北师大版七年级下册数学第二章第二节精品导学案
- 格式:doc
- 大小:144.50 KB
- 文档页数:2
【课题】2.1两条直线的位置关系(1)【学习目标】在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。
【学习重点】补角、余角、对顶角,等角的余角相等、等角的补角相等、对顶角相等。
【学习过程】 一、知识预备 预习书38-39页在同一平面内,两条直线的位置关系有 和 ,只有一个公共点的两条直线叫做 ,这个公共点叫做 , 在同一平面内, 叫做平行线。
二、知识研究 1、对顶角(1)概念 有公共 的两个角,如果它们的两边互为 , 这样的两个角就叫做对顶角。
(2)性质 对顶角 2、余角与补角 (1)概念如果两个角的和是 ,那么称这两个角互为余角; 如果两个角的和是 ,那么称这两个角互为补角。
符号语言:若∠1+∠2= 90o, 那么∠1与∠2互余。
若∠3+∠4=180o, 那么∠3与∠4互补。
填表:一个角 30O 45O 60O 25O 83O∠α ∠β 这个角的余角 这个角的补角(2)性质同角或等角的余角 ;同角或等角的补角 如图,∠DON=∠CON=900,∠1=∠2问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么?1 2 4 3 4321D CB A 2 DCO 1 3 4 ANB∵∠1+∠3=90º,∠2+∠4=90º ∴∠3=90º-∠1,∠4=90º-∠2 ∵∠1=∠2 ∴∠3=∠4问题3:∠AOC 与∠BOD 有什么关系?为什么?你能仿照问题2写出理由吗?三、知识运用 (一)基础达标例1、(1)下列各图中,∠1和∠2是对顶角的是( )(2)如图,直线a ,b 相交,∠1=40O,求∠2,∠3,∠4的度数(二)能力提升例2、如图:直线AB 与CD 交于点O, ∠EOD=900,回答下列问题: (1)∠AOE 的余角是 ;补角是 。
∠AOC 的余角是 ;补角是 ; 对顶角是 。
零障碍导教导学案七年级数学下册北师大版第一章:方程与代数运算1.1解一元一次方程知识点:-方程-方程的解-解方程的基本步骤能力目标:-能够解一元一次方程教学重点:-解一元一次方程的基本步骤教学难点:-理解方程的含义和解的概念教学准备:-教师准备好教材、黑板、白板、笔等教具教学步骤:1.引入学习内容:通过例题引入方程的概念,并解答学生的问题。
2.学习方程的定义和解的概念,解释方程与等式的关系。
3.讲解解一元一次方程的基本步骤,例如整理方程、移项、得到解等。
4.通过具体的例题,带领学生演示解一元一次方程的过程,并解答学生的问题。
5.练习部分:让学生自主完成练习题,然后交流答案,解决疑难问题。
6.总结本节课的学习内容,强调方程和解的概念。
7.布置课后作业:完成课后练习题,预习下一节课的内容。
第二章:图形的认识和应用2.1正方形和长方形知识点:-正方形和长方形的概念-正方形和长方形的性质能力目标:-能够识别和描述正方形和长方形-能够计算正方形和长方形的周长和面积教学重点:-正方形和长方形的定义和性质-正方形和长方形的周长和面积计算公式教学难点:-正方形和长方形的周长和面积计算公式教学准备:-教师准备好教材、黑板、白板、笔等教具教学步骤:1.引入学习内容:通过展示正方形和长方形的图片引入本节课的学习内容。
2.讲解正方形和长方形的定义和性质,例如正方形的四边相等且角为直角,长方形的对边相等且角为直角等。
3.讲解正方形和长方形的周长和面积计算公式,并通过具体的例题进行演示。
4.通过练习题巩固学生对正方形和长方形的认识和计算公式的掌握。
5.总结本节课的学习内容,强调正方形和长方形的定义和性质,以及周长和面积的计算公式。
6.布置课后作业:完成课后练习题,预习下一节课的内容。
第三章:分数与小数3.1分数的意义和计算知识点:-分数的定义和表示方法-分数的大小比较-分数的四则运算能力目标:-能够理解分数的意义和表示方法-能够比较和计算分数教学重点:-分数的定义和表示方法-分数的大小比较-分数的四则运算教学难点:-分数的四则运算教学准备:-教师准备好教材、黑板、白板、笔等教具教学步骤:1.引入学习内容:通过例题引入分数的概念,并解答学生的问题。
北师大版七年级下册数学《转变中的三角形》导学案课件PPT板书设计教学实录北师大版七年级下册数学《转变中的三角形》导学案课件PPT板书设计教学实录第二课时●课题§6.2转变中的三角形●教学目标(一)教学知识点1.经历探讨某些图形中变量之间的关系的进程,进一步体验一个变量的转变对另一个变量的阻碍,进展符号感.2.能依照具体情形,用关系式表示某些变量之间的关系.3.能依照关系式求值,初步体会自变量和因变量的数值对应关系.(二)能力训练要求1.进展符号感和抽象思维能力.2.进展有层次的试探和表达能力,用转变的思想研究自变量和因变量的关系.(三)情感与价值观要求继续体验从运动转变的角度熟悉数学对象的进程,进展对数学的熟悉.●教学重点1.列关系式表示两个变量的关系.2.依照图形的面积公式或体积公式来求两个变量之间的关系式,会利用关系式依照任何一个自变量的值,求出相应因变量的值.