浙江省台州市2018年高三年级第一次调研考试数学试题(含答案图片版)
- 格式:doc
- 大小:4.54 MB
- 文档页数:10
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
一、选择题1.设集合{0,1,2,3}P =,{|2}Q x R x =∈<,则PQ =( )A.{0,1}B.{1,2}C.{0,1,2}D.{1} 【答案】 A 【解析】由题意得集合{|22}Q x x =-<<-,所以{0,1}PQ =.2.若复数(1)(2)z i i =-+(其中i 为虚数单位),则z 在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】 D 【解析】复数(1)(2)3z i i i =-+=-在复平面内对应的点为(3,1)-,位于第四象限. 3.设A ,B ,C 为的内角,则“A B <”是“cos cos A B >”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】 C 【解析】因为A ,B 是三角形的内角,所以A ,(0,)B π∈,又因为函数cos y x =在(0,)π上单调递减,所以cos cos A B A B <⇔>,即“A B <”是“cos cos A B >”的充分必要条件. 4.某几何体的三视图如图所示,则该几何体的体积为( )A.16 B.13C.1D.3 【答案】 B 【解析】有三视图得该几何体是一个底面边长为1的正方形,有一条长为1的侧菱垂直于底面的四菱锥,则体积为1111133⨯⨯⨯=. 5.在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X ,黑球个数为Y ,则( ) A.()()E X E Y >,()()D X D Y > B.()()E X E Y =,()()D X D Y > C.()()E X E Y >,()()D X D Y = D.()()E X E Y =,()()D X D Y = 【答案】 C 【解析】 由题意得4(5,)7XB ,3(5,)7Y B ,则420()577E X =⨯=,315()577E Y =⨯=,4460()5(1)7749D X =⨯⨯-=,3360()5(1)7749D Y =⨯⨯-=,所以()()E X E Y >,()()D X D Y =.6.设数列{}n a ,{}n b 满足700n n a b +=,172105n n n a a b +=+,*n N ∈,若6400a =,则( )A.43a a >B.43b b <C.33a b >D.44a b < 【答案】 C 【解析】本题考察数列的概念.由700n n a b +=得700n n b a =-, 则172723(700)28010510510n n n n n n a a b a a a +=+=+-=+,则13400(400)10n n a a +-=-,又因为6400a =,所以400n a =,*n N ∈,则700300n n b a =-=,*n N ∈,所以33a b >. 7.在ABC ∆中,边a ,b ,c 所对的角分别为A ,B ,C,若222a b c =+,sin 2cos C B =,则( )A.3A π=B.4B π=C.c =D.2c a = 【答案】 D 解析:在ABC ∆中,由余弦定理得2222cos a b c bc A =+-,又222a b c =+,所以cos A =(0,)A π∈,所以6A π=,则555sin 2cos 2cos()2(cos cos sin sin )sin 666C B C C C C C πππ==-=+=+, 则cos 0C =,又(0,)C π∈,所以2C π=,所以3B π=,在ABC ∆中,正弦定理得sinsinsin632a b c πππ==,化简得23c a ==.综上所述,只有D 选项正确. 8.设实数x ,y 满足条件10220220x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,若222z x y =--,则( )A.z 的最小值为258-B.z 的最小值为3-C.z 的最大值为33D.z 的最大值为6 【答案】 A 【解析】在平面直角坐标系内画出题中的不等式所表示的平面区域如图中阴影部分(含边界)所示,由图易得当目标函数222z x y =--与平面区域内的边界10(0)x y x -+=≥相切时,222z x y =--取得最小值,联立22210z x y x y ⎧=--⎨-+=⎩,消去y 化简得2230x y z ---=,因为曲线222z x y =--与10(0)x y x -+=≥相切,所以关于x 的一元二次方程2230x x z ---=有两个相同的实数根,则2(1)42(3)0z --⨯⨯--=,解得258z =-,即目标函数222z x y =--的最小值为258-,由于不等式组所表示的平面区域右侧为开放区域,所以目标函数无最大值.9.已知单位向量1e ,2e ,且1212e e ⋅=-,若向量a 满足125()()4a e a e -⋅-=,则a 的取值范围为( )A. B.121]2C.1]2D. 【答案】 B 【解析】因为向量1e ,2e 为单位向量,且1212e e ⋅=-,所以向量1e ,2e 的夹角为23π,则不妨设11(,22e =,21(,22e =-,设(,)a OA x y ==,则221211135()()(,(,()22244a e a e x y x y x y --=-⋅-=-+-=,即221()22x y -+=,所以点A 在以1(,0)2为半径的圆上.又因为2a x =+A 到原点的距离,由图易得圆与x 轴正半轴的交点到原点的距离最大,12,圆与x轴负半轴的交点到原点的距离最小,12,所以a的取值范围为121]2.10.