《5.3应用一元一次方程——水箱变高了》课后作业含答案
- 格式:doc
- 大小:370.22 KB
- 文档页数:3
3 应用一元一次方程——水箱变高了1.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( )A .面积与周长都不变化B .面积相等但周长发生变化C .周长相等但面积发生变化D .面积与周长都发生变化2.根据图中给出的信息,可得正确的方程是( )A .π×(82)2×x =π×(62)2×(x +5) B .π×82×x =π×62×5C .π×(82)2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)3.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6 cmB .8 cmC .10 cmD .12 cm4.要锻造直径为16 cm 、高为5 cm 的圆柱形毛坯,设需截取横截面边长为6 cm 的方钢(横截面为正方形的钢材)x cm ,则可得方程为 .5.一个长方体合金底面长为80 mm 、宽为60 mm 、高为100 mm ,现要锻压成新的长方体合金,其底面是边长为40 mm 的正方形,则新长方体合金的高为 .6.将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?7.在“爱护环境,建我家乡”的活动中,七(1)班学生回收饮料瓶共10 kg ,男生回收的重量是女生的4倍,设女生回收饮料瓶x kg ,根据题意,可列方程为( )A .4(10-x)=xB .x +14x =10 C .4x =10+x D .4x =10-x8.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x 人,可列方程为 .9.李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?10.有一根钢管长12米,要锯成两段,使第一段比第二段短2米,求每段长各多少米?11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她第一天织布为x尺,以下列出的方程正确的是( )A.x+2x=5 B.x+2x+4x+6x+8x=5C.x+2x+4x+8x+16x=5 D.x+2x+4x+16x+32x=512.用长为1米、直径为50毫米的圆钢可以拉成直径为1毫米的钢丝米.13.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为.14.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为平方厘米.(1毫升=1立方厘米)15.用长为10 m的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1 m,求长方形的面积.16.在一个底面直径为5 cm,高为18 cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm,高为10 cm的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.17.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为 .18.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?1.C2.A3.C4.(162)2π×5=62·x . 5.300_mm .6.解:设毛坯的高为x cm ,根据题意,得π×62×40=π×122·x.解得x =10.答:毛坯的高是10 cm.7.D8.2x +55=589-x .9.解:设李明的年龄为x 岁,则他父亲的年龄为(3x -1)岁,可列方程为 3x -1+x =55,解得x =14.则3x -1=41.答:李明的年龄为14岁,他父亲的年龄为41岁.10.解:设第二段长为x 米,则第一段长为(x -2)米.根据题意,得x +(x -2)=12.解得x =7.答:第一段长为5米,第二段长为7米.11.C12.2_500.13.54.14.25.15.解:设宽为x m,则长为(x+1)m.根据题意,得2x+(x+1)=10.解得x=3.所以x+1=4.故长方形的面积为3×4=12(m2).答:长方形的面积为12 m316.解:设圆柱形瓶内的水倒入玻璃杯中水的高度为x cm.由题意,得(52)2π×18=(62)2πx.解得x=12.5.因为12.5>10,所以不能完全装下.设瓶内水还剩y cm高.由题意,得(52)2π×18=(52)2πy+(62)2π×10.解得y=3.6.答:瓶内水还剩3.6 cm 高.17.44_cm 2.18.解:设这批书共有3x 本.根据题意,得 2x -4016=x +409.解得x =500.所以3x =1 500.答:这批书共有1 500本.。
七年级上《5.3应用一元一次方程——水箱变高了》课后作业
1.已知长方形的周长是30 cm,长比宽多3 cm,这个长方形的面积是________.
2.用一根铁丝围成一个长24 cm,宽12 cm的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm2.
3.班级筹备运动会要做直角边分别为0.4 m和0.3 m的三角形小旗64面,则需要长1.6 m,宽1.2 m的长方形红纸________张.4.一个长方形的周长是26 cm,把它的长减少3 cm,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.
