九年级数学试卷(1)
- 格式:doc
- 大小:165.50 KB
- 文档页数:4
北京市九年级(上)第一次月考数学试卷(1)一、选择题(每题2分,共16分)1.如图四个图形中,是中心对称图形的是()A.B.C.D.2.一元二次方程2x2+x﹣5=0的二次项系数、一次项系数、常数项分别是()A.2,1,5B.2,1,﹣5C.2,0,﹣5D.2,0,53.把抛物线y=x2向上平移3个单位,得到的抛物线是()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3D.y=x2+34.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,2)D.(﹣2,﹣3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是()A.y=x+1B.y=x2C.y=(x﹣4)2D.6.用配方法解方程x2+4x=1,变形后结果正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=5D.(x+2)2=5 7.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为xm,依题意,可列方程为()A.x2=2(2﹣x)B.x2=2(2+x)C.(2﹣x)2=2x D.x2=2﹣x8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有四个推断:①抛物线开口向下;②当x=﹣2时,y取最大值;③当m<4时,关于x的一元二次方程ax2﹣bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时k的取值范围是﹣4<x<0.其中推断正确的是()A.①②B.①③C.①③④D.②③④二、填空题(每题3分,共24分)9.抛物线y=﹣3(x﹣1)2+2的顶点坐标是.10.请写出一个开口向上,并且与y轴交于点(0,﹣2)的抛物线解析式.11.若点A(﹣1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1y2.(选填“>”“<或“=”)12.若关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(﹣2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC 上,则∠ADE=.15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:水平距离x/m00.41 1.42 2.4 2.8竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为m,最大竖直高度为m;②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃(填“能”或“不能”)跃过篱笆.三、解答题(17题8分,18-21题每题5分,22-24题每题6分,25-26题7分)17.解方程:(1)x2﹣2x﹣8=0;(2)2x2﹣4x+1=0.18.已知a是方程2x2﹣7x﹣1=0的一个根,求代数式a(2a﹣7)+5的值.19.在平面直角坐标系xOy中,抛物线y=a(x﹣3)2﹣1经过点(2,1).(1)求该抛物线的表达式;(2)将该抛物线向上平移个单位后,所得抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,将线段CA绕点C逆时针旋转60°,得到线段CD,连接AD,BD.(1)依题意补全图形;(2)若BC=1,求线段BD的长.21.如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c的部分图象经过点A(0,﹣3),B(1,0).(1)求该抛物线的解析式;(2)结合函数图象,直接写出y<0时,x的取值范围.22.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.(1)求证:方程总有两个实数根;(2)若m<0,且此方程的两个实数根的差为3,求m的值.23.为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?24.在平面直角坐标系xOy中,点(4,3)在抛物线y=ax2+bx+3(a>0)上.(1)求该抛物线的对称轴;(2)已知m>0,当2﹣m≤x≤2+2m时,y的取值范围是﹣1≤y≤3.求a,m的值;(3)在(2)的条件下,是否存在实数n,使得当n﹣2<x<n时,y的取值范围是3n﹣3<y<3n+5.若存在,直接写出n的值;若不存在,请说明理由.25.如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP 绕点A顺时针旋转60°得到AP',连接PP',BP'.(1)用等式表示BP'与CP的数量关系,并证明;(2)当∠BPC=120°时,①直接写出∠P'BP的度数为;②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.26.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.。
九年级(下)期中数学试卷一、选择题。
(本大题共10小题.每小题3分.共30分.每小题给出四个答案.其中只有一个是正确的.请把选出的答案填在答题卷上。
) 1.-3的倒数是( )。
A .13B .13-C .-3D .32.下列图形中.既是轴对称图形又是中心对称图形的是( )。
A .B .C .D .3.数据2.6.8.6.10的众数和中位数分别为( )。
A .6和6B .6和8C .8和7D .10和74.一个多边形每一个外角都等于18°.则这个多边形的边数为( )。
A .10B .12C .16D .205.式子x 有意义的x 的取值范围是( )。
A .12≥-x 且1≠x B .x ≠1C .12≥-xD .12>-x 且1≠x 6.把二次函数且()213=--y x 的图象向左平移3个单位.向上平移4个单位后.得到的图象所对应的二次函数表达式为( )。
A .()221=-+y x B .()221=++y x C .()241=-+y xD .()241=++y x7.关于x 的不等式组382122>-+≥⎧⎪⎨+⎪⎩x x x 的解集是( )。
A .2≥xB .5>xC .25-≤<xD .23-≤<x8.如图.点A .B .C .D 在O 上.⊥OA BC .若50∠=︒B .则∠D 的度数为( )。
A .20°B .25°C .30°D .40°9.如图.在正方形ABCD 中.点E 、F 分别是边BC 和CD 上的两点.若1=AB .AEF △为等边三角形.则=CE ( )。
A.2B.3C.2D110.在平面直角坐标系中.如图是二次函数()20=++≠y ax bx c a 的图象的一部分.给出下列命题:①0++=a b c ;②2>b a ;③方程20++=ax bx c 的两根分别为-3和1;④240->b ac .其中正确的命题有( )。
苏科版九年级(上)数学期中试卷一一、选择题(本大题共6 小题,每小题 2 分,共12 分)1.(2分)下列方程中,是关于x的一元二次方程的是()A.x2﹣2x=x2+1B.x2+=1C.(x﹣1)2=2D.2x2+y﹣1=02.(2分)已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=3.(2分)用因式分解法解方程x2+px﹣6=0,若将左边分解后有一个因式是x+3,则p的值是()A.﹣1 B.1 C.﹣5 D.54.(2分)一元二次方程4x2﹣4x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根5.(2分)如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()A.14 B.12 C.9 D.76.(2分)若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm二、填空题(本大题共10 小题,每小题 2 分,共20 分)7.(2分)将方程x2﹣2=7x化成x2+bx+c=0的形式,则b=.8.(2分)数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90 分、100 分、90 分,则小红一学期的数学平均成绩是分.9.(2分)方程x2﹣1=0的解为.10.(2分)若三角形ABC的两边长分别是方程x2﹣5x+4=0的两个解,则这个等腰三角形的周长是.11.(2分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.12.(2分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(2分)在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球个.14.(2分)如图,P为⊙O外一点,PA切⊙O于A,若PA=3,∠APO=45°,则⊙O的半径是.15.(2分)⊙O的半径是2,弦AB=2,点C为⊙O上的一点(不与点A、B重合),则∠ACB的度数为.16.(2分)如图,矩形ABCD中,AD=4,AB=2.点E是AB的中点,点F是BC边上的任意一点(不与B、C重合),△EBF沿EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为.三、解答题(本大题共11 小题,共88 分)17.(6分)解下列方程:(1)x2﹣2x﹣3=0(2)(x+1)(x﹣2)+2(2﹣x)=018.(8分)一组数据:2,6,7,7,8(1)求这组数据的平均数;(2)求这组数据的方差.19.