设()f x'为函数()f x的导函数()x R∈,且()0f x<,2()()0f x f x'+>(e为自然对数的底数),若12x x<,则()A.1221()()x xf x e f x-<⋅ B.2112()()x xf x e f x-<⋅C.2122221()()x xf x e f x->⋅ D.1222212()()x xf x e f x->⋅【答案】D解析:设2()()xg x e f x=⋅,则2()()2()()()(2()())x x xg x e f x e f x f x e f x f x f x'''=⋅+⋅=⋅+,因为()0f x<,0xe>,2()()0f x f x'+>,所以()()(2()())0xg x e f x f x f x''=⋅+<在R上恒成立,所以函数2()()xg x e f x=⋅在R上单调递减,则当12x x<时,有12()()g x g x>,即122212()()x xf x e f x e>,即212212()()x xf x e f x->⋅,因为12x x<,所以1221210x xx xe e-->>>,所以12212222122()()()x xx xf x e f x e f x-->⋅>⋅.二、填空题11.设实数a满足23a=,则a=,33log12log6-=(用a表示).【答案】2log31a【解析】由23a=得2log3a=,则3333333211log12log6log(26)log6log2log6log6log3a-=⨯-=+-==.12.抛物线2:8C y x=的焦点F的坐标为,若点)P m在抛物线C上,则线段PF 的长度为 .【答案】(2,0)2【解析】抛物线28y x =的焦点坐标为(2,0),则抛物线的准线方程为2x =-,因为点)P m 在抛物线上,所以PF 的长度等于点)P m 到抛物线的准线的距离,即2PF =. 13.若函数2()()21x f x a a R =-∈-是奇函数,则a = ,函数()f x 的值域为 . 【答案】1-(,1)(1,)-∞-+∞【解析】易得函数2()21x f x a =--的定义域为(,0)(0,)-∞+∞,则由函数2()21xf x a =--为奇函数得(1)(1)f f =--,即1122()2121a a --=----,解得1a =-,则2()121x f x =---,当0x >时,21(0,)x-∈+∞,所以2(,0)21x -∈-∞-,则21(,1)21x --∈-∞--,所以函数2()121x f x =---在(0,)+∞上的值域为(,1)-∞-,又因为函数2()121x f x =---为奇函数,所以函数2()121x f x =---在(,0)-∞上的值域为(1,)+∞.综上所述,函数2()121xf x =---的值域为(,1)(1,)-∞-+∞. 14.若实数x ,y 满足222244432x y xy x y +++=,则2x y +的最小值为 ,2)2x y xy ++的最大值为 .【答案】-16【解析】因为222244432x y xy x y +++=,所以222(2)432x y x y ++=,则2(2)32x y +≤,2x y -≤+≤2x y +的最小值为-.由222(2)432x y x y ++=,不妨设22x y xy θθ⎧+=⎪⎨=⎪⎩2)2cos )16sin()x y xy θθθϕ++=+=+,其中tan ϕ=,所以当sin()1θϕ+=2)2x y xy ++取得最大值为16. 15.在238(21)(21)(21)x x x -+-++-的展开式中,含2x 项的系数为 .【答案】64【解析】238(21)(21)(21)x x x -+-++-的展开中,含2x 项的系数为0212222626234822(1)2(1)2(1)C C C C ⨯+⨯⨯-+⨯⨯-++⨯⨯-22(136********)64=⨯-+-+-+=.16.若关于x 的不等式2(cos 1)(16)0a x ax x a --+<在(0,)+∞上有解,则实数a 的取值范围为 . 【答案】(,1)(0,)-∞-+∞【解析】设()cos 1f x a x =-,2()16g x ax x a =-+,则关于x 的不等式2(cos 1)(16)0a x ax x a --+<在(0,)+∞上有解,等价于存在0(0,)x ∈+∞,使得00()()0f x g x ⋅<成立.当1a >时,函数()cos 1f x a x =-在(0,)+∞上存在零点,即存在0(0,)x ∈+∞使得0()0f x <,函数2()160g x ax x a =-+>在(0,)+∞上恒成立,所以此时存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立;当118a ≤≤时,函数()cos 10f x a x =-≤在(0,)+∞上恒成立,函数2()160g x ax x a =-+≥在(0,)+∞上恒成立,所以此时存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立;当108a <<时,函数()cos 10f x a x =-<在(0,)+∞上恒成立,函数2()160g x ax x a =-+=存在两个不同的零点1x ,212()x x x <,且12121016160x x aa x x a ⎧+=>⎪⎪⎨⎪⋅==>⎪⎩,所以12,(0,)x x ∈+∞,所以存在012(0,)(,)x x x ∈+∞使得0()0g x >,所以此时存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立;当0a =时,显然不等式不成立;当108a -<<时,函数()cos 10f x a x =-<在(0,)+∞上恒成立,函数2()160g x ax x a =-+=存在两个不同的零点1x ,2x ,且12121016160x x aa x x a ⎧+=<⎪⎪⎨⎪⋅==>⎪⎩,所以12,(,0)x x ∈-∞,所以函数2()160g x ax x a =-+<在(0,)+∞上恒成立,所以此时不存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立;当118a -≤≤-时,函数()cos 10f x a x =-≤在(0,)+∞上恒成立,函数2()160g x ax x a =-+<在(0,)+∞上恒成立,所以此时不存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立;当1a <-时,函数()cos 1f x a x =-在(0,)+∞上存在零点,即存在0(0,)x ∈+∞使得0()0f x >,函数2()160g x ax x a =-+<在(0,)+∞上恒成立,所以此时存在0(0,)x ∈+∞使得00()()0f x g x ⋅<成立.