五次测试,其中甲车间五次成绩的平均数是90分,中位数是91分,方差是2.4;乙车间五次成绩的平均数是90分,中位数是89分,方差是4.4.下列说法正确的是()A.甲车间成绩的平均水平高于乙车间B.甲、乙两车间成绩一样稳定C.甲车间成绩优秀的次数少于乙车间(成绩不低于90分为优秀)D.若选派甲车间去参加比赛,取得好成绩的可能性更大【解答】解:A、甲车间成绩的平均水平和乙车间相同,故本选项错误;12B 、因为甲车间的方差是2.4,乙车间的方差是4.4,所以甲车间成绩比较稳定,故本选项错误;C 、因为甲车间的中位数是91分,乙车间的中位数是89分,所以甲车间成绩优秀的次数多于乙车间(成绩不低于90分为优秀),故本选项错误;D 、选派甲车间去参加比赛,取得好成绩的可能性更大,正确; 故选:D .3.(2019•日照)下列事件中,是必然事件的是( ) A .掷一次骰子,向上一面的点数是6B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C .射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯【解答】解:A .掷一次骰子,向上一面的点数是6,属于随机事件;B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C .射击运动员射击一次,命中靶心,属于随机事件;D .经过有交通信号灯的路口,遇到红灯,属于随机事件; 故选:B .4.(2019•鄂尔多斯)下列计算①√9=±3②3a 2﹣2a =a ③(2a 2)3=6a 6④a 8÷a 4=a 2⑤√−273=−3,其中任意抽取一个,运算结果正确的概率是( )A .15B .25C .35D .45【解答】解:运算结果正确的有⑤,则运算结果正确的概率是15,3故选:A .5.(2019•百色)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )A .小黄的成绩比小韦的成绩更稳定B .两人成绩的众数相同C .小韦的成绩比小黄的成绩更稳定D .两人的平均成绩不相同【解答】解:A ,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C 选项错误; B .小韦成绩的众数为10环,小黄成绩的众数为9环,此选项错误;D .小韦成绩的平均数为6+7×2+10×36=253,小黄的平均成绩为7+8×2+9×36=253,此选项错误;故选:A .6.(2019•贵阳)如图,下面是甲乙两位党员使用“学习强国APP ”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是( )A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较【解答】解:由扇形统计图可知,乙党员学习文章时间的百分比是20%,由条形统计图求出甲党员学习文章的百分比是15÷(15+30+10+5)=25%,所以甲党员的百分比比乙党员的百分比大.故选:A.7.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A.甲的成绩更稳定B.乙的成绩更稳定45C .甲、乙的成绩一样稳定D .无法判断谁的成绩更稳定【解答】解:由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好. 故选:B .8.(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t 人数 学生类型 0≤t <1010≤t <2020≤t <3030≤t <40t ≥40性别男 7 31 25 30 4 女82926328学段 初中 25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10 的人数在0﹣15 之间,当人数为0 时中位数在20﹣30 之间;当人数为15 时,中位数在20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0﹣15,35,15,18,1,当0≤t<10时间段人数为0 时,中位数在10﹣20 之间;当0≤t<10时间段人数为15 时,中位数在10﹣20 之间,故④错误.故选:C.9.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()6A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.10.(2019•呼和浩特)某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()78A .从2013年到2016年,该校纸质书人均阅读量逐年增长B .2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C .2013年至2018年,该校纸质书人均阅读量的极差是45.3本D .2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍 【解答】解:A 、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;B 、2013年至2018年,该校纸质书人均阅读量的中位数是43.3+50.12=46.7本,正确;C 、2013年至2018年,该校纸质书人均阅读量的极差是60.8﹣15.5=45.3本,正确;D 、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.8+50.1+58.443.3+38.5+15.5≈1.74≠2倍,错误;故选:D .二、填空题(共10题)1.(2019•锦州)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 个. 【解答】解:设袋中红球有x 个,根据题意,得:x3+x=0.7,9解得:x =7,经检验:x =7是分式方程的解, 所以袋中红球有7个, 故答案为:7.2.(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 .【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13,故答案为:13.3.(2019•遵义)小明用0﹣9中的数字给手机设置了六位开机密码,但他把最后一位数字忘记了,小明只输入一次密码就能打开手机的概率是 .【解答】解:随意拨动最后一位号码正好开锁的概率是:110.故答案为:110.4.(2019•湘潭)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是 .【解答】解:选出的恰为女生的概率为33+2=35,10故答案为35.5.(2019•雅安)在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为 . 【解答】解:画树状图为:共有9种等可能的结果数,其中两球上的编号的积为偶数的结果数为5,所以两球上的编号的积为偶数的概率=59. 