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?20.(8分)如图,已知△ABC内接于⊙O,D是⊙O上一点,连接BD、CD、AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明;(2)若∠D=45°,BC=2,求⊙O 的面积.21.(8分)某校在七年级、八年级开展了阅读文学名著知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(单位:分),并对数据进行整理、描述和分析.下面给出了部分信息.a.七年级学生知识竞赛成绩的平均数、中位数、众数、优秀率(80 分及以上)如下表所示:年级平均数中位数众数优秀率七年级84.2 77 74 45%b.八年级学生知识竞赛成绩的扇形统计图如图(数据分为5 组,A:50≤x≤59;B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)c.八年级学生知识竞赛成绩在D 组的是:87 88 88 88 89 89 89 89根据以上信息,回答下列问题:(1)八年级学生知识竞赛成绩的中位数是分;(2)请你估计该校七、八年级所有学生中达到“优秀”的有多少人?(3)下列结论:①八年级成绩的众数是89 分;②八年级成绩的平均数可能为86 分;③八年级成绩的极差可能为50 分.其中所有正确结论的序号是.22.(8分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT交⊙O于点C,E是AB上一点,延长CE 交⊙O 于点D.(1)如图1,求∠T 和∠CDB 的度数;(2)如图2,当BE=BC 时,求∠CDO 的度数.23.(8分)已知关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).(1)若方程有两个不相等的实数根,求m 的取值范围;(2)若m 是整数,且方程有两个不相等的整数根,求m 的值.24.(6分)用两种方法证明“圆的内接四边形对角互补”.已知:如图①,四边形ABCD 内接于⊙O.求证:∠B+∠D=180°.证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴.∴∠B+∠ADC=180°.请把证法1 补充完整,并用不同的方法完成证法2.证法2:25.(8分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E,设BC=a,AC=b.(1)请你判断:线段AD 的长度是方程x2+2ax﹣b2=0 的一个根吗?说明理由;(2)若线段AD=EC,求的值.26.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF 并延长交BC 于点H.(1)若连接AO,试判断四边形AECO 的形状,并说明理由;(2)求证:AH 是⊙O 的切线;(3)若AB=6,CH=2,则AH 的长为.27.(10分)如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC 上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC 边上,N′在△ABC 内,连结BN′并延长交AC 于点N,画NM⊥BC 于点M,NP⊥ NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:(1)四边形PQMN 是否是△ABC 的内接正方形,请证明你的结论;(2)若△ABC 为等边三角形,边长BC=6,求△ABC 内接正方形的边长;(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当时,猜想∠QEM 的度数,并说明你的理由.苏科版九年级(上)数学期中试卷一参考答案与试题解析一、选择题1.【解答】解:A、由已知方程得到1+2x=0,属于一元一次方程,故本选项不符合题意.B、该方程不是整式方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、该方程中含有两个未知数,属于二元二次方程,故本选项不符合题意.故选:C.2.【解答】解:A、两边都除以2y,得=,故A 符合题意;B、两边除以不同的整式,故B 不符合题意;C、两边都除以2y,得=,故C 不符合题意;D、两边除以不同的整式,故D 不符合题意;故选:A.3.【解答】解:根据题意知x2+px﹣6=(x+3)(x﹣2),则x2+px﹣6=x2+x﹣6,∴p=1,故选:B.4.【解答】解:∵a=4,b=﹣4,c=1,∴△=b2﹣4ac=(﹣4)2﹣4×4×1=0∴方程有两个相等的实数根故选:B.5.【解答】解:∵AB、BC、CD、DA 都是⊙O 的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选:D.6.【解答】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选:D.二、填空题7.【解答】解:x2﹣2=7x,整理得x2﹣7x﹣2=0,则b=﹣7,故答案为:﹣7.8.【解答】解:根据题意得:=93(分),答:小红一学期的数学平均成绩是93 分;故答案为:93.9.【解答】解:x2﹣1=0,(x+1)(x﹣1)=0,x﹣1=0,x+1=0,x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.10.【解答】解:x2﹣5x+4=0,(x﹣1)(x﹣4)=0,所以x1=1,x2=4,当 1 是腰时,三角形的三边分别为1、1、4,不能组成三角形;当4 是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=9.故答案是:9.1.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.12.【解答】解:设扇形的弧长为l,由题意,得l×3=2π,解得l=.故答案为π.13.【解答】解:设袋中有x 个红球.由题意可得:=25%,解得:x=50,故答案为:50.14.【解答】解:连接OA,∵PA 切⊙O 于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.15.【解答】解:如图,连接OA,OB.∵AO=BO=2,AB=2,∴△ABO 是等边三角形,∴∠AOB=60°.若点C 在优弧上,则∠BCA=30°;若点C 在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA 的度数为30°或150°.故答案为30°或150°.16.【解答】解:如图,连接DE,∵DB′≥DE﹣EB′,DE===,EB′=1,∴DB′≥﹣1,∴当D,B′,E 共线时,DB′的值最小,不妨设此时点B′落在DE 上的点B″处,设BF′=F′ B″=x,∵F′D2=CD2+F′C2=B″D2+B″F′2,∴22+(4﹣x)2=(﹣1)2+x2,解得x=故答案为三、解答题17.【解答】解:(1)(x﹣3)(x+1)=0,x﹣3=0 或x+1=0,所以x1=3,x2=﹣1;(2)(x+1)(x﹣2)﹣2(x﹣2)=0,(x﹣2)(x+1﹣2)=0x﹣2=0 或x+1﹣2=0,所以x1=2,x2=1.18.【解答】解:(1)∵一组数据:2,6,7,7,8,∴这组数的平均数:=6,(2)这组数据的方差=[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.419.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10 时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm 时,所得长方体盒子的侧面积为200cm2.20.【解答】解:(1)结论:△ABE∽△DCE,证明:在△ABE 和△DCE 中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O 的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF 是等腰直角三角形.∵FC=BC=2,∴BF=2 .∴OB=.∴S⊙O=OB2•π=2π.21.【解答】解:(1)∵A,B,C三个组的人数为20×(10%+10%+15%)=7,D组的人数为8,∴八年级学生知识竞赛成绩的中位数是=88,故答案为:88;(2)400×45%+400×(40%+25%)=180+260=440 人.答:估计该校七、八年级所有学生中达到“优秀”的有440 人;(3)∵①八年级成绩的众数不确定;②八年级成绩的平均数不确定;③八年级成绩的极差可能为50 分;故正确结论的序号是③.故答案为:③.22.【解答】解:(1)如图①,连接AC,∵AT 是⊙O 切线,AB 是⊙O 的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=40°,∴∠T=90°﹣∠ABT=50°,由AB 是⊙O 的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=50°,∴∠CDB=∠CAB=50°;(2)如图②,连接AD,在△BCE 中,BE=BC,∠EBC=40°,∴∠BCE=∠BEC=70°,∴∠BAD=∠BCD=70°,∵OA=OD,∴∠ODA=∠OAD=70°,∵∠ADC=∠ABC=40°,∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.23.