●教学难点将具体问题抽象成数学问题并将它用关系式表示出来.●教学方式启发——自主探讨相结合在教师的启发和学生已有基础知识下,鼓舞他们实践、探讨转变进程中的变量关系、数量关系,体会自变量和因变量的依存关系,借助关系式表示变量之间的关系.●教具预备课件演示一:三角形的极点C沿底边所在直线向点B运动;课件演示二:圆锥的底面半径由小到大的转变;课件演示三:圆锥的高由小到大的转变.●教学进程Ⅰ.创设情景,引入新课[师]咱们先来看下面的问题:1.(1)若是正方形的边长为a,那么正方形的周长C=________;面积S=________;(2)圆的半径为r,那么圆的面积S=________;(3)三角形的一边为a,这边上的高为h,那么三角形的面积S=________;(4)梯形的上底、下底别离为a、b,高为h,那么梯形的面积S=________;(5)圆锥的底面的半径为r,高为h,那么圆锥的体积V=________;(6)圆柱的底面半径为r,高为h,那么圆柱的体积V=________.2.填写下表并回答下列问题:n 1 2 3 4 5 6 7m 4 5 6 7 8 9 10(1)表格反映的是哪两个变量的关系?谁是自变量?谁是因变量?(2)依照表格中的数据,说一说m是如何随n而转变的?[生]1.(1)C=4a,S=a2;(2)S=πr2;(3)S= ah;(4)S= (a+b)h;(5)V= πr2•h;(6)V=πr2•h.2.(1)表格中反映的是m和n这两个变量的关系,其中n是自变量,m是因变量.(2)m随n的增大而慢慢增大.[师]在第2题中,咱们借助于表格,反映了两个变量的关系.咱们还能不能借助于其他的形式来反映两个变量m和n的关系呢?[生]从表格中我发觉有一个规律,每一个m 的值都比对应的n的值大3.因此用等式m=n+3能够反映两个变量m,n的关系.[师]真棒!以前咱们学习过的一元一次方程是含有未知数的等式,现在咱们又要用等式来表示两个变量的关系,你们认同吗?[生]认同![师]专门好.咱们在那个地址就把m=n+3那个等式叫做m随n转变的关系式.Ⅱ.教学新课——依照具体情形,用关系式表示某些变量之间的关系.1.转变中的三角形看一看:课件演示一看图回答以下问题:图6-2中的三角形ABC底边BC上的高是6厘米,当三角形的极点C沿着底边所在直线向B点运动时,三角形的面积发生了转变.(1)在那个转变进程中,自变量、因变量别离是什么?(2)若是三角形的底边长为x(厘米),那么三角形的面积y(厘米2)能够表示为________.(3)当底边长从12厘米转变到3厘米时,三角形的面积从________厘米2转变到________厘米2.图6-2[师]从上面的课件演示进程来回答上面的问题.[生](1)自变量是△ABC的底边BC的长,因变量是△ABC的面积.[生](1)中的自变量也能够是∠ACB.(2)y=3x(3)当底边长是12厘米时,y= ×12×6=36(平方厘米);当底边长是3厘米时,y= ×3×6=9(平方厘米).因此当底边长从12厘米转变到3厘米时,三角形的面积从36厘米2转变到9厘米2.[师]从同窗们的回答中能够看到y=3x表示了三角形的底边长x和面积y之间的关系,它是变量y随变量x转变的关系式.因此,关系式是咱们表示变量之间关系的又一种方式.大伙儿能够比较一下这两种表示变量关系的方式——表格法和关系式法.(让同窗们与同伴交流,教师可倾听一下同窗们在下面的说法).[生]用表格法表示变量之间的关系,只有自变量和因变量对应的的有限个值,但较直观.而关系式表示变量之间的关系,依照自变量的任何一个值,即可求出相应的因变量的值.[师]同窗的分析很出色.同窗们还记得上学期见过的“数值转换机”吗?看图6-3:直观地表示了自变量和因变量的数值对应关系,即“输入”一个x的值就能够够“输出”一个y的值.例如:输入x=2,那么就可输出y=3×2=6.图6-32.转变中的圆锥做一做:课件演示二如图6-4,圆锥的高是4厘米,当圆锥的底面半径由小到大转变时,圆锥的体积也随之发生了转变.(1)在那个转变进程中,自变量和因变量各是什么?(2)若是圆锥底面半径为r(厘米),那么圆锥的体积V(厘米3)与r的关系式为________.(3)当底面半径由1厘米转变到10厘米时,圆锥的体积由________厘米3转变到________厘米3.图6-4[师]依照课件演示回答上述问题.[生](1)自变量是圆锥的底面半径,因变量是圆锥的体积;(2)V= πr2;(3)当底面半径r由1厘米→10厘米时,圆锥的体积V由π厘米3→π厘米3.做一做:课件演示三看图回答以下问题:如图6-5,圆锥的底面半径是2厘米,当圆锥的高由小到大转变时,圆锥的体积也随之发生了转变.(1)在那个转变进程中,自变量、因变量各是什么?(2)若是圆锥的高为h(厘米),那么圆锥的体积V(厘米3)与h的关系式为________.(3)当高由1厘米转变到10厘米时,圆锥的体积由_______厘米3转变到_______厘米3.图6-5[生](1)自变量是圆锥的高,因变量是圆锥的体积;(2)V= πh;(3)当h由1厘米→10厘米时,圆锥的体积是由厘米3→厘米3.