5.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V=πr3)
6.有一个底面半径为5 cm的圆柱形储油器,油液中浸有钢珠,若从中捞出546πg钢珠,问液面下降多少厘米(1 cm3钢珠为7.8 g)?
7.用一根长为10 m的铁丝围成一个长方形,
(1)使该长方形的长比宽多1.4 m,此时长方形的面积是多少?
(2)使该长方形的长与宽相等,此时正方形的面积是多少?
(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?。
应用一元一次方程——水箱变高了1.(题型一)有一个底面半径长为10 cm,高为30 cm的圆柱形大杯中存满了水,把它里边的水倒入一个底面直径长为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为 ____cm.2.(知识点1)某中学的长方形足球场的周长为310米,长比宽多25米.问:这个足球场的长和宽分别是多少米?3.(题型一)如图5-3-1,将一个底面直径长是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径长是10厘米的“瘦高”形圆柱,此时高变成了多少?图5-3-14.(题型一)内径长为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,将它里边的水倒入内径长为120 mm的圆柱形玻璃杯,刚好倒满,则内径长为120 mm的玻璃杯的内高为()A.150 mmB.200 mmC.250 mmD.300 mm5.(考点一)用一根长为24 cm的铁丝围成一个长与宽的比是2∶1的长方形,则长方形的面积是()A.32 cm2B.36 cm2C.144 cm2D.以上都不对6.(题型一)某工厂要制造直径长为120 mm,高为20 mm的圆钢毛坯,现有的原料是直径长为60 mm的圆钢若干米,则应取原料的长为()A.50 mmB.60 mmC.70 mmD.80 mm7.(题型一)三个底面均为正方形,且高度相等的长方体容器甲、乙、丙,底面边长分别为5,12,13.今将甲、乙两个容器装满的水倒入丙容器.问:水是否会溢出?8.(知识点1)用长为16 m的铁丝沿墙围成一个长方形(墙的一面为该长方形的长,不用铁丝),该长方形的长比宽多1 m,求该长方形的面积.参考答案1. 10 解析:倒入前、后水的体积相等.设圆柱形小杯的高为x cm.依题意可得π×102×30=π×(210)2x ×12,解得x =10.2.解:设这个足球场的长为x 米,则宽为(x -25)米.根据题意,得2 [x +(x -25)]=310.解这个方程,得x =90.所以x -25=65.答:这个足球场的长和宽分别是90米、65米.3.解:设此时高变成了x 厘米.根据题意,得π×(220)2×9=π×(210)2x .解得x =36.答:此时高变成了36厘米.4.B 解析:根据题意知,两个玻璃杯的体积相等.设内径长为120 mm 的玻璃杯的内高为x mm.依题意,得π×(2300)2×32=π×(2120)2·x ,解得x =200.所以内径长为120 mm 的玻璃杯的内高为200 mm.故选B.5.A 解析:设长方形的宽为x cm ,则长为2x cm.根据题意,得2(2x +x )=24,解得x =4,则2x =8,故长方形的面积是4×8=32(cm 2).故选A.6.D 解析:根据制造前、后的体积相等,所取原料的长相当于立起来时的高.设所取原料的长为x mm.依题意,得π×(2120)2×20=π×(260)2x ,解得x =80.所以所取原料的长为80 mm.故选D.7.解:水不会溢出.理由如下:设各长方体容器的高度均为x ,则甲、乙两个容器的体积和为52x +122x =169x ,丙的体积为132x =169x .所以甲、乙两个容器的体积和等于丙的体积.故水不会溢出.7.解:设该长方形的宽为x m ,则它的长为(x +1)m.根据题意,得2x +(x +1)=16.解得x =5.所以x +1=6.5×6=30(m 2).答:该长方形的面积为30 m 2.。
七年级上册 5.3应用一元一次方程——水箱变高了一、学习目标:1.会用表格分析形积变化中的数量关系。
2.能列出方程,解决形积变化的问题。
二、当堂检测A组:1.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×52、已知长方形的周长是36cm,长比宽的2倍多3cm,求长方形的长与宽各是多少?B组:3. 小明将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条。