【解答】解:(1)由题意得:m﹣1≠0且△>0,m﹣1≠0,解得:m≠1,∵△=(m﹣2)2﹣4(m﹣1)×(﹣1)=m2,∴m2>0,∴m≠0,∴m 的取值范围为:m≠0 且m≠1;(2)(m﹣1)x2+(m﹣2)x﹣1=0,解得:x=,∴x1=﹣1,x2=,∵m 为m≠0 且m≠1 的整数,且方程有两个不相等的整数根,∴m=2.24.【解答】解:证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴∠DAE+∠DCE=180°.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴∠AEC=∠B.∴∠B+∠ADC=180°.故答案为:∠DAE=∠DCE=180°,∠AEC=∠B;证法2:如图①,连接OA、OC,∵∠B、∠1 所对的弧是,∠D、∠2 所对的弧是,∴∠B=∠1,∠D=∠2,∵∠1+∠2=360°,∴∠B+∠D=(∠1+∠2)=×360°=180°.25.【解答】解:(1)∵在△ABC中,∠ACB=90°,∴AB2=AC2+BC2,∵BC=a,AC=b.∴AB2=a2+b2,方程x2+2ax﹣b2=0 变形为:x2+2ax+a2=a2+b2,∴(x+a)2=AB2,∵BD=BC=a,∴(x+BD)2=AB2,∴线段AD 的长度是方程x2+2ax﹣b2=0 的一个根;(2)∵AD=EC,∴AC=2AD=2AE=b,∴AD=b,∴AB=a+ b,∵AB2=AC2+BC2,∴(a+ b)2=a2+b2整理得a=b,∴=.26.【解答】(1)解:连接AO,四边形AECO 是平行四边形.∵四边形ABCD 是矩形,∴AB∥CD,AB=CD.∵E 是AB 的中点,∴AE=AB.∵CD 是⊙O 的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO 为平行四边形.(2)证明:由(1)得,四边形AECO 为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD 和△AOF 中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF(SAS).∴∠ADO=∠AFO.∵四边形ABCD 是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F 在⊙O 上,∴AH 是⊙O 的切线.(3)∵CD 为⊙O 的直径,∠ADC=∠BCD=90°,∴AD,BC 为⊙O 的切线,又∵AH 是⊙O 的切线,∴CH=FH,AD=AF,设BH=x,∵CH=2,∴BC=2+x,∴BC=AD=AF=2+x,∴AH=AF+FH=4+x,在Rt△ABH 中,∵AB2+BH2=AH2,∴62+x2=(4+x)2,解得x=.∴.故答案为:.27.【解答】解:(1)四边形PQMN是△ABC的内接正方形,理由是:如图2 中,由画图可知∠QMN=∠PQM=∠MNP=∠BM′N′=90°,∴四边形PNMQ 是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴同理可得:,∴∵M′N′=P′N′,∴MN=PN,∴四边形PQMN 是正方形,即四边形PQMN 是△ABC 的内接正方形;(2)如图1,过A 作AD⊥BC 于D,交PN 于E,设正方形PNMQ 的边长为x,∵△ABC 为等边三角形,边长BC=6,∴高线AD=3,∵四边形PNMQ 是正方形,∴PN∥MQ,∴,即,解得:x=12 ﹣18,答:△ABC 内接正方形的边长是12﹣18;(3)如图3 中,结论:∠QEM=90°.理由:设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴=,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.。
北师大版九年级(上)期末数学模拟试卷(1)一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=505.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣19.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.240010.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.2811.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个12.(3分)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.18.(5分)解方程:﹣2x2=﹣7x+3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.广东省深圳市新华中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.【解答】解:sin30°=.故选C.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.符合这些条件的只有A,故选A.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.【解答】解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况,∴指针指向的数字和为偶数的概率是:.故选C.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=50【解答】解:依题意得:去年的粮油产量为:45(1+x)则今年的粮油产量为:45(1+x)(1+x)=45(1+x)2=50;故选B.5.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥【解答】解:根据题意得:1﹣2m<0,解得:m>.故选:C.6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC【解答】解:根据折叠性质,有AB=BE,AD=DE,∠A=∠DEC=90°.∴A、C正确;又∠C=45°,∴△CDE是等腰直角三角形,EC=DE,CD>DE.∴D正确,B错误.故选B.7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=6.4.故选:B.8.(3分)(2008•达州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x 的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣1【解答】解:∵依题意得图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3,∴x的取值范围﹣1<x<3.故选A.9.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.2400【解答】解:设矩形的面积为S,所围矩形ABCD的长BC为x(0<x≤30)米,由题意,得S=x•(80﹣x),S=﹣(x﹣40)2+800,易知在x<40的区间内,S单调递增;∴当x=30时,S最大=750,且符合题意.∴当所围矩形的长为30m、宽为25m时,能使矩形的面积最大,最大面积为750 m2.故选B.10.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.28【解答】解:∵,∴cosB=.∵在菱形ABCD中,AE⊥BC于点E,EC=4,∴BE:AB=(BC﹣EC):BC=3:5,∴BC=10,则菱形的周长=10×4=40.故选C.11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【解答】解:∵图象开口向下,∴a<0,∵x=﹣>0,∴b>0,∵图象与y轴的正半轴相交,∴c>0,∴abc<0,故①错误;∵抛物线的对称轴x=﹣<1,a<0,∴b<﹣2a,∴2a+b<0,故②正确;∵当x=﹣2时,y<0,∴4a﹣2b+c<0,故③正确;∵图象和x轴交于两点,∴b2﹣4ac>0,故④正确.故选B.12.(3分)(2011•桐乡市一模)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6【解答】解:∵直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,∴y=2(x﹣3)=2x﹣6,∵与双曲线(x>0)交于点B,与x轴交于点C.若,∴AD=2BE,∴假设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3)﹣6=2x,∴BE=2x,AD=4x,∵y=2x,∴OD=AD=2x,∴A点的纵坐标为:4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8,故选:C.二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是x1=0,x2=2.【解答】解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.【解答】解:画图如下:一共有30种情况,其中两个球都是白球的有2种情况,因此摸出的两球都是白球的概率是=.故答案为:.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为y=.【解答】解:过C作CD⊥x轴于D,设A的坐标是(a,b),则根据双曲线的两个分支关于原点对称,则C的坐标是(﹣a,﹣b),则ab=k,OB=a,AB=b,CD=b,∵S△ABC=S△AOB+S△COB=4,∴ab+ab=6,即k+k=6,解得k=6,故该反比例函数解析式为:y=.