故答案为59.6.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.117.(2019•菏泽)一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是 . 【解答】解:若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意; 若众数为5,则数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4﹣5)2+(5﹣5)2+(5﹣5)2+(6﹣5)2]=12;若众数为6,则数据为4,5,6,6,中位数为5.5,不符合题意;故答案为12.8.(2019•宿迁)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S 甲2、S 乙2,且S 甲2>S 乙2,则队员身高比较整齐的球队是 .【解答】解:∵S 甲2>S 乙2, ∴队员身高比较整齐的球队是乙, 故答案为:乙.9.(2019•遂宁)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 分. 【解答】解:由题意,则该名教师的综合成绩为: 92×40%+85×40%+90×20% =36.8+34+18 =88.8 故答案为:88.81210.(2019•攀枝花)一组数据1,2,x ,5,8的平均数是5,则该组数据的中位数是 .【解答】解:根据题意可得,1+2+x+5+85=5,解得:x =9,这组数据按照从小到大的顺序排列为:1,2,5,8,9, 则中位数为:5. 故答案为:5. 三.解答题(共13题)1.(2019•大连)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级 频数(人)频率 优秀 15 0.3 良好 及格 不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 %;(2)被测试男生的总人数为 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 %;13(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人, 被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20%. 故答案为15,20;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:550×100%=10%,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%, 该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人) 答:该校八年级男生成绩等级为“良好”的学生人数72人.2.(2019•娄底)湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制作了如下统计图表:14关注程度 频数 频率 A .高度关注 m 0.4 B .一般关注 100 0.5 C .没有关注20n(1)根据上述统计图表,可得此次采访的人数为 ,m = ,n = . (2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?【解答】解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人), m =200×0.4=80(人),n =1﹣0.4﹣0.5=0.1; 故答案为200,80,0.1; (2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.3.(2019•大庆)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.组别体重(千克)人数A37.5≤x<42.510B42.5≤x<47.5nC47.5≤x<52.540D52.5≤x<57.520E57.5≤x<62.510请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?1516【解答】解:(1)①m =20÷20%=100, ②n =100﹣10﹣40﹣20﹣10=20,③c =40100×360°=144°; 故答案为100,20,144(2)被抽取同学的平均体重为:1100(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克. (3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.4.(2019•徐州)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:17根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数; (2)补全条形统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=760, ∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×760=42° 答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元, 补全的统计图如图:185.(2019•通辽)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目 排球 篮球 踢毽 跳绳 其他 人数(人)78146请根据以上统计表(图)解答下列问题: (1)本次调查共抽取了多少人? (2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%, 又知九年级最喜欢排球的人数为10人,19∴九年级最喜欢运动的人数有10÷20%=50(人), ∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人, 那么八年级最喜欢跳绳的人数有15﹣5=10人, 最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比=1050=20%, 补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目 排球 篮球 踢毽 跳绳 其他 人数(人)7814156(3)不够用,理由:1800×14+13+50×30%150÷4=126,20∵126>124, ∴不够用. 故答案为:15.6.(2019•齐齐哈尔)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A .十分了解;B .了解较多:C .了解较少:D .不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有 名; (2)请补全条形图;(3)扇形图中的选项“C .