如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?三、课后作业A组:1.一块长方形黎锦的周长为80cm;已知这块黎锦的长比宽多5cm,求它的长和宽.设这块黎锦的宽为xcm,则所列方程正确的是( )A.x+(x+5)=40 B.x+(x﹣5)=40 C.x+(x+5)=80 D.x+(x﹣5)=802.要分别锻造底面直径为70mm,高为45mm和底面直径为30mm,高为30mm的圆柱形零件毛坯各一个,需要截取直径为50mm的圆钢多长?B组:3、某农民准备利用一面旧墙围一长方形鸡舍,他编好了6米竹篱笆,考虑三种方案.(1)要使长比宽多0.6米,此时长方形的长和宽及面积各是多少?(2)要使长比宽多0.3米,此时长方形的长和宽及面积各是多少?(3)要使长和宽相等,此时长方形的边长是多少米?C组:4.如图,一个盛有水的圆柱形玻璃容器的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?5.3应用一元一次方程--水箱变高了答案当堂检测A组:1、B2、长为13cm,宽为5cmB组:3、80cm2课后作业A组:1、A2、99mmB组:3、(1)2.4m 1.8m 4.32m2(2)2.2m 1.9m 4.18m2(3)2mC组:4、0.5cm。
第五章 一元一次方程5.3 应用一元一次方程--水箱变高了精选练习一、单选题1.(2021·黑龙江·绥棱县教师进修学校期末)三角形三边比是3:4:5,周长是72,那么,最长边是( )A .30B .24C .18D .122.(2023·福建·泉州五中三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B.7x +4 = 9x -8C .4879x x +-=D .4879x x -+=【答案】B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.3.(2022·全国·七年级课时练习)在一个底面直径为6cm ,高为9cm 的圆柱形瓶内注水,使水柱的高为5cm ,向瓶中放入一块长、宽、高分别为2cm ,2cm ,4cm 的长方体铁块,则此时水柱的高为( )(p 取3)A .559cmB .14527cmC .539cmD .15127cm4.(2022·四川·三台博强蜀东外国语学校七年级阶段练习)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为210cm ,请你根据图中标明的数据,计算瓶子的容积是( )3cm .A .80B .70C .60D .50【答案】C 【分析】据“空余容积+水的体积=瓶子的容积”和圆柱的体积公式作答.【详解】解:由左图知,水体积为40 cm 3,在左图中用v 表示瓶子的体积,空余容积为(v-40)cm 3;由右图知空余容积为()751020-´= cm 3,由左右两图得到的空余容积应相等得方程:v-40=20.v=40+20=60故选择:C .【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法,关键是分析图形信息找等量关系.5.(2021·湖南·宁远县启慧学校七年级阶段练习)甲乙两桶共有48千克水,如果甲桶给乙桶加乙桶水的一倍,然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶水的质量相等,问原来甲、乙两桶内各有多少千克水?若设原来乙桶内水的质量为x 千克,则可列方程为( )A .()()()24848x x x x x x --=+---B .()()()2[48248[]48]x x x x x --=----C .()()()2484848x x x x x x --=+----D .()()()()484848x x x x x x x x --++=+----【答案】A【分析】利用列表法,逐渐分析计算判断即可.【详解】根据题意,列表得:根据题意,得()()()24848x x x x x x --=+---,故选A.【点睛】本题考查了一元一次方程的应用,熟练运用列表法分析变化规律,寻找等量关系是解题的关键.6.(2021·陕西·无七年级期末)为了保护生态环境,某山区县将该县某地一部分耕地改为林地,改变后林地和耕地面积共有180平方千米,其中耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则根据题意,列出方程正确的是( )A .18025%x x-=B .()25%180x x =-C .180225%x +=D .180225%x -=【答案】B【分析】首先理解题意找出题中存在的等量关系:林地面积+耕地面积=180km 2,耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则林地面积为(180-x)平方千米,再由耕地面积是林地面积的25%,列方程即可.【详解】解:设耕地面积为xkm 2,则林地面积应该表示为()180x -平方千米,依题意得,()25%180x x =-故选:B【点睛】此类题目的解决需仔细分析题意,找准关键描述语:林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%.进而利用方程即可解决问题.二、填空题7.(2022·江苏·南京民办求真中学七年级阶段练习)比例的两个内项分别为2和5,两个外项分别为x 和2.5,则x 的值为_______.【答案】4【分析】根据比例的基本性质:内项之积等于外项之积,列方程求解即可.【详解】解:由题意得:25 2.5x ´=,解得:4x =,故答案为:4.【点睛】本题考查比例的基本性质:内项之积等于外项之积.8.