故答案为:y=.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.【解答】解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.【解答】解:原式=×﹣×+1=﹣+1=﹣.18.(5分)解方程:﹣2x2=﹣7x+3.【解答】解:移项得:2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0,x﹣3=0,x1=,x2=3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.【解答】解:(1)四张牌中,有二张“5”,故其概率为=.故答案为:.(2)不公平.画树状图如图所示:∴P(和为偶数)=,P(和为奇数)=;∵P(和为偶数)≠P(和为奇数),∴游戏不公平.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.【解答】解:过点B作BE⊥AD,交AD延长线于点E.(1分)在Rt△BED中,∵D点测得塔顶B点的仰角为30°,∴∠BDE=60度.设DE=x,则BE=x.(2分)在Rt△BEA中,∠BAE=30度,BE=x.∴AE=3x.(3分)∴AD=AE﹣DE=3x﹣x=2x=10.∴x=5.(4分)∴BC=AD+DE=10+5=15(米).(5分)答:塔BC的高度为15米.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.【解答】解:(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:,解得:k=﹣1,b=100,故每天的销售数量m(件)与每件的销售价格x(元)的函数解析式为:m=﹣x+100(0≤x ≤100);(2)由题意得,y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000,即y=﹣x2+150x﹣5000;∵y=﹣x2+150x﹣5000=﹣(x﹣75)2+625,∴当x=75元时,每天商场的最大利润是625元.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,由△AOB的面积是3,得S△AOB=|OB|y A=3,即|OB|×3=3,解得OB|=2,B(﹣2,0).设抛物线的解析式为y=ax2+bx+c,将A、B、O的坐标代入函数解析式,得,解得,抛物线的解析式为y=x2+2x;(2)如图2,抛物线的解析式为y=x2+2x的对称轴是x=﹣1,由两点之间线段最短,得AC+CO=AB,直线AB与对称轴的交点,即为C点,设AB的解析式为y=kx+b,将A,B点坐标代入,得,解得,AB的解析式为y=x+2.当x=﹣1时,y=﹣1+2=1,即C(﹣1,1);(3)①当AD∥BP时,P点与A点关于x=﹣1对称,P点的横坐标为﹣1﹣[1﹣(﹣1)]=﹣3,P点的纵坐标与A点的纵坐标相等,P1(﹣3,3);②当AD∥BP时,AD的解析式为y=x+,设BP的解析式为y=x+b,将B(﹣2,0)代入函数解析式,解得b=3,BP的解析式为y=x+3,联立BP与抛物线,得,解得(不符合题意,舍),,即P2(,);③如图3,当AB∥DP时,AB的解析式为y=x+2,设DP的解析式为y=x+b,将D(﹣1,0)代入,得b=1,即DP的解析式为y=x+1.联立DP与抛物线,得,解得,,即P3(,),P4(,),综上所述:P1(﹣3,3);P2(,);P3(,),P4(,).。
人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。
2020-2021学年华东师大版九年级上册数学期末复习试卷1 一.选择题(共10小题,满分40分,每小题4分)1.已知关于x的一元二次方程(a﹣1)x2+2(a+2b)x+4b+2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上都可能2.若双曲线y=过两点(﹣1,y1),(﹣3,y2),则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定3.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4.2,则DF的长是()A.B.6C.6.3D.10.54.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(3,1)B.(3,3)C.(4,4)D.(4,1)5.若一组数据x1+1,x2+1,…,x n+1的平均数为16,方差为2,则另一组数据x1+2,x2+2,…x n+2的平均数和方差分别为()A.17,2B.17,3C.16,2D.16,36.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)7.在比例尺为1:n的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.B.C.5ncm D.25n2cm8.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.D.10.如图,直线y=x+1与两坐标轴分别交于A,B两点,点C是OB的中点,点D,E分别是直线AB,y轴上的动点,则△CDE的周长的最小值是()A.B.C.D.二.填空题(共8小题,满分32分,每小题4分)11.若,则=.12.方程2(x+2)=x(x+2)的解为.13.已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式.14.如果关于x的一元二次方程ax2+bx﹣1=0的一个解是x=1,则2021﹣a﹣b=.15.如果两个相似三角形的周长的比等于1:3,那么它们的面积的比等于.16.生物工作者为了估计一片山林中麻雀的数量,设计了如下方案:先捕捉200只麻雀,给它们做上标记后放回山林,一段时间后,再从中随机捕捉300只,其中有标记的麻雀有8只,请帮助工作人员估计这片山林中麻雀的数量约为只.17.已知点A(m,﹣2)和点B(3,n),若直线AB∥x轴,且AB=4,则m+n的值.18.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为.三.解答题(共8小题,满分78分)19.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣120.解方程:2x2﹣3x=1﹣2x.21.如图,▱OABC的边OA在x轴的正半轴上,OA=5,反比例函数(x>0)的图象经过点C(1,4).(1)求反比例函数的关系式和点B的坐标;(2)过AB的中点D作DP∥x轴交反比例函数图象于点P,连接CP,OP.求△COP 的面积.22.某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A 点行驶到北偏东30°的B点,所用时间为1秒.(1)试求该车从A点到B点的平均速度.(2)试说明该车是否超速.(、)23.某校为了解九年级学生新冠疫情防控期间每天居家体育活动的时间(单位:h),在网上随机调查了该校九年级部分学生.根据调查结果.绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为,图1中m的值为;(2)这组数据的平均数是,众数是,中位数是.(3)根据统计的这组每天居家体育活动时间的样本数据,估计该校500名九年级学生居家期间每天体育活动时间大于1h的学生人数.24.又到了西瓜成熟的季节,重庆某水果超市7月初购进黑美人西瓜和无籽西瓜共3000千克,其中黑美人西瓜进价为每千克3元,以每千克8元的价格出售;无籽西瓜进价为每千克3元,以每千克5元的价格出售.(1)若该超市7月底售完全部的两种西瓜,总利润不低于9600元,则黑美人西瓜至少购进多少千克?(2)8月初,由于受到其他水果的冲击,该水果超市决定结合实际情况调整进货计划和销售方案.在进价均不发生变化的情况下,黑美人西瓜售价每千克降低a元(售价不低于进价),无籽西瓜售价保持不变;同时,黑美人西瓜以(1)中利润最低时销售量的基础上减少a%购进;无籽西瓜以(1)中利润最低时销售量的基础上增加2a%购进,但无籽西瓜在运输、卸货等过程中损坏购进量的5%.超市决定将损坏的无籽西瓜不出售.如果该月两种西瓜全部出售完毕,所获总利润比7月底的最低总利润少1500元,求a的值.25.如图,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG;(3)若正方形ABCD的的边长为2,G为BC的中点,求EF的长.26.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若BC=10,cos∠ABF=,求菱形CEFG的边长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵(a﹣1)x2+2(a+2b)x+4b+2=0,∴a﹣1≠0,解得a≠1,∵关于x的一元二次方程(a﹣1)x2+2(a+2b)x+2(a+2b)=0的二次项系数是a﹣1,一次项系数是2(a+2b),常数项是4b+2,∴△=4(a+2b)2﹣4(a﹣1)(4b+2)=4a2+16ab+16b2﹣16ab﹣8a+16b+8=4(a﹣1)2+4(2b+1)2>0,∴方程有两个不相等的实数根.故选:A.2.解:∵双曲线y=过两点(﹣1,y1),(﹣3,y2),∴﹣1•y1=2,﹣3•y2=2,∴y1=﹣2,y2=﹣,∴y1<y2.故选:B.3.解:∵l1∥l2∥l3,∴=,即=,解得,EF=6.3,∴DF=DE+EF=10.5,故选:D.4.解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为:1:2,∴点C的坐标为:(4,4)故选:C.5.