了解较少”部分所占扇形的圆心角的大小为 °;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?【解答】解:(1)本次被抽取的学生共30÷30%=100(名), 故答案为100;(2)100﹣20﹣30﹣10=40(名), 补全条形图如下:21(3)扇形图中的选项“C .了解较少”部分所占扇形的圆心角 360°×30%=108°, 故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×20+40100=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.7.(2019•东营)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.22【解答】解:(1)∵被抽到的学生中,报名“书法”类的人数有20人, 占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:20÷10%=200(人);(2)被抽到的学生中,报名“绘画”类的人数为:200×17.5%=35(人), 报名“舞蹈”类的人数为:200×25%=50(人); 补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70200×360°=126°;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A 、B 、C 、D , 画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为416=14.238.(2019•十堰)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是 .(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是23,故答案为:23;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为12.249.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表; 维修次数89 10 11 12 频数(台数) 1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6. (2)购买10次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数y 1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300 购买11次时,某台机器使用期内维修次数8910111225该台机器维修费用26000 26500 27000 27500 32500此时这100台机器维修费用的平均数y 2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500, ∵27300<27500,所以,选择购买10次维修服务.10.(2019•淮安)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字. (1)用树状图或列表等方法列出所有可能结果; (2)求两次摸到不同数字的概率. 【解答】解:(1)画树状图如图所示:所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,∴两次摸到不同数字的概率为49.11.(2019•黄石)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m ,然后放回洗匀,背面朝上放在桌面上,再26由乙从中随机抽取一张卡片,记该卡片上的数字为n ,组成一数对(m ,n ). (1)请写出(m ,n )所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.【解答】解:(1)(m ,n )所有可能出现的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,1),(3,2),(3,3).(2)数字之和为奇数的概率=49,数字之和为偶数的概率=59,49≠59,∴这个游戏不公平.12.(2019•无锡)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示. 各等级学生平均分统计表 等级 优秀 良好 及格 不及格 平均分92.185.069.241.3(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.27【解答】解:(1)扇形统计图中“不及格”所占的百分比是1﹣52%﹣18%﹣26%=4%; 故答案为:4%;(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1; 答:所抽取的学生的测试成绩的平均分为84.1分;(3)设总人数为n 个,80.0≤41.3×n ×4%≤89.9 所以 48<n <54.5,又因为 4%n 为整数 所以n =50, 即优秀的学生有52%×50÷10%=260 人.13.(2019•济宁)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t (小时)人数 占女生人数百分比0≤t <0.5 4 20% 0.5≤t <1 m 15% 1≤t <1.5 5 25% 1.5≤t <2 6 n 2≤t<2.5210%28根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m = ,n = ;(2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?【解答】解:(1)女生总人数为4÷20%=20(人),∴m =20×15%=3,n =620×100%=30%, 故答案为:3,30%;(2)学生总人数为20+6+5+12+4+3=50(人),这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t <1.5范围内, ∴学生阅读时间的中位数在1≤t <1.5时间段, 故答案为:50,1≤t <1.5;(3)学习时间在2~2.5小时的有女生2人,男生3人.29共有20种可能情况,则恰好抽到男女各一名的概率是1220=35.。
中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。