[师]在课件演示二中,咱们明白当底面半径即自变量r由1厘米→10厘米时,因变量V由π厘米3→π厘米3;而在课件演示三中,当自变量h也是由1厘米→10厘米时,因变量V却是由π厘米3→π厘米3.什么缘故呢?[生]这是由于它们的关系式不同.r与V的关系式是V= πr2;而h与V的关系式是V= πh.Ⅲ.课堂练习1.随堂练习(讲义P169第1题)在地球某地,温度T(℃)与高度d(m)的关系能够近似地用T=10-来表示.依照那个关系式,当d的值别离是0,200,400,600,800,1000时,计算相应的T值,并用表格表示所得结果.图6-6[分析]此题的目的是学生进一步熟悉现实生活中存在的变量之间的关系,体会自变量和因变量数值之间的对应关系.在解决问题的进程中,学生可利用计算器,并保留两位小数.解:计算出相应的T的值填入下表:高度d/m 0 200 400 600 800 1000温度T/℃10.00 8.67 7.33 6.00 4.67 3.332.补充练习圆柱的高是10厘米,圆柱的底面半径为R厘米,圆柱的侧面展开图的面积为S平方厘米.(1)写出圆柱的侧面展开图的面积S与圆柱底面半径R之间的关系式.(2)用表格表示R从1厘米到10厘米(每一次增加1厘米)时,S相应的值.(3)R每增加1厘米,S如何转变?解:(1)S=20πR;(2)表格如下底面半径R 1 2 3 4 5 6 7 8 9 10侧面积S 20π40π60π80π100π120π140π160π180π200π(3)R每增加1厘米,S增加20π厘米2.Ⅳ.课时小结[师]这节课,同窗们有何体会和收成呢?[生]这节课,咱们研究了某些图形中变量之间的关系,进一步体验一个变量的转变对另一个变量的阻碍.[生]咱们明白了变量之间的关系除能够用表格表示外,还能够用关系式,而且初步体会了自变量和因变量的数值对应关系.[生]课件演示使咱们感受到学习数学的爱好.[生]用数学符号能表示现实世界中的一些规律,能用数学的角度去看世界.[师]看来,同窗们的收成还真不小!祝你们生活的欢乐!Ⅴ.课后作业1.讲义P169,读一读,去体会变量与变量之间的彼此依托关系在生活中普遍存在.在那个问题中,告知咱们随着地球内部厚度的增加,温度也在发生着转变.2.讲义P170一、2.Ⅵ.活动与探讨我省是水资源比较贫乏的省份之一,为了增强公民的节水意识,合理利用水资源,各地采纳价钱调控等手腕达到节约用水的目的.某市规定如下用水收费标准:每户每一个月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部份每立方米仍按a元收费,超过的部份每立方米按c元收费.该市某户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)水费(元)3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费y (元).(1)求a、c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)假设该户5月份的用水量为8立方米,求该户5月份的水费是多少元?[进程]该题结合生活实际,立意新颖,能够培育学生节约用水的社会意识.在已知自变量和因变量的数值对应关系及依照题意,由表格读取信息取得的用水量和水费的关系式,求a、c的值,只需利用方程的思想.同时还要有分类讨论的思想去解决该问题.[结果](1)依照题意,有当x≤6时,y=ax;当x>6时,y=6a+c(x-6).由已知,得7.5=5a ①27=6a+3c ②由①得a=1.5把a=1.5代入②得c=6,因此y=1.5x(x≤6);y=9+6(x-6)=6x-27(x>6).(2)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元)因此,该户5月份的水费是21元.●板书设计§6.2转变中的三角形一、看一看课件演示一:转变中的三角形①关系式表示变量之间关系的又一种方式.②依照任何一个自变量的值,利用关系式,即可求出相应的因变量的值.二、做一做课件演示二:高为4厘米时,圆锥的体积与底面半径R的关系:V= πr2.课件演示三:V= πh.三、练习(由学生板演)四、小结北师大版七年级下册数学《转变中的三角形》导学案课件PPT板书设计教学实录第二课时●课题§6.2转变中的三角形●教学目标(一)教学知识点1.经历探讨某些图形中变量之间的关系的进程,进一步体验一个变量的转变对另一个变量的阻碍,进展符号感.2.能依照具体情形,用关系式表示某些变量之间的关系.3.能依照关系式求值,初步体会自变量和因变量的数值对应关系.(二)能力训练要求1.进展符号感和抽象思维能力.2.进展有层次的试探和表达能力,用转变的思想研究自变量和因变量的关系.(三)情感与价值观要求继续体验从运动转变的角度熟悉数学对象的进程,进展对数学的熟悉.●教学重点1.列关系式表示两个变量的关系.2.依照图形的面积公式或体积公式来求两个变量之间的关系式,会利用关系式依照任何一个自变量的值,求出相应因变量的值.●教学难点将具体问题抽象成数学问题并将它用关系式表示出来.