解:∵数据x1+1,x2+1,…,x n+1的平均数是16,∴数据x1+2,x2+2,…x n+2与原数据相比,每一个数据都增加1,因此平均数就比原平均数增加1,即16+1=17;∵数据x1+1,x2+1,…,x n+1的方差是2,∴数x1+2,x2+2,…x n+2的方差不变,还是2;故选:A.6.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.7.解:设A、B之间的实际距离为x,则1:n=5:x,解得x=5n,故选:C.8.解:本次比赛共有x个参赛棋手,所以可列方程为:x(x﹣1)=45.故选:A.9.解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边对应成比例且夹角相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.10.解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E,此时三角形CDE的周长最小,∵直线y=x+1与两坐标轴分别交于A、B两点,点C是OB的中点,∴B(﹣1,0),C(﹣,0),∴BO=1,OG=,BG=,易得∠ABC=45°,∴△BCF是等腰直角三角形,∴BF=BC=,由轴对称的性质,可得DF=DC,EC=EG,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,∵Rt△BFG中,FG===,∴△CDE周长的最小值是.故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:∵,∴=,∴=1﹣=1﹣=.故答案为:.12.解:原方程可化为:x(x+2)﹣2(x+2)=0;(x+2)(x﹣2)=0;x+2=0或x﹣2=0;解得:x1=2,x2=﹣2.故答案是:x1=2,x2=﹣2.13.解:只要使反比例系数大于0即可.如y=(x>0),答案不唯一.故答案为:y=(x>0),答案不唯一.14.解:把x=1代入方程ax2+bx﹣1=0得a+b﹣1=0,所以a+b=1,所以2021﹣a﹣b=2021﹣(a+b)=2021﹣1=2020.故答案为:2020.15.解:∵两个相似三角形的周长的比等于1:3,∴它们的相似比为1:3,∴它们的面积的比等于1:9.故答案为:1:9.16.解:200÷=7500(只),即这片山林中麻雀的数量约为7500只,故答案为:7500.17.解:∵点A(m,﹣2)和点B(3,n)且直线AB∥x轴,∴n=﹣2,∵AB=4,∴m=3+4=7或m=3﹣4=﹣1,当m=7时,m+n=7﹣2=5;当m=﹣1时,m+n=﹣1﹣2=﹣3;综上,m+n=5或﹣3;故答案为:5或﹣3.18.解:∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴BC=AD=,故答案为:.三.解答题(共8小题,满分78分)19.解:原式=1+﹣2×+4=1+﹣+4=5.20.解:原方程化为2x2﹣x﹣1=0,∵a=2,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×2×(﹣1)=9,∴x==,∴x1=1,x2=﹣.21.解:(1)∵反比例函数y=(x>0)的图象经过点C(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OA=5,点C(1,4),∴点A(5,0),∴点B(6,4).(2)延长DP交OC于点E,如图所示.∵点D为线段BA的中点,点A(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S=EP•(y C﹣y O)=××(4﹣0)=3.△COP22.解:(1)据题意,得∠AOC=60°,∠BOC=30°在Rt△AOC中,∠AOC=60°∴∠OAC=30°∵∠AOB=∠AOC﹣∠BOC=60°﹣30°=30°∴∠AOB=∠OAC∴AB=OB在Rt△BOC中OB=OC÷cos∠BOC=10=(米)∴AB=(米)∴V=÷1=(米/秒).(2)∵36千米/时=10米/秒又∵,∴,∴小汽车超速了.23.解:(1)本次接受调查的初中学生人数为:4÷10%=40人,m%==25%,则m=25;故答案为:40,25.(2)由条形统计图得,4个0.9,8个1.2,15个1.5,10个1.8,3个2.1,平均数是:=1.5(h),∵1.5h出现了15次,出现的次数最多,∴众数是1.5h,∵第20个数和第21个数都是1.5h,∴中位数是1.5h;故答案为:1.5,1.5,1.5;(3)根据题意得:500×0.9=450(人),答:该校每天在校体育活动时间大于1h的学生有450人.24.解:(1)设购进x千克黑美人西瓜,则购进(3000﹣x)千克无籽西瓜,依题意,得:(8﹣3)x+(5﹣3)(3000﹣x)≥9600,解得:x≥1200.答:黑美人西瓜至少购进1200千克.(2)依题意,得:(8﹣a﹣3)×1200(1﹣a%)+5×(3000﹣1200)×(1+2a%)×(1﹣5%)﹣3×(3000﹣1200)×(1+2a%)=9600﹣1500,整理,得:2a2﹣195a+1750=0,解得:a1=10,a2=.当a=10时,8﹣a=7>3,符合题意;当a=时,8﹣a=﹣<3,不合题意,舍去.答:a的值为10.25.证明:(1)∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS);(2)延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.(3)∵正方形ABCD的的边长为2,G为BC的中点,∴BG=CG=1,AG=,∵△ABG∽△CFG,∴,CF=2FG,∵CF2+FG2=CG2,(2FG)2+FG2=12,∴GF=,CF=,∵△DAE≌△DCF,∴AE=CF,∴EF=EA+AG+GF=CF+AG+GF=++=.26.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,BC=10,cos∠ABF==,由翻折可知:BF=BC=10,∴AB=8,AD=10,∴∠BAF=90°,AD=BC=BF=10,∴AF=6,∴DF=4,设EF=x,则CE=x,DE=8﹣x,∵∠FDE=90°,∴42+(8﹣x)2=x2,解得,x=5.∴CE=5.。
2017-2018学年福建省漳州市九年级(上)期末数学试卷一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤12.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣23.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3 5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=47.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30 B.27 C.14 D.32二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则=.12.已知锐角α满足cosα=,则锐角α的度数是度.13.把二次根式化成最简二次根式,则=.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.18.解方程:(x﹣1)2=2(1﹣x)19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.2017-2018学年福建省漳州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分,每小题只有一个正确的选项)1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.2.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣2【考点】解一元二次方程﹣直接开平方法.【分析】直接开平方法求解可得.【解答】解:∵x2=4,∴x1=2,x2=﹣2,故选:D.3.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【考点】根的判别式.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选A.4.下列各式计算正确的是()A.6﹣2=4 B.2+3=5C.2×3=6D.6÷2=3【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、2与3不能合并,所以B选项错误;C、原式=6=6,所以C选项正确;D、原式=3,所以D选项错误.故选C.5.在△ABC中,∠ACB=90°,BC=1,AC=2,则下列正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【考点】锐角三角函数的定义.【分析】先根据勾股定理得出AB,再根据三角函数的定义分别得出sinA,tanA,cosB,tanB即可.【解答】解:∵∠ACB=90°,BC=1,AC=2,∴AB===,∴sinA===,tanA==,cosB===,tanB==2,故选C.6.用配方法解方程x2﹣6x﹣5=0,下列配方结果正确的是()A.(x﹣6)2=41 B.(x﹣3)2=14 C.(x+3)2=14 D.(x﹣3)2=4【考点】解一元二次方程﹣配方法.【分析】将常数项移到等式的右边,再在两边都配上一次项系数一半的平方即可得.【解答】解:∵x2﹣6x=5,∴x2﹣6x+9=5+9,即(x﹣3)2=14,故选:B.7.