备考2020中考数学高频考点分类突破统计和概率一.选择题(共10题)1.(2019•盘锦)下列说法正确的是()A.方差越大,数据波动越小B.了解辽宁省初中生身高情况适合采用全面调查C.抛掷一枚硬币,正面向上是必然事件D.用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件【解答】解:A、方差越大,数据波动越大,故本选项错误;B、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误;C、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D、用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件,故本选项正确;故选:D.2.(2019•莱芜区)某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了五次测试,其中甲车间五次成绩的平均数是90分,中位数是91分,方差是2.4;乙车间五次成绩的平均数是90分,中位数是89分,方差是4.4.下列说法正确的是()A.甲车间成绩的平均水平高于乙车间B.甲、乙两车间成绩一样稳定C.甲车间成绩优秀的次数少于乙车间(成绩不低于90分为优秀)D.若选派甲车间去参加比赛,取得好成绩的可能性更大【解答】解:A、甲车间成绩的平均水平和乙车间相同,故本选项错误;B 、因为甲车间的方差是2.4,乙车间的方差是4.4,所以甲车间成绩比较稳定,故本选项错误;C 、因为甲车间的中位数是91分,乙车间的中位数是89分,所以甲车间成绩优秀的次数多于乙车间(成绩不低于90分为优秀),故本选项错误;D 、选派甲车间去参加比赛,取得好成绩的可能性更大,正确; 故选:D .3.(2019•日照)下列事件中,是必然事件的是( ) A .掷一次骰子,向上一面的点数是6B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C .射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯【解答】解:A .掷一次骰子,向上一面的点数是6,属于随机事件;B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C .射击运动员射击一次,命中靶心,属于随机事件;D .经过有交通信号灯的路口,遇到红灯,属于随机事件; 故选:B .4.(2019•鄂尔多斯)下列计算①√9=±3②3a 2﹣2a =a ③(2a 2)3=6a 6④a 8÷a 4=a 2⑤√−273=−3,其中任意抽取一个,运算结果正确的概率是( )A .15B .25C .35D .45【解答】解:运算结果正确的有⑤,则运算结果正确的概率是15,故选:A .5.(2019•百色)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( )A .小黄的成绩比小韦的成绩更稳定B .两人成绩的众数相同C .小韦的成绩比小黄的成绩更稳定D .两人的平均成绩不相同【解答】解:A ,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C 选项错误; B .小韦成绩的众数为10环,小黄成绩的众数为9环,此选项错误;D .小韦成绩的平均数为6+7×2+10×36=253,小黄的平均成绩为7+8×2+9×36=253,此选项错误;故选:A .6.(2019•贵阳)如图,下面是甲乙两位党员使用“学习强国APP ”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是( )A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较【解答】解:由扇形统计图可知,乙党员学习文章时间的百分比是20%,由条形统计图求出甲党员学习文章的百分比是15÷(15+30+10+5)=25%,所以甲党员的百分比比乙党员的百分比大.故选:A.7.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【解答】解:由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选:B.8.(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10 的人数在0﹣15 之间,当人数为0 时中位数在20﹣30 之间;当人数为15 时,中位数在20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0﹣15,35,15,18,1,当0≤t<10时间段人数为0 时,中位数在10﹣20 之间;当0≤t<10时间段人数为15 时,中位数在10﹣20 之间,故④错误.故选:C.9.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.10.(2019•呼和浩特)某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍【解答】解:A 、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;B 、2013年至2018年,该校纸质书人均阅读量的中位数是43.3+50.12=46.7本,正确;C 、2013年至2018年,该校纸质书人均阅读量的极差是60.8﹣15.5=45.3本,正确;D 、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.8+50.1+58.443.3+38.5+15.5≈1.74≠2倍,错误;故选:D .二、填空题(共10题)1.(2019•锦州)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 个. 【解答】解:设袋中红球有x 个,根据题意,得:x3+x=0.7,解得:x =7,经检验:x =7是分式方程的解, 所以袋中红球有7个, 故答案为:7.2.(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 .【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13,33.(2019•遵义)小明用0﹣9中的数字给手机设置了六位开机密码,但他把最后一位数字忘记了,小明只输入一次密码就能打开手机的概率是 .【解答】解:随意拨动最后一位号码正好开锁的概率是:110.故答案为:110.4.(2019•湘潭)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是 .【解答】解:选出的恰为女生的概率为33+2=35,故答案为35.5.(2019•雅安)在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为 . 【解答】解:画树状图为:共有9种等可能的结果数,其中两球上的编号的积为偶数的结果数为5,所以两球上的编号的积为偶数的概率=59.96.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.7.(2019•菏泽)一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是 . 