●教学方式启发——自主探讨相结合在教师的启发和学生已有基础知识下,鼓舞他们实践、探讨转变进程中的变量关系、数量关系,体会自变量和因变量的依存关系,借助关系式表示变量之间的关系.●教具预备课件演示一:三角形的极点C沿底边所在直线向点B运动;课件演示二:圆锥的底面半径由小到大的转变;课件演示三:圆锥的高由小到大的转变.●教学进程Ⅰ.创设情景,引入新课[师]咱们先来看下面的问题:1.(1)若是正方形的边长为a,那么正方形的周长C=________;面积S=________;(2)圆的半径为r,那么圆的面积S=________;(3)三角形的一边为a,这边上的高为h,那么三角形的面积S=________;(4)梯形的上底、下底别离为a、b,高为h,那么梯形的面积S=________;(5)圆锥的底面的半径为r,高为h,那么圆锥的体积V=________;(6)圆柱的底面半径为r,高为h,那么圆柱的体积V=________.2.填写下表并回答下列问题:n 1 2 3 4 5 6 7m 4 5 6 7 8 9 10(1)表格反映的是哪两个变量的关系?谁是自变量?谁是因变量?(2)依照表格中的数据,说一说m是如何随n而转变的?[生]1.(1)C=4a,S=a2;(2)S=πr2;(3)S= ah;(4)S= (a+b)h;(5)V= πr2•h;(6)V=πr2•h.2.(1)表格中反映的是m和n这两个变量的关系,其中n是自变量,m是因变量.(2)m随n的增大而慢慢增大.[师]在第2题中,咱们借助于表格,反映了两个变量的关系.咱们还能不能借助于其他的形式来反映两个变量m和n的关系呢?[生]从表格中我发觉有一个规律,每一个m 的值都比对应的n的值大3.因此用等式m=n+3能够反映两个变量m,n的关系.[师]真棒!以前咱们学习过的一元一次方程是含有未知数的等式,现在咱们又要用等式来表示两个变量的关系,你们认同吗?[生]认同![师]专门好.咱们在那个地址就把m=n+3那个等式叫做m随n转变的关系式.Ⅱ.教学新课——依照具体情形,用关系式表示某些变量之间的关系.1.转变中的三角形看一看:课件演示一看图回答以下问题:图6-2中的三角形ABC底边BC上的高是6厘米,当三角形的极点C沿着底边所在直线向B点运动时,三角形的面积发生了转变.(1)在那个转变进程中,自变量、因变量别离是什么?(2)若是三角形的底边长为x(厘米),那么三角形的面积y(厘米2)能够表示为________.(3)当底边长从12厘米转变到3厘米时,三角形的面积从________厘米2转变到________厘米2.图6-2[师]从上面的课件演示进程来回答上面的问题.[生](1)自变量是△ABC的底边BC的长,因变量是△ABC的面积.[生](1)中的自变量也能够是∠ACB.(2)y=3x(3)当底边长是12厘米时,y= ×12×6=36(平方厘米);当底边长是3厘米时,y= ×3×6=9(平方厘米).因此当底边长从12厘米转变到3厘米时,三角形的面积从36厘米2转变到9厘米2.[师]从同窗们的回答中能够看到y=3x表示了三角形的底边长x和面积y之间的关系,它是变量y随变量x转变的关系式.因此,关系式是咱们表示变量之间关系的又一种方式.大伙儿能够比较一下这两种表示变量关系的方式——表格法和关系式法.(让同窗们与同伴交流,教师可倾听一下同窗们在下面的说法).[生]用表格法表示变量之间的关系,只有自变量和因变量对应的的有限个值,但较直观.而关系式表示变量之间的关系,依照自变量的任何一个值,即可求出相应的因变量的值.[师]同窗的分析很出色.同窗们还记得上学期见过的“数值转换机”吗?看图6-3:直观地表示了自变量和因变量的数值对应关系,即“输入”一个x的值就能够够“输出”一个y的值.例如:输入x=2,那么就可输出y=3×2=6.图6-32.转变中的圆锥做一做:课件演示二如图6-4,圆锥的高是4厘米,当圆锥的底面半径由小到大转变时,圆锥的体积也随之发生了转变.(1)在那个转变进程中,自变量和因变量各是什么?(2)若是圆锥底面半径为r(厘米),那么圆锥的体积V(厘米3)与r的关系式为________.(3)当底面半径由1厘米转变到10厘米时,圆锥的体积由________厘米3转变到________厘米3.图6-4[师]依照课件演示回答上述问题.[生](1)自变量是圆锥的底面半径,因变量是圆锥的体积;(2)V= πr2;(3)当底面半径r由1厘米→10厘米时,圆锥的体积V由π厘米3→π厘米3.做一做:课件演示三看图回答以下问题:如图6-5,圆锥的底面半径是2厘米,当圆锥的高由小到大转变时,圆锥的体积也随之发生了转变.(1)在那个转变进程中,自变量、因变量各是什么?(2)若是圆锥的高为h(厘米),那么圆锥的体积V(厘米3)与h的关系式为________.(3)当高由1厘米转变到10厘米时,圆锥的体积由_______厘米3转变到_______厘米3.图6-5[生](1)自变量是圆锥的高,因变量是圆锥的体积;(2)V= πh;(3)当h由1厘米→10厘米时,圆锥的体积是由厘米3→厘米3.[师]在课件演示二中,咱们明白当底面半径即自变量r由1厘米→10厘米时,因变量V由π厘米3→π厘米3;而在课件演示三中,当自变量h也是由1厘米→10厘米时,因变量V却是由π厘米3→π厘米3.