综上所述,实数a 的取值范围为(,1)(0,)-∞-+∞.17.如图,在直角梯形ABCD 中,//AB CD ,90ABC ∠=︒,1AB =,2AC CD DA ===,动点M 在边DC 上(不同于D 点),P 为边AB 上任意一点,沿着AM 将ADM ∆翻折成AD M '∆,当平面AD M '垂直于平面ABC 时,线段PD '长度的最小值为 .【答案】【解析】设点D '在平面ABCD 内投影为点F ,DAM θ∠=,则易得(0,60]θ∈︒,当(0,30)θ︒时,点F 在ADC ∆外,过点F 作AB 的垂线,垂足在线段BA 的延长线上,所以此时当点P 与点A 重合时,PD '取得的最小值等于2AD AD '==;当[30,60]θ∈︒︒时,点F 在ADC ∆内(包括边界),过点F 作AB 的垂线FG ,垂足G 在线段BA 上,所以当点P 与垂足G 重合时,PD '取得的最小值,此时有PD AB '⊥.在Rt D AP '∆中,因为2AD AD '==,所以当PD '取得最小值时,cos D AP '∠取得最大值.由最小定理得211cos cos cos(120)cos (cos sin )cos 222D AP θθθθθθ'∠=⋅︒-=⋅-+=-1111cos cos 22cos(2120)4424θθθθθ=-+-=-︒-,易得当60θ=︒时,cos D AP '∠取得最大值14,所以此时12AP =,PD '==.综上所述,PD '. 三、解答题18.已知函数2()sin cos cos f x x x x =+.(Ⅰ)求函数()f x 的最小正周期,并写出()f x 图象的对称轴方程; (Ⅱ)若将函数()y f x =的图象向右平行移动8π个单位长度,得到函数()y g x =的图象,求满足0()1g x ≥的实数0x 的集合. 【解析】(Ⅰ)2()sin cos cos f x x x x =+11sin 2(1cos 2)22x x =++ 11(sin 2cos 2)22x x =++1)42x π=++,∴()f x 的最小周期T π=, 令242x k πππ+=+,k Z ∈,得82k x ππ=+,k Z ∈,∴()f x 图象的对称轴方程为82k x ππ=+,k Z ∈.(Ⅱ)由题意得1())842g x x ππ=-++122x =+0()1g x ≥,即01sin 2122x +≥,0sin 22x ≥,∴0322244k x k ππππ+≤≤+,k Z ∈. ∴0388k x k ππππ+≤≤+k Z ∈,即所求0x 的集合为003{,}88x k x k k Z ππππ+≤≤+∈.19.如图,在三棱锥D ABC -中,CA CB ==DA DB ==2AB =.(Ⅰ)求证:AB CD ⊥;(Ⅱ)若顶点D 在底面ABC 上的射影落在ABC ∆的内部,当直线AD 与底面ABC 所成角的正弦值为6时,求二面角C AD B --的平面角的余弦值.【解析】(Ⅰ)证明:如图,取AB 的中点E ,连接CE ,DE , ∵CA CB =,DA DB =,∴CE AB ⊥,DE AB ⊥, 又DECE E =,∴AB ⊥平面DEC ,又CD ⊂平面DEC ,∴AB CD ⊥.(Ⅱ)如图,作DO CE ⊥于点O ,由(Ⅰ)易得平面DEC ⊥平面ABC ,且交于CE .∴DO ⊥平面ABC ,∴DAO ∠为直线AD 与平面ABC 所成的角,sin DO DAO AD ∠==6=,∴DO =DE = ∴在Rt DOE ∆中,12OE ==,又易知1CE =,∴O 为CE 的中点.∵DO CE ⊥,O 为CE的中点,∴DC DE ==,过点C 作CM DE ⊥于点M ,取AD 的中点G ,连接CG ,GM .同上可得CM ⊥平面ABD .∴CM AD ⊥,∵AC =DC AC =,∴CG AD ⊥,CGM ∠为二角面C AD B --的平面角,CG ==, 在CDE ∆中,14CE DO CM DE ⨯===. 在Rt CMG ∆中,22238MG CG CM =-=.∴MG =∴cos MG CGM CG ∠===,∴二角面C AD B --的平面角的余弦值为10. 20.已知函数32()23(1)6f x x m x mx =-++,m R ∈.(Ⅰ)若2m =,写出函数()f x 的单调递增区间;(Ⅱ)若对于任意的[1,1]x ∈-,都有()4f x <,求m 的取值范围.【解析】(Ⅰ)若2m =,则32()2912f x x x x =-+,∵22()618126(32)6(1)(2)f x x x x x x x '=-+=-+=--,令()0f x '>,得1x <或2x >, ∴函数()f x 的单调递增区间为(,1)-∞,(2,)+∞.(Ⅱ)∵32()23(1)6f x x m x mx =-++,∴2()66(1)66(1)()f x x m x m x x m '=-++=--. ①当1m ≥时,()f x 在(1,1)-上单调递增,max ()(1)314f x f m ==-<,解得53m <, ∴513m ≤<; ②当11m -<<时,()f x 在(1,)m -上单调递增,在(,1)m 上单调递减.