【解答】解:若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意; 若众数为5,则数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4﹣5)2+(5﹣5)2+(5﹣5)2+(6﹣5)2]=12;若众数为6,则数据为4,5,6,6,中位数为5.5,不符合题意;故答案为12.8.(2019•宿迁)甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S 甲2、S 乙2,且S 甲2>S 乙2,则队员身高比较整齐的球队是 .【解答】解:∵S 甲2>S 乙2, ∴队员身高比较整齐的球队是乙, 故答案为:乙.9.(2019•遂宁)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 分. 【解答】解:由题意,则该名教师的综合成绩为: 92×40%+85×40%+90×20% =36.8+34+18 =88.8 故答案为:88.810.(2019•攀枝花)一组数据1,2,x ,5,8的平均数是5,则该组数据的中位数是 .【解答】解:根据题意可得,1+2+x+5+85=5,解得:x =9,这组数据按照从小到大的顺序排列为:1,2,5,8,9, 则中位数为:5. 故答案为:5. 三.解答题(共13题)1.(2019•大连)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀150.3良好及格不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20%.故答案为15,20;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:550×100%=10%,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.2.(2019•娄底)湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制作了如下统计图表:关注程度频数频率A.高度关注m0.4B.一般关注1000.5C.没有关注20n(1)根据上述统计图表,可得此次采访的人数为,m=,n=.(2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?【解答】解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1﹣0.4﹣0.5=0.1;故答案为200,80,0.1;(2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.3.(2019•大庆)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.组别体重(千克)人数A37.5≤x<42.510B42.5≤x<47.5nC47.5≤x<52.540D52.5≤x<57.520E57.5≤x<62.510请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?【解答】解:(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c=40100×360°=144°;故答案为100,20,144(2)被抽取同学的平均体重为:1100(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克.(3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.4.(2019•徐州)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=7 60,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×760=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:5.(2019•通辽)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)78146请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比=1050=20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×14+13+50×30%150÷4=126,∵126>124,∴不够用.故答案为:15.6.(2019•齐齐哈尔)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×20+40100=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.7.(2019•东营)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.【解答】解:(1)∵被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:20÷10%=200(人);(2)被抽到的学生中,报名“绘画”类的人数为:200×17.5%=35(人),报名“舞蹈”类的人数为:200×25%=50(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70200×360°=126°;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为416=14.8.(2019•十堰)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是 .(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是23,故答案为:23;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为1 2.9.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数89101112频数(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6.(2)购买10次时,某台机器使用期内维修次数89101112该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数y1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用2600026500270002750032500此时这100台机器维修费用的平均数y 2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500, ∵27300<27500,所以,选择购买10次维修服务.10.