什么缘故呢?[生]这是由于它们的关系式不同.r与V的关系式是V= πr2;而h与V的关系式是V= πh.Ⅲ.课堂练习1.随堂练习(讲义P169第1题)在地球某地,温度T(℃)与高度d(m)的关系能够近似地用T=10-来表示.依照那个关系式,当d的值别离是0,200,400,600,800,1000时,计算相应的T值,并用表格表示所得结果.图6-6[分析]此题的目的是学生进一步熟悉现实生活中存在的变量之间的关系,体会自变量和因变量数值之间的对应关系.在解决问题的进程中,学生可利用计算器,并保留两位小数.解:计算出相应的T的值填入下表:高度d/m 0 200 400 600 800 1000温度T/℃10.00 8.67 7.33 6.00 4.67 3.332.补充练习圆柱的高是10厘米,圆柱的底面半径为R厘米,圆柱的侧面展开图的面积为S平方厘米.(1)写出圆柱的侧面展开图的面积S与圆柱底面半径R之间的关系式.(2)用表格表示R从1厘米到10厘米(每一次增加1厘米)时,S相应的值.(3)R每增加1厘米,S如何转变?解:(1)S=20πR;(2)表格如下底面半径R 1 2 3 4 5 6 7 8 9 10侧面积S 20π40π60π80π100π120π140π160π180π200π(3)R每增加1厘米,S增加20π厘米2.Ⅳ.课时小结[师]这节课,同窗们有何体会和收成呢?[生]这节课,咱们研究了某些图形中变量之间的关系,进一步体验一个变量的转变对另一个变量的阻碍.[生]咱们明白了变量之间的关系除能够用表格表示外,还能够用关系式,而且初步体会了自变量和因变量的数值对应关系.[生]课件演示使咱们感受到学习数学的爱好.[生]用数学符号能表示现实世界中的一些规律,能用数学的角度去看世界.[师]看来,同窗们的收成还真不小!祝你们生活的欢乐!Ⅴ.课后作业1.讲义P169,读一读,去体会变量与变量之间的彼此依托关系在生活中普遍存在.在那个问题中,告知咱们随着地球内部厚度的增加,温度也在发生着转变.2.讲义P170一、2.Ⅵ.活动与探讨我省是水资源比较贫乏的省份之一,为了增强公民的节水意识,合理利用水资源,各地采纳价钱调控等手腕达到节约用水的目的.某市规定如下用水收费标准:每户每一个月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部份每立方米仍按a元收费,超过的部份每立方米按c元收费.该市某户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)水费(元)3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费y (元).(1)求a、c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)假设该户5月份的用水量为8立方米,求该户5月份的水费是多少元?[进程]该题结合生活实际,立意新颖,能够培育学生节约用水的社会意识.在已知自变量和因变量的数值对应关系及依照题意,由表格读取信息取得的用水量和水费的关系式,求a、c的值,只需利用方程的思想.同时还要有分类讨论的思想去解决该问题.[结果](1)依照题意,有当x≤6时,y=ax;当x>6时,y=6a+c(x-6).由已知,得7.5=5a ①27=6a+3c ②由①得a=1.5把a=1.5代入②得c=6,因此y=1.5x(x≤6);y=9+6(x-6)=6x-27(x>6).(2)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元)因此,该户5月份的水费是21元.●板书设计§6.2转变中的三角形一、看一看课件演示一:转变中的三角形①关系式表示变量之间关系的又一种方式.②依照任何一个自变量的值,利用关系式,即可求出相应的因变量的值.二、做一做课件演示二:高为4厘米时,圆锥的体积与底面半径R的关系:V= πr2.课件演示三:V= πh.三、练习(由学生板演)四、小结北师大版七年级下册数学《转变中的三角形》导学案课件PPT板书设计教学实录第二课时●课题§6.2转变中的三角形●教学目标(一)教学知识点1.经历探讨某些图形中变量之间的关系的进程,进一步体验一个变量的转变对另一个变量的阻碍,进展符号感.2.能依照具体情形,用关系式表示某些变量之间的关系.3.能依照关系式求值,初步体会自变量和因变量的数值对应关系.(二)能力训练要求1.进展符号感和抽象思维能力.2.进展有层次的试探和表达能力,用转变的思想研究自变量和因变量的关系.(三)情感与价值观要求继续体验从运动转变的角度熟悉数学对象的进程,进展对数学的熟悉.●教学重点1.列关系式表示两个变量的关系.2.依照图形的面积公式或体积公式来求两个变量之间的关系式,会利用关系式依照任何一个自变量的值,求出相应因变量的值.●教学难点将具体问题抽象成数学问题并将它用关系式表示出来.●教学方式启发——自主探讨相结合在教师的启发和学生已有基础知识下,鼓舞他们实践、探讨转变进程中的变量关系、数量关系,体会自变量和因变量的依存关系,借助关系式表示变量之间的关系.