∴32max ()()34f x f m m m ==-+<,即32340m m -+>,2(1)(2)0m m +->恒成立, 所以11m -<<.③当1m ≤-时,()f x 在(1,1)-上单调递减,max ()(1)954f x f m =-=--<,解得1m >-,舍去,综上所述,m 的取值范围为5(1,)3-.21.已知椭圆C :22221(0)x y a b a b+=>>经过点M ,且离心率为2. (Ⅰ)求a ,b 的值,并写出椭圆C 的方程;(Ⅱ)设A ,B 分别为椭圆C 的左、右顶点,在椭圆C 上有异于A ,B 的动点P ,若直线PA ,PB 与直线l :x m =(m 为常数)分别交于不同的两点M ,N ,则当点P 运动时,以MN 为直径的圆是否经过定点?【解析】(Ⅰ)由题知,22421a b+=,c a =,222a b c =+,解得a =2b =, ∴椭圆C 的方程为22184x y +=.(Ⅱ)由(Ⅰ)知,(A -,B ,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA ,PB 的方程分别为1(y k x =+,2(y k x =-,∴1(,(M m k m +,2(,(N m k m -,∴根据射影定理知,以MN 为直径的圆的方程为212()[((0x m y k m y k m -+-+--=,即2221212()[(((8)0x m y k m k m y k k m -+-++-+⋅-=, 设点00(,)P x y ,则2200184x y +=,22004(1)8x y =-,∴201220182y k k x ===--,∴222121()[(((8)02x m y k m k m y m -+-++---=, 由0y =,得221()(8)02x m m ---=,∴221()(8)2x m m -=-. 当280m -<,即m -<. 当280m -≥,即m ≥或m ≤-x m =±即定点为(m ±. 22.在正项数列{}n a 中,已知1111a ≤≤,2113312n n a a +=-,*n N ∈.(Ⅰ)求证:111n a ≤≤;(Ⅱ)设212()n n n b n a a -=+,n S 表示数列{}n b 的前n 项和,求证:6(1)n S n n ≥+; (Ⅲ)若18a =,设212n n n c a a -=-,n T 表示数列{}n c 的前n 项和.(ⅰ)比较n a 与7的大小;(ⅱ)求证:13n T <.【解析】(Ⅰ)证明:①当1n =,命题成立.②假设当n k =时,有111k a ≤≤成立,则当1n k =+时,∵113312121k a ≤-≤,∴211121k a +≤≤.∵0n a >,∴1111k a +≤≤成立.综上所述,111n a ≤≤. (Ⅱ)证明:∵2221222211331169(6)12121212n n n n n a a a a a -+=-++=--+, 由(Ⅰ)知,2111n a ≤≤,∴21212n n a a -+≥,∴12n b n ≥, ∴12(1)12(12)126(1)2n n n n S b b b n n n +=+++≥+++=⨯=+得证. (Ⅲ)(ⅰ)∵18a =,∴221339637a =-=,∴2a 17a >,27a <,又由已知得222+17133712841212(7)n n n n a a a a -=--=-=--, ∴11(7)(7)12(7)n n n a a a ++-+=--,∴11712077n n n a a a ++-=-<-+,即1(7)(7)0n n a a +--<, ∴2127n n a a ->>,∵221213312n n a a +=-,222113312n n a a -=-,∴2221222112()n n n n a a a a +--=--,即2221222112()n n n n a a a a +-=--,又由(Ⅱ)知,21212n n a a -+≥,∴2222212122122122122112()()(12)0n n n n n n n n n n a a a a a a a a a a +------=---=-+-≤.同理,2222221222122()(12)0n n n n n n a a a a a a ------=-=+-≥.综上所述,数列21{}n a -单调递减,21217n n a a -+>>.数列2{}n a 单调递增,2227n n a a +<<.(ⅱ):因为222212122212213312(13312)12()n n n n n n a a a a a a ------=---=-⋅-, ∴221212222112n n n n n n a a a a a a ------=-+,同理,21222223212212n n n n n n a a a a a a --------=-+, ∴22122232212122144()()n n n n n n n n a a a a a a a a -------=-++,即12212122144()()nn n n n n c c a a a a ----=++.∵2a =17n n a a -+>,∴11447217085n n c c -<=<=,且1128c a a =-=,∴11111172[1()]727285()137213858518585n n n c c T c c c --⋅<+++⋅=<=<-.。