(2019•淮安)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字. (1)用树状图或列表等方法列出所有可能结果; (2)求两次摸到不同数字的概率. 【解答】解:(1)画树状图如图所示:所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8,8);(2)共有9种等可能的结果,两次摸到不同数字的结果有4个,∴两次摸到不同数字的概率为49.11.(2019•黄石)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.【解答】解:(1)(m,n)所有可能出现的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,1),(3,2),(3,3).(2)数字之和为奇数的概率=49,数字之和为偶数的概率=59,4 9≠59,∴这个游戏不公平.12.(2019•无锡)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表等级优秀良好及格不及格平均分92.185.069.241.3(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.【解答】解:(1)扇形统计图中“不及格”所占的百分比是1﹣52%﹣18%﹣26%=4%;故答案为:4%;(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1;答:所抽取的学生的测试成绩的平均分为84.1分;(3)设总人数为n个,80.0≤41.3×n×4%≤89.9 所以48<n<54.5,又因为4%n为整数所以n=50,即优秀的学生有52%×50÷10%=260 人.13.(2019•济宁)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t(小时)人数占女生人数百分比0≤t<0.5420%0.5≤t<1m15%1≤t<1.5525%1.5≤t<26n2≤t<2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m=,n=;(2)此次抽样调查中,共抽取了名学生,学生阅读时间的中位数在时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?【解答】解:(1)女生总人数为4÷20%=20(人),∴m=20×15%=3,n=620×100%=30%,故答案为:3,30%;(2)学生总人数为20+6+5+12+4+3=50(人),这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t<1.5范围内,∴学生阅读时间的中位数在1≤t<1.5时间段,故答案为:50,1≤t<1.5;(3)学习时间在2~2.5小时的有女生2人,男生3人.12 20=35.共有20种可能情况,则恰好抽到男女各一名的概率是。
2020年中考数学二轮专题——概率基础过关1. 下列说法正确的是()A. “任意画一个三角形,其内角和为360°”是随机事件B. 某种彩票的中奖率是1100,说明每买100张彩票,一定有1张中奖C. “篮球队员在罚球线上投篮一次,投中”为随机事件D. 投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次2. (2019宜昌)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A. 12 B.14 C.18 D.1163. (2019赤峰)不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A. 3个都是黑球B. 2个黑球1个白球C. 2个白球1个黑球D. 至少有1个黑球4. (2019青羊区一诊)小敏的讲义夹里放了大小相同的试卷共12页,其中语文2页、数学4页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A. 112 B.16 C.12 D.135. (2019湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. 110 B.910 C.15 D.456. (2019徐州)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A. 500B. 800C. 1000D. 12007. (2019成华区一诊)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是()A. 110 B.19 C.12 D. 18. (2019贵阳)如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()第8题图A. 19B. 16C. 29D. 139. (2019海南)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A. 12B. 34C. 112D. 51210. (2019绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm)统计如下:组别(cm) x <160 160≤x <170170≤x <180x ≥180 人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180 cm 的概率是( ) A. 0.85B. 0.57C. 0.42D. 0.1511. (2019天水)如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )第11题图A. 14B. 12C. π8D. π412. 甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A.12B. 13C. 14D. 1613. (2019临沂)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. 23B. 29C. 13D. 1914. (2019乐山)小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x +1<2的概率是( ) A.15B.14C.13D.1215. (2019泰安)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A. 15B. 25C. 35D. 4516. (2019枣庄)从-1,2,3,-6这四个数中任取两个数,分别记为m ,n ,那么点(m ,n )在函数y =6x 的图象上的概率是( )A. 12B. 13C. 14D. 1817. (2019温江区一诊)在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是( )A. 20B. 16C. 15D. 1218. (2019葫芦岛)在一个不透明的袋子中只装有n 个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是13,那么n 的值为________.19. (2019岳阳)分别写有数字13,2,-1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.20. 