下列事件中,是必然事件的是()A.打开电视机,它正在直播排球比赛B.抛掷5枚硬币,结果是2个正面朝上与3个反面朝上C.黑暗中从一大串钥匙中随便选中一把,用它打开了门D.投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,它正在直播排球比赛是随机事件,故A错误;B、抛掷5枚硬币,结果是2个正面朝上与3个反面朝上是随机事件,故B错误;C、黑暗中从一大串钥匙中随便选中一把,用它打开了门是随机事件,故C错误;D、投掷一枚普通的正方体骰子,正面朝上的数不是奇数便是偶数是必然事件,故D正确;故选:D.8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【考点】解直角三角形;线段垂直平分线的性质.【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A.①②B.①③C.①③④D.①②③④【考点】命题与定理.【分析】判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、三角形、都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,而两个等边三角形和等腰直角三角形,对应角都是相等,对应边的比也都相当,故一定相似.【解答】解:①等边三角形都相似,正确;②直角三角形不一定相似,错误;③等腰直角三角形都相似,正确;④矩形不一定相似,错误;故选B10.如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A .30B .27C .14D .32【考点】相似三角形的判定与性质;平行四边形的性质.【分析】用相似三角形的面积比等于相似比的平方,以及面积的和差求解.【解答】解:∵四边形ABCD 是平行四边形,∴AB=CD ,CD ∥AB ,BC ∥AB ,∴△BEF ∽△AED , ∵, ∴, ∴,∵△BEF 的面积为4,∴S △AED =25,∴S 四边形ABFD =S △AED ﹣S △BEF =21,∵AB=CD ,, ∴, ∵AB ∥CD ,∴△BEF ∽△CDF , ∴,∴S △CDF =9,∴S 平行四边形ABCD =S 四边形ABFD +S △CDF =21+9=30,故选A .二、填空题(本大题共6小题,每小题4分,共26分)11.已知=,则= .【考点】比例的性质.【分析】根据等式的性质,可用m表示n,根据分式的性质,可得答案.【解答】解:由=,得n=3m.∴==,故答案为:.12.已知锐角α满足cosα=,则锐角α的度数是60度.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由锐角α满足cosα=,则锐角α的度数是60度,故答案为:60.13.把二次根式化成最简二次根式,则=.【考点】最简二次根式.【分析】根据二次根式的性质把根号内的因式开出来即可.【解答】解:==,故答案为:.14.同时投掷二枚正四面体骰子,所得的点数之和恰为偶数的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出所得的点数之和恰为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所得的点数之和恰为偶数的结果数为8,所以所得的点数之和恰为偶数的概率==.15.若关于x的一元二次方程x2﹣x+k=0的一个根是0,则另一个根是1.【考点】根与系数的关系.x2=﹣,来求方程的另一个根.【分析】根据一元二次方程的根与系数的关系x1+【解答】解:设x1,x2是关于x的一元二次方程x2﹣x+k=0的两个根,∵关于x的一元二次方程x2﹣x+k=0的一个根是0,∴由韦达定理,得x1+x2=1,即x2=1,即方程的另一个根是1.故答案为1.16.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.【考点】翻折变换(折叠问题);等边三角形的性质;矩形的性质.【分析】由△EOF是等边三角形,可得EF=OE=OF,∠OEF=60°,又由由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,则可得AD=3AE,∠AEB=60°,则可证得AB=AE,继而求得答案.【解答】解:∵△EOF是等边三角形,∴EF=OE=OF,∠OEF=60°,由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,∴AD=3AE,∠AEB==60°,∵四边形ABCD是矩形,∴∠A=90°,∴tan∠AEB==,∴AB=AE,∴=.故答案为:.三、解答题(本大题共9小题,共86分)17.计算:2+tan60°﹣2sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】把tan60°、sin45°的特殊三角函数值代入代数式,再进行加减运算.【解答】解:原式=2×+﹣2×==.18.解方程:(x﹣1)2=2(1﹣x)【考点】解一元二次方程﹣因式分解法.【分析】先移项得到(x﹣1)2+2(x﹣1)=0,然后利用因式分解法解方程.【解答】解:(x﹣1)2+2(x﹣1)=0,(x﹣1)(x﹣1+2)=0,x﹣1=0或x﹣1+2=0,所以x1=1,x2=﹣1.19.如图,在△ABC中,DE∥BC中,AD=1,BD=2,DE=2,求BC的长.【考点】相似三角形的判定与性质.【分析】求出AB=3,证明△ADE∽△ABC,得出比例式,即可得出结果.【解答】解:∵AD=1,BD=2,∴AB=AD+BD=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∴BC=3DE=3×2=6.20.用一个字来回顾2016年漳州的楼市,这个字就是“涨”!根据漳州房地产联合网不完全统计,2016年市区某在售的楼盘十月份房价为8100元/m2,到了十二月房价均价为12100元/m2,求十月到十二月房价均价的平均月增长率是多少?【考点】一元二次方程的应用.【分析】首先根据题意可得十二月的房价=十一月的房价×(1+增长率),十一月的房价=十月的房价×(1+增长率),由此可得方程.【解答】解:设十月到十二月房价均价的平均月增长率是x,根据题意得:8100(1+x)2=12100,解得x1=≈22%,x2=﹣(不合题意,舍去)答:十月到十二月房价均价的平均月增长率约为22%.21.如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)【考点】勾股定理的应用.【分析】作CF⊥AB,由sin∠CAB=可得∠CAB度数,根据勾股定理求得AF的长,可得BF的长度.【解答】解:过点C作CF⊥AB于点F,根据题意得:AB=AC=4,CF=DE=2,在Rt△ACF中,sin∠CAB===,∴∠CAB=30°,由勾股定理可得AF2+CF2=AC2,∴AF===2,∴BF=AB﹣AF=4﹣2≈0.5,∴此时秋千的绳索与静止时所夹的角度为30度,木马上升的高度约为0.5米.22.在学习概率知识的课堂上,老师组织小组讨论一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,要求同学们按两种规则摸球,规则一:搅匀后从中摸出一个球,放回搅匀后再摸出第二个球;规则二:搅匀后从中一次任意摸出两个球,请你通过画树状图或列表法计算说明哪种规则摸出两个红球的概率较大?【考点】列表法与树状图法.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可知道哪种方法摸到两个红球的概率较大.【解答】解:规则一、摸出一个球后放回,再摸出一个球时,,共有16种等可能的结果数,其中两个都是红球的占4种,所以两次都摸到红球的概率=;规则二、一次性摸两个球时,∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.∵>,∴第一规则摸出两个红球的概率较大.23.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【考点】二次根式的性质与化简.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.24.如图,在平面直角坐标系中,▱ABCD的边BC在x轴上,点A在y轴上,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求cos∠ABC的值;(2)点P由B出发沿BC方向匀速运动,速度为每秒2个单位长度,点Q由D 出发沿DA方向匀速运动,速度为每秒1个单位长度,设运动时间为t秒(0<t ≤3),是否存在某一时刻;使△AOP与△QAO相似?若存在,求此时t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)先解一元二次方程得出OA=4,OB=3,再用勾股定理即求出AB,最后用三角函数的定义即可得出结论;(2)分点P在OB和OC上两种情况,当点P在OB上时①分△AOP∽△OAQ和△AOP∽△QAO,用比例式建立方程求解即可;当点P在OC上时,同点P在OB 上的方法即可得出结论.【解答】解:(1)由方程x2﹣7x+12=0解得,x=4,或x=3,∵OA>OB,∴OA=4,OB=3,在Rt△AOB中,AB==5,∴cos∠ABC=,(2)如图,由题意得,BP=2t,AQ=6﹣t,当点P在OB上时,0<t<1.5,∵∠AOP=∠OAQ=90°,∴①当时,△AOP∽△OAQ,∴,∴t=(舍)或t=,②当时,△AOP∽△QAO,∴3﹣2t=6﹣t,∴t=﹣3(舍),当点P在OC上时,1.5≤t≤3,∵∠AOP=∠OAQ=90°,∴①当,△AOP∽△OAQ,∴此时方程无实数解,②当,∴2t﹣3=6﹣t,∴t=3,综上可得当t=或t=3时,△AOP与△QAO相似25.