(2022·湖北襄阳·七年级期末)根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )的销售瓶数的比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装_______大瓶.【答案】20000【分析】设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据大小消毒液的总重量为22.5吨=22500000克建立方程求出其解即可.【详解】解:设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据题意得:2x ×500+5x ×250=22500000,解得x =10000,所以大瓶销售了:2×10000=20000瓶,故答案是:20000.【点睛】本题考查了运用比例问题的设每份为未知数的方法建立方程求解的运用,一元一次方程的解法的运用,解答时运用设间接未知数降低解题难度是关键.9.(2022·全国·七年级课时练习)将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.【答案】3.6厘米.【分析】设“胖”铁块的高为x 厘米,根据锻造前的体积=锻造后的体积列方程求解即可.【详解】设“胖”铁块的高为x 厘米,由题意得78.5x=28.26×10,解之得x=3.6.故答案为3.6厘米.【点睛】本题考查了几何图形中一元一次方程的应用,根据“锻造前的体积=锻造后的体积”得到等量关系是解决本题的关键.10.(2022·全国·七年级课时练习)如图,一个尺寸为3604(´´单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34´为底面)时,箱中液体的高度是________dm .【答案】45.【分析】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm ,根据等积法列方程求解即得.【详解】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm由题意得:3603=43x´´´´解得:45x =答:当此铁箱竖起来(以34´为底面)时,箱中液体的高度是45dm故答案为:45.【点睛】本题考查了一元一次方程实际问题,解题关键是熟知前后液体体积不变.三、解答题11.(2021·全国·七年级课时练习)第一块试验田的面积比第二块试验田的3倍还多2100m ,这两块试验田共22900m ,两块试验田的面积分别是多少?【答案】第一块试验田面积为22200m ,第二块试验田面积为2700m .【分析】首先设第二块实验田面积是2m x ,则第一块实验田的面积23100m x +,再根据两块实验田面积总和是22900m ,列出方程即可.【详解】解:设第二块实验田面积是2m x ,由题意得:31002900x x ++=,解得:2700m x =,第一块实验田的面积:237001002200m ´+=.答:两块试验田的面积分别是2700m ,22200m .【点睛】本题主要考查了一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,再列出方程.12.(2022·全国·七年级专题练习)墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?【答案】长为16cm ,宽为10cm .【分析】设长方形的长为cm x ,由梯形与长方形的周长相等列方程可得2(10)10462x +=´+´,再解方程可得答案.【详解】解:设长方形的长为cm x ,根据题意,得2(10)10462x +=´+´.25220,x \=-解得:16,x =所以长方形的长为16cm ,宽为10cm .一、填空题1.(2022·全国·七年级专题练习)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,则这些消毒液分装成的这两种产品中有______瓶大瓶产品.【答案】20000【分析】设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程求出x,则可知大瓶的数量【详解】换算单位:22.5t=22.5×1000×1000g设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程,得500·2x+250·5x=22.5×1000×1000,解得x=100002x=20000∴大瓶有20000瓶.故答案为:20000【点睛】本题考查了列一元一次方程解应用题,一般情况下题目中出现比值问题,通常设每份为x,掌握以上方法是解题的关键.2.(2022·全国·七年级课时练习)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.3.(2021·湖北·武汉外国语学校(武汉实验外国语学校)七年级期末)如图,将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形.若灰色长方形的长与宽之比为7:3,试求AD:AB的值.