●教具预备课件演示一:三角形的极点C沿底边所在直线向点B运动;课件演示二:圆锥的底面半径由小到大的转变;课件演示三:圆锥的高由小到大的转变.●教学进程Ⅰ.创设情景,引入新课[师]咱们先来看下面的问题:1.(1)若是正方形的边长为a,那么正方形的周长C=________;面积S=________;(2)圆的半径为r,那么圆的面积S=________;(3)三角形的一边为a,这边上的高为h,那么三角形的面积S=________;(4)梯形的上底、下底别离为a、b,高为h,那么梯形的面积S=________;(5)圆锥的底面的半径为r,高为h,那么圆锥的体积V=________;(6)圆柱的底面半径为r,高为h,那么圆柱的体积V=________.2.填写下表并回答下列问题:n 1 2 3 4 5 6 7m 4 5 6 7 8 9 10(1)表格反映的是哪两个变量的关系?谁是自变量?谁是因变量?(2)依照表格中的数据,说一说m是如何随n而转变的?[生]1.(1)C=4a,S=a2;(2)S=πr2;(3)S= ah;(4)S= (a+b)h;(5)V= πr2•h;(6)V=πr2•h.2.(1)表格中反映的是m和n这两个变量的关系,其中n是自变量,m是因变量.(2)m随n的增大而慢慢增大.[师]在第2题中,咱们借助于表格,反映了两个变量的关系.咱们还能不能借助于其他的形式来反映两个变量m和n的关系呢?[生]从表格中我发觉有一个规律,每一个m 的值都比对应的n的值大3.因此用等式m=n+3能够反映两个变量m,n的关系.[师]真棒!以前咱们学习过的一元一次方程是含有未知数的等式,现在咱们又要用等式来表示两个变量的关系,你们认同吗?[生]认同![师]专门好.咱们在那个地址就把m=n+3那个等式叫做m随n转变的关系式.Ⅱ.教学新课——依照具体情形,用关系式表示某些变量之间的关系.1.转变中的三角形看一看:课件演示一看图回答以下问题:图6-2中的三角形ABC底边BC上的高是6厘米,当三角形的极点C沿着底边所在直线向B点运动时,三角形的面积发生了转变.(1)在那个转变进程中,自变量、因变量别离是什么?(2)若是三角形的底边长为x(厘米),那么三角形的面积y(厘米2)能够表示为________.(3)当底边长从12厘米转变到3厘米时,三角形的面积从________厘米2转变到________厘米2.图6-2[师]从上面的课件演示进程来回答上面的问题.[生](1)自变量是△ABC的底边BC的长,因变量是△ABC的面积.[生](1)中的自变量也能够是∠ACB.(2)y=3x(3)当底边长是12厘米时,y= ×12×6=36(平方厘米);当底边长是3厘米时,y= ×3×6=9(平方厘米).因此当底边长从12厘米转变到3厘米时,三角形的面积从36厘米2转变到9厘米2.[师]从同窗们的回答中能够看到y=3x表示了三角形的底边长x和面积y之间的关系,它是变量y随变量x转变的关系式.因此,关系式是咱们表示变量之间关系的又一种方式.大伙儿能够比较一下这两种表示变量关系的方式——表格法和关系式法.(让同窗们与同伴交流,教师可倾听一下同窗们在下面的说法).[生]用表格法表示变量之间的关系,只有自变量和因变量对应的的有限个值,但较直观.而关系式表示变量之间的关系,依照自变量的任何一个值,即可求出相应的因变量的值.[师]同窗的分析很出色.同窗们还记得上学期见过的“数值转换机”吗?看图6-3:直观地表示了自变量和因变量的数值对应关系,即“输入”一个x的值就能够够“输出”一个y的值.例如:输入x=2,那么就可输出y=3×2=6.图6-32.转变中的圆锥做一做:课件演示二如图6-4,圆锥的高是4厘米,当圆锥的底面半径由小到大转变时,圆锥的体积也随之发生了转。
北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。
在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。
同时是后续学习垂直的基础。
2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。
3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。
教学难点:对顶角相等的性质的探索。
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、剪刀,纸。
三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。
由此引入本节的主要内容。
(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。
二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。
(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