在一个不透明的盒子中装有2个红球、3个蓝球和若干个白球,若再放进4个红球(盒子中所有球除颜色外其他完全相同),摇匀后,从中摸出一个球,摸到红球的概率恰好是310,那么此盒子中原有白球的个数是________.21. (2019湘潭)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是________.22. (2019襄阳)从2,3,4,6中随机选取两个数记作a 和b (a <b ),那么点(a ,b )在直线y =2x 上的概率是________.23. 如图,甲、乙两个转盘分别被平均分成4份与3份,每个转盘分别标有不同的数字.转动两个转盘,当转盘停止后,甲转盘指针指向的数字作为m ,乙转盘指针指向的数字作为n ,则mn 为非负整数的概率为________.第23题图 第25题图24. (2019重庆B 卷)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是________.25. (2019娄底)如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.26. (2019金牛区二诊)袋子中有10个除颜色外完全相同的小球.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程1500次后,共摸到红球300次,由此可以估计袋子中的红球个数约是________.27. (2019都江堰区一诊)如图,已知数轴上的点A、B、C、D表示的数分别为-3、-1、1、2,从A、B、C、D四点中任意取两点,则所取两点之间的距离为2的概率为________.第27题图28. (2017成都黑白卷)成都市大力建设国际大都会,为了提高学生的国际视野,在中小学中开展“国际理解教育”,某校为了了解教育活动的情况,在某班进行了“国际理解教育了解情况”问卷调查,问卷调查情况分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“不了解”五个等级,分别记作A、B、C、D、E.学生可根据自己的情况选填一项,学校李老师对某班所有同学的情况进行调查统计,制成了如下的统计图(如图).请你根据统计图解答下列问题:(1)本次调查的学生共有________人;(2)该班班委4人中,男女各2人,他们都属于A级,李老师要从这4人中任选2人参加学校交流会,请你用列表或画树状图的方法,求选出的2人恰好是同性的概率.第28题图29. (2019双流区一诊)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,顾客获得购物券后可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到________元购物券,至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.30. (2019武侯区一诊)如图,有一张鸡年生肖邮票和三张猴年生肖邮票(鸡年生肖邮票面值“80分”,猴年生肖邮票每张面值“1.20元”),四张邮票除花色不一样之外,其余都相同,现将四张邮票花色朝下,打乱顺序后放置在桌面上.(注:1元=100分)(1)填空:随机抽取一张,是猴年生肖邮票的概率是________;(2)先随机抽取一张,不放回,再抽取一张,求抽到的两张邮票组合起来刚好可以邮寄一封需2元邮资的信件的概率.第30题图满分冲关1. (2019双流区一诊)桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4;从三张卡片中随机摸出一张卡片(不放回),其数字为p ,随机摸出另一张卡片,其数字记为q ,则关于x 的方程x 2+px +q =0有实数根的概率是________.2. (2019新都区一诊)有三张正面分别写数字-2、-1、1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面数字作为y 的值,两次结果记为(x ,y ),则使式子x 2-3xy x 2-y 2+xx -y 有意义的(x ,y )出现的概率是________.3. (2018成都黑白卷)已知平面直角坐标系内A 、B 两点的坐标分别为(0,0)和(2,2),现有四张正面分别标有数字-2,0,2,4的不透明卡片,它们除了数字不同外其余完全相同.先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为x ,将卡片放回后从中再取一张,将该卡片上的数字记为y ,记P 点的坐标为(x ,y ),则以P 、A 、B 三点所构成的三角形为等腰直角三角形的概率为________.参考答案基础过关1. C2. B 【解析】∵一共有4个类别,它们被抽到是等可能的,“生态知识”是其中的1个类别,∴P (小宇参赛时抽到“生态知识”)=14.3. D 【解析】由于白球只有2个,其余的球都是黑球,故随机摸出3个球肯定含有黑球,故至少有1个黑球是必然事件.4. D 【解析】∵大小相同的试卷共12页,其中语文2页、数学4页、英语6页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为412=13.5. C 【解析】∵现有的10瓶饮料中有2瓶已过了保质期,∴P (从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料)=210=15.6. C7. A 【解析】∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码锁的只有1种情况,∴一次能打开该密码锁的概率为110.8. D 【解析】如解图所示,共有6种等可能的情况,其中①②这2处涂灰所得到新灰色部分的图形是轴对称图形,∴任意涂灰1个白色的小正方形,使新构成灰色部分的图形是轴对称图形的概率为26=13.故选D .第8题解图9. D 【解析】P (遇到绿灯)=2530+25+5=512.10. D 【解析】由表格可知身高不低于180 cm 的有15人,而抽取的该地区九年级男生总人数是100,∴P (身高不低于180 cm)=15100=0.15.11. C 【解析】设正方形ABCD 的边长为1,则正方形ABCD 的面积为1,圆的面积为π×(12)2=π4.∴黑色区域的面积为π8.∴针尖落在黑色区域内的概率为π8.12. C 【解析】根据题意画树状图如解图:由树状图可知一共有4种等可能的情况,取出的两个小球上都写有数字2的有1种情况,故P (取出的两个小球上都写有数字2)=14.第12题解图13. B 【解析】画树状图列举这两辆汽车行驶方向所有可能的结果如解图,由树状图可得这两辆汽车行驶方向共有9种等可能的结果,两辆汽车一辆左转,一辆右转的结果有2种,∴P (两辆汽车一辆向右转,一辆向左转)=29.