【答案】9:4【分析】可设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【详解】解:设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,根据“长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形”可知:2(7x+3x)=204-4,解得:x=10,则灰色长方形的长上摆了70个小正方形,宽上摆了30个小正方形,∴AD=72个小正方形的边长,AB=32个小正方形的边长,∴AD:AB=72:32=9:4.【点睛】此题考查理解题意能力及一元一次方程的应用,关键是看到灰色长方形的周长和204个小正方形的关系从而求解.4.(2022·全国·七年级专题练习)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.【答案】()103530x x +-=【分析】设清酒x 斗,则醐洒酒为(5-x )斗,一斗清酒价值10斗谷子,x 斗清酒价值10x 斗谷子;一斗醐洒酒价值3斗谷子,(5-x )斗醐洒酒价值3(5-x )斗谷子.存在“换x 斗清酒和(5-x )斗醐洒酒共用30斗谷子”的等量关系,根据等量关系可列方程.【详解】解:设清酒x 斗,则醐洒酒为(5-x )斗.()103530x x +-=.故答案为:()103530x x +-=.【点睛】本题主要考查了一元一次方程的实际应用,准确分析出数量关系和等量关系是解决本题的关键.5.(2022·重庆·黔江区育才初级中学校七年级期中)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植A 、B 、C 三种经济作物增加收入,经过一段时间,该村已种植的A 、B 、C 三种经济作物的面积之比为3:2:4,单位面积产值之比为1:2:2,为了进一步提高该村的经济收入,将在该村余下土地上继续种植这三种经济作物,经测算需将余下土地面积的16种植C 经济作物,则C 的种植总面积将达到这三种经济作物种植总面积的38,且A 、B 、C 三种经济作物的总产值提高了13,则该村还需种植A 、B 两种经济作物的面积之比是__________.二、解答题6.(2022·全国·七年级)一圆柱形桶内装满了水,已知桶的底面直径为a,高为b.又知另一长方体形容器的长为b,宽为a,若把圆柱形桶中的水倒入长方体形容器中(水不溢出),水面的高度是多少?7.(2022·全国·七年级课时练习)用一根长为10m的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?8.(2022·全国·七年级专题练习)有一个盛水的圆柱体玻璃容器,它的底面直径为12cm(容器厚度忽略不计),容器内水的高度为10cm.(1)如图1,容器内水的体积为______3cm(结果保留p).(2)如图2,把一根底面直径为6cm,高为12cm的实心玻璃棒插入水中(玻璃棒完全淹没于水中),求水面上升的高度是多少?(3)如图3,若把一根底面直径为6cm,足够长的实心玻璃棒插入水中,求水面上升的高度是多少?。
5.3 一元一次方程的应用——水箱变高了知识回顾】1、边长分别为a 、b 的长方形的周长是_________,面积是_______________.2、边长为a 的正方形周长是_______________, 面积是_______________.3、半径为r 的 圆的周长是_______________, 面积是_______________.4、底面半径为r ,高为h 圆柱的体积(容积)是______________.探究新知】探究活动1:(形变,体积不变问题)例1 某居民楼顶有一个底面直径和高均为6m 的圆柱形储水箱。
现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由6m 减少为4m 。
那么在容积不变的前提下,水箱的高度将由原先的6m 变为多少米?在这个问题中的等量关系是: =解:设水箱的高度变为x m (请完成下面的表格来帮助分析).根据等量关系,列出方程:解得x =因此,水箱的高度变成了 m 。
答:探究活动2(形变,周长不变问题)例2用一根长10m 的铁丝围成一个长方形.(1)使得长方形的长比宽多1.4m ,此时长方形的长、 宽各为多少米?面积为多少? 解:设此时长方形的宽为 m ,则 根据题意,得 解这个方程,得 此时长方形的长为 ,宽为 ,面积为(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?面积呢?解:它所围成的长方形与(1)中所围长方形相比,面积有什么变化?设此时长方形的宽为,则根据题意,得解这个方程,得此时长方形的长为,宽为,面积为此时长方形的面积比(1)中面积 m².(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?解:设根据题意,得解这个方程,得此时正方形的长为,面积为的面积比(2)中面积 m².课堂反馈】1.如图所示,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm 的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?2.