1、《同底数幂的乘法》导学案一、学习目标1、经历探索同底数幂乘法运算性质的过程,了解正整数指数幂的意义。
2、了解同底数幂乘法的运算性质,并能解决一些实际问题。
二、学习过程 (一) 自学导航1、na 的意义是表示 相乘,我们把这种运算叫做乘方,乘方的结果叫做幂。
叫做底数, 叫做指数。
阅读课本p 16页的内容,回答下列问题: 2、试一试:(1)23×33=(3×3)×(3×3×3)=()3(2)32×52= =()2 (3)3a •5a = =()a想一想:1、ma •n a 等于什么(m,n 都是正整数)?为什么?2、观察上述算式计算前后底数和指数各有什么关系?你发现了什么? 概括:符号语言: 。
文字语言: 。
计算:(1) 35×75 (2) a •5a (3) a •5a •3a(二) 合作攻关判断下列计算是否正确,并简要说明理由。
(1)a •2a = 2a (2) a +2a = 3a (3)2a •2a =22a (4)3a •3a = 9a(5) 3a +3a =6a (三) 达标训练 1、计算:(1)310×210 (2)3a •7a (3)x •5x •7x2、填空:5x •( )=9x m •( )=4m 3a •7a •( )=11a3、计算: (1)ma •1+m a (2)3y •2y +5y(3)(x+y)2•(x+y)64、灵活运用:(1)x3=27,则x= 。
(2)9×27=x3,则x= 。
(3)3×9×27=x3,则x= 。
(四) 总结提升1、怎样进行同底数幂的乘法运算?2、练习:(1)53×27(2)若ma =3,na =5,则nm a += 。
能力检测1.下列四个算式:①a 6·a 6=2a 6;②m 3+m 2=m 5;③x 2·x·x 8=x 10;④y 2+y 2=y 4.其中计算正确的有(• )A .0个B .1个C .2个D .3个2.m 16可以写成( )A .m 8+m 8B .m 8·m 8C .m 2·m 8D .m 4·m 43.下列计算中,错误的是( )A .5a 3-a 3=4a 3B .2m ·3n =6 m+nC .(a-b )3·(b-a )2=(a-b )5D .-a 2·(-a )3=a 54.若x m =3,x n =5,则x m+n的值为( )A .8B .15C .53D .355.如果a 2m-1·a m+2=a 7,则m 的值是( ) A .2 B .3 C .4 D .56.同底数幂相乘,底数_________,指数_________.7.计算:-22×(-2)2=_______.8.计算:a m ·a n ·a p =________;(-x )(-x 2)(-x 3)(-x 4)=_________.9.3n-4·(-3)3·35-n=__________.2、《幂的乘方》导学案一、学习目标1、经历探索幂的乘方的运算性质的过程,了解正整数指数幂的意义。
新北师大版七年级数学下册第二章相交线与平行线导学案第一节两条直线的位置关系(1)【学习目标】1、在具体情境中了解余角与补角,知道余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。
2、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理地表达的能力;经历探索余角、补角、对顶角的性质的过程。
3、通过学生动手操作、观察、合作、交流,进一步感受学习数学的意义,培养其主动探索、合作以及解决问题的能力。
【学习方法】自主探究与合作交流相结合【学习重难点】掌握余角、补角和对顶角的概念,性质及应用。
【学习过程】模块一预习反馈一、学习准备观察下面几幅生活中的图片:1、在同一平面内,两条直线的位置关系有和两种2、在同一平面内,不相交的两条直线叫做__________、3、若两条直线只有一个公共点,我们称这两条直线为、二、教材精读(1)如果将剪刀的图简单的表示为图2-1,那么∠1与∠2的位置有什么关系?它们的大小有什么关系?能试着说明,你的理由吗?解: ,即,,等式两边同时都减去_____________, ,,得:。
归纳:在图2-1中,直线AB与CD相交于点O,的有一个公共点O,它们的两边互为反向延长线,具有这种位置关系的两个角叫。
新课标第一网对顶角有如下性质:对顶角(2)在图2-1中,有什么数量关系?解:由可知总结:如果两个角的和是,那么称这两个角互为补角、类似的,如果两个角的和是,那么称这两个角互为余角、注意:互余和互补是指两个角的数量关系,与它们的位置无关。
模块二合作探究2DC O134ANB图2-3 如图2-2,打台球时,选择适当的方向用白球击打红球,反弹的红球会直接入袋,此时图2-2将图2-2抽象成成图2-3,ON与DC交于点O,∠DON=∠CON=,∠1=∠2。
在图2-3中:(1):哪些角互为补角?哪些角互为余角?(2):∠3与∠4有什么关系?为什么?(3):∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?解:(1)互为补角的如(2)相等,, (3), 且结论归纳:同角或等角的相等,同角或等角的相等。