探究证明:(1)如图1,矩形ABCD中,点M、N分别在边BC,CD上,AM⊥BN,求证:=.(2)如图2,矩形ABCD中,点M在边BC上,EF⊥AM,EF分别交AB,CD于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合(1)、(2)的结论解决以下问题:(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)结论:=.如图2中,过点B作BG∥EF交CD于G,首先证明四边形BEFG是平行四边形,推出BG=EF,由△GBC∽△MAB,得=,由此即可证明.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.由(2)中结论可得:=,想办法求出BS即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ABC=∠C=90°∴∠NBA+∠NBC=90°,∵AM⊥BN,∴∠MAB+∠NBA=90°,∴∠NBC=∠MAB,∴△BCN∽△ABM,∴=.(2)结论:=.理由:如图2中,过点B作BG∥EF交CD于G,∵四边形ABCD是矩形,∴AB∥CD,∴四边形BEFG是平行四边形,∴BG=EF,∵EF⊥AM,∴BG⊥AM,∴∠GBA+∠MAB=90°,∵∠ABC=∠C=90°,∴∠GBC+∠GBA=90°,∴∠MAB=∠GBC,∴△GBC∽△MAB,∴=,∴=.(3)如图3中,过点D作平行于AB的直线交过点A平行于BC的直线于R,交BC的延长线于S,连接AC,则四边形ABSR是平行四边形.∵∠ABC=90°,∴四边形ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS,∵AM⊥DN,∴由(2)中结论可得:=,∵AB=AD,CB=CD,AC=AC,∴△ACD≌△ACB,∠ADC=∠ABC=90°,∴∠SDC+∠RDA=90°,∵∠RAD+∠RDA=90°,∴∠RAD=∠SDC,∴△RAD∽△SDC,∴∴=,设SC=x,∴=,∴RD=2x,DS=10﹣2x,在Rt△CSD中,∵CD2=DS2+SC2,∴52=(10﹣2x)2+x2,∴x=3或5(舍弃),∴BS=5+x=8,∴===.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ …………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
人教版九年级数学试卷及答案5篇第一篇:单元一测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 下列选项中,哪项是一个真分数?A. 5/4B. -3/5C. 10/3D. 8/72. 已知甲、乙两数的和为30,甲数是乙数的2/3,那么乙数是多少?A. 12B. 15C. 18D. 203. 下列各数中,不是质数的是:A. 7B. 11C. 13D. 154. 若每支钢笔10元,Tom用50元能买几支?A. 5B. 10C. 15D. 205. 一个矩形的长是3.5cm,宽是2cm,它的面积是多少?A. 7.5cm²B. 5cm²C. 8cm²D. 6.5cm²...答案一、选择题(每小题2分,共40分)1.A2.D3.D4.A5.A6.B7.C8.D9.C 10.B11.C 12.B 13.D 14.A 15.C16.B 17.A 18.C 19.C 20.B二、填空题(每小题2分,共20分)21. 75 22. 6.25 23. 1/2 24. 17 25. 0.0126. -2 27. 256 28. -7 29. -0.2 30. 120三、解答题(每小题10分,共50分)31. 解:...(略)第二篇:单元二测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 下列等式中,正确的是:A. 5x + 3 = 8B. 2x + 7 > 4x - 3C. 3x - 2 < 7x + 5D. 4x +6 ≤ 3x + 22. 以下哪个图形一定是正方形?A. 长方形B. 正三角形C. 菱形D. 矩形3. 根据图及所给的信息,判断“△ABC相似于△DEF”是否正确:A. 正确B. 不正确(图略)答案一、选择题(每小题2分,共40分)1.A2.D3.A二、填空题(每小题2分,共20分)无三、解答题(每小题10分,共50分)无...第五篇:单元五测验试卷及答案----------------------------------------试卷姓名:_________________ 班级:________________ 学号:_________________一、选择题(每小题2分,共40分)1. 已知函数f(x) = 2x - 3,那么f(4)的值是多少?A. -2B. 5C. 11D. 292. 某超市原价100元的商品打98折,现在的价格是多少?A. 88元B. 98元C. 108元D. 200元3. 如图,若直线a与直线b平行,直线c与直线b垂直,那么直线a与直线c的关系是:A. 平行B. 垂直答案一、选择题(每小题2分,共40分)1.B2.A3.B二、填空题(每小题2分,共20分)无三、解答题(每小题10分,共50分)无...以上为人教版九年级数学试卷及答案5篇的示例,具体试卷和答案内容可以根据需要进行调整和编写。
九年级数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第3页,第Ⅱ卷第4页至第8页.试卷满分 120分.考试时间 100分钟.答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题共36分)注意事项:每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 在平面直角坐标系中,点(7,-2) 关于原点对称的点的坐标为(A) (-2, - 7) (B) (-7, 2)(C) (-7, - 2) (D) (7,-2)(2)下列数学经典图形中,可以看作是中心对称图形的是九年级数学第1 页 (共8页)(3)解方程4x²=16的结果为(A)x₁=x₂=4(B)x₁=x₂=―4(C)x₁=2,x₂=―2 (D) 该方程无实数根(4) 抛物线y=x²―4x的对称轴为(A) 直线x=2 (B) 直线x=4(C) 直线x=-2 (D) 直线x=-4(5) 若二次函数y=ax²+bx+c的图象过点 (1, 1) , 点(4, 1) 和点(2, 0) , 则(A) a>0, b>0, c<0 (B) a<0, b>0, c<0(C)a<0, b<0, c=0 (D)a>0, b<0, c>0(6)如图,过平行四边形ABCD的对角线AC的中点O的一条直线,交边AD,BC于点E,F(E,F不与四边形ABCD的顶点重合) ,下列叙述不正确的是(A) OE与OF一定相等(B) EF与AC一定相等(C) 四边形ABFO与四边形CDEO一定全等(D) 平行四边形ABCD被直线EF分成了两个全等的梯形(7) 下列两个两位数相乘的运算中,请你利用二次函数的性质判断“积”最大的是(A) 72×78 (B) 74×76(C) 75×75 (D) 77×73(8) 已知函数y=―x²+2x―1,下列结论正确的是(A) 当x<1时, y随x的增大而增大(B) 当x>2时, y随x的增大而增大(C) 当-2<x<2时, y随x的增大而减小(D)当x>-1时, y随x的增大而减小九年级数学第2 页(共8页)(9) 某种商品的价格是200元,准备进行两次降价,若每次降价的百分率都是x,两次降价后的价格y(元)随每次降价的百分率的变化而变化,则y与x之间的关系式为(A)y=(1―x)²(B)y=200(1―x)²(C) y=-200x+200 (D)y=200(1+x)²(10) 抛物线y=(x―2)²可以看作是将抛物线. y=x²(A) 向左平移2个单位得到的 (B) 向右平移2个单位得到的(C) 向上平移2个单位得到的 (D) 向下平移2个单位得到的(11) 如图, 将△ABC绕点A逆时针旋转, 旋转角为α(0°<α<180°),,得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是(A) BC=AD(B)AB=ED(C)∠EAC=90°+α2(D)∠B=90°―α2(12) 如图, 在Rt△ABC 中, ∠B=90°, AB=10cm, BC=20cm.动点P从点A开始以1cm/s的速度沿AB边向点B 运动; 动点Q从点B 开始以2cm/s的速度沿BC边向点C运动.如果P,Q两点分别从A,B 两点同时出发,设运动时间为t秒.①当l=3时, △BPQ的面积为21cm²② t有两个不同的值,都使△BPQ的面积为16cm²③△BPQ面积的最大值为:50cm²其中,正确结论的个数是(A) 0 (B) 1 (C) 2 (D) 3九年级数学第3 页(共8页)第Ⅱ卷 (非选择题共 84分)二、填空题(本大题共6小题,每小题3分,共18分)(13) 抛物线y=x²―x―2与y轴的交点的坐标为 .(14) 把图中的等边三角形绕着它的两条中线的交点O 旋转,要使旋转后的三角形能与自身重合,则旋转角的度数至少为.(15)一个矩形的面积为50cm²,且长是宽的2倍,则这个矩形的周长为 cm.(16) 若抛物线y=x²+3x+a与x轴只有一个交点,则a的值为 .(17) 如图, 在矩形ABCD中, 点P在BC边上, 连接PA,将PA 绕点 P顺时针旋转90°得到PA', 连接CA'.若AD=9, AB=5, CA'=2 2则 BP的长为 .(18) 如图,在每个小正方形的边长为1的网格中,点A与点O分别为格线上一点.(Ⅰ)当O为所在小正方形一边的中点,A为三等分点(距下方格点近) 时,AO的长度为;(Ⅱ.)