第13题解图14. C 【解析】解不等式x +1<2得x <1,符合条件的数有-1,0,∴从这六个数中任选一个数,满足不等式x +1<2的概率为26=13.15. C 【解析】根据题意可列表如下:第一个 和 第二个123451 3 4 5 623 5 6 7 345 7 8 4 567 9 56789由上表可知共有20种等可能的情况,其中摸出的小球标号之和大于5的情况有12种,∴摸出的小球标号之和大于5的概率为1220=35.16. B 【解析】根据反比例函数性质.当(m ,n )在反比例函数y =6x 上时mn =6,则列表如下:第一个 积 第二个-123-6-1-2-362 -2 6 -123 -3 6 -18 -66-12-18由上表可知,共有12种等可能的结果,其中mn =6的结果有4种,∴P (点(m ,n )在函数y =6x 的图象上)=412=13. 17. D 【解析】设红球有x 个,根据题意得,33+x =0.2,解得x =12,经检验,x =12是原分式方程的解,∴估计盒子中红球的个数大约是12.18. 4 【解析】根据题意得2n +2=13,解得n =4,经检验,n =4是分式方程的解.∴n 的值为4. 19. 25 【解析】由题意,一共有5种等可能的结果,其中无理数有2和π两个,∴P (抽到无理数)=25.20. 11 【解析】设此盒子中原有白球的个数为m ,已知盒子中装有2+4=6个红球,3个蓝球,那么袋中一共有球(9+m )个.由题意,得69+m =310,解得m =11.经检验.m =11是原分式方程的解,即此盒子中原有白球11个.21. 35 【解析】利用等可能条件下的概率公式P =mn 求解.由题意知m =3,n =2+3=5,∴P (选出的恰为女生)=35.22. 13 【解析】根据题意,画树状图如解图,由树状图可知一共有6种等可能的情况,b =2a 的有(2,4)和(3,6)共2种情况,∴点(a ,b )在直线y =2x 上的概率是26=13.第22题解图23. 13 【解析】画树状图如解图,由树状图可知共有12种等可能的情况,其中mn 为非负整数的情况有4种,∴m n 为非负整数的概率为412=13.第23题解图24. 112【解析】列表如下:二 一 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表知共有36种等可能的结果,其中第二次出现的点数是第一次出现的点数的2倍的结果是(1,2),(2,4),(3,6)共3种,∴P (第二次出现的点数是第一次出现的点数的2倍)=336=112.25. 23 【解析】画树状图如解图,由树状图可知共有6种等可能的结果,其中能使灯泡发光的结果有4种,∴当随机闭合开关中的两个时,能够让灯泡发光的概率为46=23.第25题解图26. 2 【解析】∵摸了1500次后,300次摸到红球,∴摸到红球的概率为3001500=15,∵袋子中有10个小球,∴这个袋子中红球约有10×15=2(个).27. 13 【解析】画树状图如解图,由树状图知共有12种等可能的结果,其中所取两点之间的距离为2的有4种情况,∴所取两点之间的距离为2的概率为412=13.第27题解图28. 解:(1)50;【解法提示】调查总人数为:17+7+12+9+5=50(人). (2)将男生编号为男1,男2,女生编号为女1,女2.列表如下:男1 男2 女1 女2 男1 (男1,男2)(男1,由上表知共有12种等可能的结果,其中选出的2人恰好是同性的有4种情况, ∴选出的2人恰好是同性的概率为412=13.29. 解:(1)10,50; (2)依题意列表如下,由上表可知共有12种等可能的结果,其中所获得购物券的金额不低于30元的结果有8种,∴P (该顾客所获得购物券的金额不低于30元)=812=23.30. 解∶(1)34;(2)画树状图如解图∶第30题解图由树状图知共有12种等可能的结果,其中抽到的两张邮票组合起来刚好可以邮寄一封需2元邮资的信件的结果有6种,∴P (抽到的两张邮票组合起来刚好可以邮寄一封需2元邮资的信件)=612=12.满分冲关1. 12 【解析】由题意知当p 2-4q ≥0,即p 2≥4q 时,方程有实数根.画树状图如解图,由树状图知共有6种等可能的结果,其中使关于x 的方程x 2+px +q =0有实数根的结果有3种,∴关于x 的方程x 2+px +q =0有实数根的概率为36=12.第1题解图2. 49 【解析】∵分式有意义,则分母不为零,∴x 2-y 2≠0,x -y ≠0,则x +y ≠0,且x -y ≠0,又∵(x ,y )共有(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1)9种等可能的结果,其中使原分式有意义的只有4种结果,∴使式子x 2-2xy x 2-y 2+xx -y 有意义的(x ,y )出现的概率是49.3. 12 【解析】列表如下:第一次 第二次 -2 0 2 4 -2 (-2, -2) (0, -2) (2, -2) (4, -2)由列表可得共有16种等可能的结果,当点P为(-2,-2)、(0,0)、(2,2)、(4,4)时,与点A,B不构成三角形,∴能构成三角形P AB的情况有12种,其中以P、A、B三点所构成的三角形为等腰直角三角形有6种,分别为(2,-2),(2,0),(4,0),(-2,2),(0,2),(0,4),∴P(以P、A、B三点所构成的三角形为等腰直角三角形)=612=12.。
2020年中考数学二轮专题:统计与概率一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图1所示,以下说法与图中反映的信息相符的是()图1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图3所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()图3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图6参考答案1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。
习题精选 16 统计和概率
(建议用时:90 分钟满分:100 分)
1.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了 300 件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;
类别儿童玩具童车
童装抽查件数
90
请根据上述统计表和扇形提供的信息,完成下列问题:
(1)分别补全上述统计表和统计图;
(2)已知所抽查的儿童玩具、童车、童车的合格率为 90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?
空气污0~50 51~100 101~150 151~200 201~250
染指数
空气质优良轻微轻度中度
量指数
天数615 污染污染
3
污染
2
空气污0~5051~100101~150151~200201~250染指数
空气质优良轻微轻度中度
量指数
天数615污染
4
污染
3
污染
2
16 更多资料尽在【初中必备资料53 群】:1131959528。