新版北师大版七年级数学下册第二章相交线与平行线导学案一、概念理解在学习本章内容之前,我们首先需要了解一些基本概念。
1.直线定义:没有弯曲的线叫做直线。
直线可以用两个点来确定,在平面直角坐标系中,直线还可以用解析式表示。
2.相交线定义:两条直线在一点相交,这个点叫做它们的交点;如果两条线有交点,就称这两条线是相交的。
相交线的性质:1.相交线只有一个交点。
2.相交线的交点与交点两侧的各一条线垂直。
3.相交线将平面分成了不同的四个部分。
3.平行线定义:在同一个平面内,若两条直线在无穷远处也不相交,则这两条直线互相平行。
平行线的性质:1.平行线永远不会相交。
2.平行线的斜率相等。
3.平行线的夹角(以交线为准)为180度。
4.平行线将平面分成了三个部分。
二、学习任务1.掌握相交线的性质现在让我们尝试用笔来练习一下相交线的性质。
任务1:画出两条不同的直线,它们在图中有一个交点。
通过这个交点再画两条直线。
你发现了什么?任务2:已知两条相交的直线,分别为AB和CD,它们在E处相交,角AEC=60度,角BED=120度,求角AED的度数。
任务3:已知两条相交的线m和n,A、B、C三点在线m上,D和E在线n 上。
如果有AD=DB,BE=EC,试证明:DE∥BC。
2.掌握平行线的性质现在让我们尝试用笔来练习一下平行线的性质。
任务1:画出一条直线和一条平行于该直线的线段。
再画出一条与这条直线相交的第三条直线。
交点分别为A、B、C。
如果线段的长度为5cm,求出直线AC的长度。
任务2:已知如图,AB∥CD,AB和CD的交点为E,角BCE=70度,求角ADE的度数。
任务3:已知如图,AB∥CD,EF∥CD,EF和AB的交点为G,求角DEG的度数。
三、思考与拓展1.思考题1.如图,AB∥DE,AD∥BC,CE=1cm,DE=3.5cm,求BA的长度(单位:cm,保留一位小数)。
2.如图,ABCD是一个平行四边形,AE∥BC,CF∥BD,AG=10cm,CG=5cm,求BF的长度(单位:cm,保留一位小数)。
§2.2探索直线平行的条件(1)
学习目标:
1、掌握平行线公理(会用三角尺过已知直线外一点画这条直线的平行线。
)及平行线的传递性。
2、理解两条直线平行的条件,会用“同位角相等”的方法判定两条直线平行. 4、 初步认识数学与生活的密切联系,并通过用数学知识解决实际问题,培养了解数学、应用数学的态度.
学习重点:掌握直线平行的条件是“同位角相等,两直线平行”。
学习难点:利用“同位角相等,两直线相等”解决一些问题. 学习过程:
一、 知识预备: (一)复习回顾:
1、在同一平面内,两条直线的位置关系有 和 ,不相交的两条直线叫 ;
2.什么叫平行线? 的两直线叫做平行线.
(二)预习数学课本44-45页:
二、探究学习,感知新知:
(一)、引入课题:
装修工人正在向墙上钉木条,如果木条b 与墙壁的边缘垂直,那么木条a 与墙壁的边缘所夹的角为多少度时,才能使木条a 与木条b 平行?
(二)、课内探究: 1、同位角:
我发现: ∠1与∠5都在直线 和 的同侧,且都在直线 的同旁.像这种位置关系的角称为 同位角.
图5中还有哪些角是同位角?
, , 。
2、直线平行的条件:
动手操作:课本44页的图2-11,三根木条相交成∠1,∠2,固定木条b,c,转动木条a.
在木条a 的转动过程中, 观察∠2的变化以及它与∠1的大小关系. 在转动过程中,木条a 与木条b 的位置关系发生了什么变化? 何时木条a 平行于木条b ? 由此你能得出什么结论?
平行判定1:两条直线被第三条直线所截,如果同位角 ,那么这两条直线 。
简称: (公理) 如图,可表述为:
∵ ( )
∴ ( )
两直线平行,用“//”表示,例如,直线a 与b 平行,记作 。
3、平行线公理:
完成课本45页的做一做,从做一做中你发现什么结论? 过直线外一点有 条直线与这条直线平行。
4、平行线的传递性: 几何语言:(如图)
∵ a b ∴
c
F
E
D C B
A
2
1
图6
1
2
b
a
三、应用新知,体验成功 :
(一)基础达标 例1、如图
(1)12∠=∠ (已知) ∴
∥ ( ) (2)23∠=∠ (已知)
∴ ∥ ( ) (二)能力提升
例2、如图(1),()a b c a ⊥⊥ 已知
12∴∠=∠= (垂直的定义)
∴ ∥ ( )
(2)用一句精炼的话总结(1)所包含的规律 (三)知识拓展
例3、如图,已知00170,2110∠=∠=,试问a 与b 平行吗? 说说你的理由。
四、巩固练习:
A 组
1、如图6,已知∠1=100°,若要使直线a 平行于直线 b ,则∠2应等于( ) A 、 100° B 、 60° C 、40° D 、 80°
2、AB ∥CD,则与∠1相等的角(∠1除外)共有( ) A.5个 B.4个 C.3个 D.2个 B 组
3、如图,已知00165,2115∠=∠=,直线BC 与DF 平行吗?为什么?
五、课堂反思:
1、今天,你学习了什么知识?
2、对今天的课,你还有哪些困惑?
c
b
a
2
1
d
c
b
a
3
2
1
c
b a
321
E
D C B
A
21
1
D
C
B A。