在如图所示的网格中,请用无刻度的直尺,先将点A 向上平移2个单位长度得到点 B,再以点O为中心,画出线段AB关于点O的中心对称图形A′B′ (A的对应点为A′, B的对应点为B′) ,并简要说明点A' 和点B' 的位置是如何找到的(不要求证明) .九年级数学第4 页(共8页)三、解答题(本大题共7小题,共66分. 解答应写出文字说明、演算步骤或推理过程)(19) (本小题8分)(Ⅰ)解方程(x―7)²=4;(Ⅱ)解方程x²+5x+7=3x+11.(20) (本小题8分)小强用配方法求解一元二次方程ax²+bx+c=0(a≠0)的过程如下:解:二次项系数化1,得x2+ba x+ca=0 …第一步移项,得x2+ba x=―ca…第二步配方,得x2+bax+(b2a)2=―c a+(b2a)2⋯..第三步即(x+b2a)2=b2―4ac4a2, …第四步直接开平方,得x+b2a =±b2―4ac2a, …第五步即x1=―b+b2―4ac2a ,x2=―b―b2―4ac2a…第六步请问:小强的求解过程有错误吗? 如果有错,请你指出在第步开始出错了,并加以改正.九年级数学第5 页(共8页)(21) (本小题10分)如图,△ABD和△ACE都是等边三角形,∠BAC=100°,连接BE, DC.(Ⅰ)求证: △ADC≅△ABE;(Ⅱ)△ADC 可以看作是△ABE经过得到的(填:平移,轴对称或旋转);说明得到△ADC 的具体过程;(Ⅲ)若. AB=6,BC=8,∠ABC=30°,, 则BE 的长为 .(22) (本小题10分)如图,在足够大的空地上有一段长为a米的旧墙,某人利用旧墙和木栏围成一个矩形菜园ABCD, 其中AD≤a,已知矩形菜园的一边靠墙,另三边一共用了20米木栏.(Ⅰ)若a=5米,所围成的矩形菜园的面积为32平方米,求利用旧墙AD的长;(Ⅱ)若a=12米, 求矩形菜园ABCD 面积的最大值.九年级数学第6 页(共8页)(23) (本小题10分)某种树木的主干长出若干支干,假设每个支干又长出同样数目的小分支,若此时主干、支干和小分支的总数是111.求每个支干长出多少小分支? 设主干长出了x个支干.请根据相关信息,解答下列问题:(Ⅰ)填表:x(主干长出支干的个数)234主干、支干和小分支的总数(Ⅱ)填空(用含x的代数式表示):①在小分支没有长出之前,主干和支干的总数是;②在每个支干又长出了数目相同的小分支后,小分支的个数为;③在每个支干又长出了数目相同的小分支后,主干、支干和小分支的总数可以表示为;(Ⅲ)请继续完成本题的解答:九年级数学第7 页(共8页)(24) (本小题10分)在同一平面内,将两个全等的等腰直角三角形ABC 和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,, 若△ABC 固定不动, △AFG 绕点A 旋转, AF, AG与边 BC的交点分别为D,E(点D不与点B重合,点E不与点C重合).(1) 直接写出∠BAD+∠CAE的度数 ;(Ⅱ)在旋转过程中,试证明BD²+CE²=DE²始终成立.(提示:由于BD²+CE²=DE²符合勾股定理的形式,若通过将△ABD或△AEC进行旋转或轴对称变化,变换边、角的位置,最终使BD,CE,DE转化为一个直角三角形的三边就可以使得问题解决了. )(25) (本小题10分)抛物线y=―x²+bx+c(b, c为常数)与x轴交于点(x₁,0)和(x₂, 0), 与y轴交于点A,点E为抛物线顶点.(Ⅰ)当. x₁=―1,x₂=3时,求点E和点A 的坐标;(Ⅱ)①若顶点 E在直线y=x上时,用含有b的代数式表示c;②在①的前提下,当点A 的位置最高时,求抛物线的解析式;(Ⅲ)若.x₁=-1, b>0,当P(1, 0)时, 是否存在PA+PE的最小值, 若不存在,说明理由,若存在,求b的值.九年级数学第8 页(共8页)。
九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。
2015—2016学年度第一学期第15周学科竞赛
九年级数学
一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四
个答案,其中只有一个是正确的) 1、下列方程中是一元二次方程的是( )
A 、20ax bx c ++=
B 、2(2)(3)(1)x x x +-=-
C 、012
=+x D 、
012
2=++x x
2、若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A 、对角线相等的四边形 B 、等腰梯形
C 、矩形
D 、对角线互相垂直的四边形
3、一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头 看信号灯时,是绿灯的概率是( )
A 、112
B 、13
C 、512
D 、1
2
4、如果两个相似三角形的相似比是1:2,那么它们的面积比是(
) A 、1 : 2 B 、1 :4 C 、 D 、2 :1
5、在黑夜里,在距离路灯一定的范围内,一个人走过路灯,则他的影子( ) A 、越来越短 B 、越来越长 C 、先变长后变短 D 、先变短后变长
6、已知点123-123y y (,y ),(,),(,)在反比例函数21
k y x
--=的图象上,
下列结论中正确的是( )
A 、123
y y y >>
B 、132y
y y >>
C 、2
13y y y >> D 、231y y y >> 7、在△ABC 中,若COSA=
2
,则这个三角形一定是(
) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形
8、三角形的两边长分别为3和6,第三边的长是方程2
680x x -+=的一个根,
则这个三角形的周长是( )
A .9
B .11
C .13
D .11 或 13
9、如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ).
A B C D
10、在△ABC 中,∠A=60°,AC=1,B 为( ) A 、60° B 、60°或120° C 、30°或150° D 、30°
二、耐心填一填(本大题共5小题,每小题3分, 共15分,请你
把答案填在横线的上方)
11、一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于
12、反比例函数k
y x
=的图像经过点(tan45°,cos60°),则k=
13、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么每次降价的百分率是 . 14、从-2, 1.
这三个数中任取两个不同的数相乘,积是无理数的概率
是 .
15、已知
,a b a c b c
k c b a
+++===则k 的值是 .
三、细心做一做 (本大题共3小题,每小题7分,共21分)
16
、计算:000212sin 60(cos 452012)()2---++-
17、如图是某几何体的展开图。
(1)这个几何体的名称是 (1分) (2)画出这个几何体的三视图。
(3分) (3)求这个几何体的体积(π取3.14)(3分)
18、如图,△ABC 三个顶点坐标分别为A (-1,3),B (-1,1),C (-3,2)。
(1)请画出△ABC 关于y 轴对称的 △A 1B 1C 1。
(2)以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出222A B C ∆, 并求出 S △A 1B 1C 1 : S △A 2B 2C 2的值.
四、沉着冷静,周密考虑(本大题共2小题,每小题7分,共14分)
19、已知关于x 的一元二次方程方程x 2-4x+ k=0有两个不相等的实数根 .
(1)求k 的取值范围;
(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x+ k=0 与x 2+mx-1=0有一个相同的根,求此时 m 的值.
20、中秋节吃月饼是中华民族的传统习惯.小红的妈妈用不透明的袋子装着 一些月饼(月饼除内部馅料不同外,其他一切相同),其中伍仁馅的有两个, 还有若干个莲蓉馅的.小红从中任意拿出一个是伍仁馅月饼的概率为
1
2
.
(1)求袋子中莲蓉馅月饼的个数;
(2)小红第一次任意拿出一个月饼(不放回),第二次再拿出一个月饼,请你用树形图或列表法,求小红两次拿到的都是莲蓉馅月饼的概率.
五、开动脑筋,再接再厉(本大题共3小题,每小题8分,共24分)
21、如图,王林同学在晚上由路灯A走向路灯B ,当他行到P处时发现,他在
路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王林身高1.8米,路灯B高9米)
(1)标出王林站在P处在路灯B下的影子;
(2)计算王林站在Q处在路灯A下的影长;
(3)计算路灯A的高度.
22、山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23、如图,直线AB与x轴交于点C,与反比例函数
k
y
x
=在第二象限的图象交于点A( -2 , 6 )、点B(-4 ,
m ).
(1)求k , m的值;
(2)求直线AB的解析式;
(3)求∆AOB的面积
六、充满信心,成功在望(本大题共2小题,每小题8分,共16分)
24、在△ABC中,点O是AC边上一动点,过O作直线MN//BC,设MN
交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且ABC
满足什么条件时,
四边形AECF是正方形? 25、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C 三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)
(1)当t=1秒时,S的值是多少?
(2)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.。