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?课堂小结】列一元一次方程解应用题的一般步骤是:“审、设、列、解、验、答” .(1)“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意;(2)“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目);(3)“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;(4)“解”就是解方程,求出未知数的值;(5)“验”就是验解,即检验方程的解能否保证实际问题有意义;(6)答”就是写出答案(包括单位名称).。
5.3 应用一元一次方程——水箱变高了
1.小英的爸爸买回家两块地毯,他告诉小英,小地毯的面积正好是大地毯面积的13
,且两块地毯的面积和为20平方米,小英很快算出了大、小地毯的面积分别为(单位:平方米)( ) A .403,203
B .30,10
C .15,5
D .12,8
2.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆钢柱长
( )
A .10厘米
B .20厘米
C .30厘米
D .40厘米
3.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15
,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程( )
A .15x +25x +1=x
B .15x +25x +1+1=x
C .15x +25x +1-1=x
D .15x +25
x =1
4.已知长方形的周长是30 cm ,长比宽多3 cm ,这个长方形的面积是________.
5.用一根铁丝围成一个长24 cm ,宽12 cm 的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm 2.
6.班级筹备运动会要做直角边分别为0.4 m 和0.3 m 的三角形小旗64面,则需要长1.6 m ,宽1.2 m 的长方形红纸________张.
7.一个长方形的周长是26 cm ,把它的长减少3 cm ,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.
8.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V =43
πr 3) 9.有一个底面半径为5 cm 的圆柱形储油器,油液中浸有钢珠,若从中捞出546π g 钢珠,问液面下降多少厘米(1 cm 3钢珠为7.8 g )?
10.用一根长为10 m 的铁丝围成一个长方形,
(1)使该长方形的长比宽多1.4 m ,此时长方形的面积是多少?
(2)使该长方形的长与宽相等,此时正方形的面积是多少?
(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?
(2015·山西)图①是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.
课后作业
1.C 设大地毯面积为x 平方米,则13
x +x =20,x =15,所以大地毯面积为15平方米,小地毯面积为5平方米.
2.D 设需直径为4厘米的圆钢柱长x 厘米,则π×12×16×10=π×22
×x ,解得x =40.
3.B 设竹竿的长度为x 米,则插入池塘淤泥中的部分长15x 米,水中部分长(25
x +1)米.因此可列方程为15x +25
x +1+1=x ,故选B . 4.54 cm 2 设长方形的宽为x cm ,则长为(x +3) cm .
2(x +x +3)=30.
4x +6=30.
x =6.
∴x +3=9,∴面积=6×9=54(cm 2).
5.324 设长方形长减少x cm ,则宽增加x cm .
24-x =12+x
x =18-6
∴正方形的边长=24-6=18(cm ).
∴正方形面积=18×18=324 (cm 2).
6.2 设需长方形纸张x 张.
1.6×1.2x =0.4×0.3×64×12
. x =2
7.36 cm 2 设长方形的长为x cm ,则x -3=13-x +2,x =9,所以正方形长为9-3=6(cm ),即正方形面积为36 cm 2.
8.27 设能铸造x 个小铁球.
43π×33=43
π×13x. x =27.
9.解:设液面下降x 厘米,则π·52·x ·7.8=546π,解得x =2.8.因此,液面下降2.8 cm
10.解:(1)设宽为x m ,则2(x +1.4+x)=10,得x =1.8,1.8+1.4=3.2(m ),3.2×1.8=
5.76(m 2);
(2)设正方形边长为x m,4x =10,得x =2.5,
2.52=6.25(m 2);
(3)圆.
中考链接
1 000
设长方体的高为x cm ,根据题意得30-4x =2x ,解得x =5,
故长方体的宽为10 cm ,长为20 cm ,则长方体的体积为5×10×20=1 000(cm 3).。