绝密★启用前2018年浙江省高考数学试卷考试时间:120分钟;试卷整理:微信公众号--浙江数学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4分)(2018•浙江)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4分)(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.84.(4分)(2018•浙江)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4分)(2018•浙江)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4分)(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)(2018•浙江)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4分)(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4分)(2018•浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1B.+1C.2D.2﹣10.(4分)(2018•浙江)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4第Ⅱ卷(非选择题)评卷人得分二.填空题(共7小题,满分36分)11.(6分)(2018•浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.12.(6分)(2018•浙江)若x,y满足约束条件,则z=x+3y的最小值是,最大值是.13.(6分)(2018•浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.14.(4分)(2018•浙江)二项式(+)8的展开式的常数项是.15.(6分)(2018•浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.16.(4分)(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)17.(4分)(2018•浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.评卷人得分三.解答题(共5小题,满分74分)18.(14分)(2018•浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.19.(15分)(2018•浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.20.(15分)(2018•浙江)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.21.(15分)(2018•浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.22.(15分)(2018•浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【分析】根据补集的定义直接求解:∁U A是由所有属于集合U但不属于A的元素构成的集合.【解答】解:根据补集的定义,∁U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.∁U A={2,4,5}故选:C.【点评】本题考查了补集的定义以及简单求解,属于简单题.2.(4分)(2018•浙江)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【分析】根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.【点评】本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.(4分)(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8【分析】直接利用三视图的复原图求出几何体的体积.【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.【点评】本题考查的知识要点:三视图的应用.4.(4分)(2018•浙江)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】化简已知复数z,由共轭复数的定义可得.【解答】解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.【点评】本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.(4分)(2018•浙江)函数y=2|x|sin2x的图象可能是()A.B.C.D.【分析】直接利用函数的图象和性质求出结果.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.【点评】本题考查的知识要点:函数的性质和赋值法的应用.6.(4分)(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.(4分)(2018•浙江)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【分析】求出随机变量ξ的分布列与方差,再讨论D(ξ)的单调情况.【解答】解:设0<p<1,随机变量ξ的分布列是E(ξ)=0×+1×+2×=p+;方差是D(ξ)=×+×+×=﹣p2+p+=﹣+,∴p∈(0,)时,D(ξ)单调递增;p∈(,1)时,D(ξ)单调递减;∴D(ξ)先增大后减小.故选:D.【点评】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.(4分)(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【分析】作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.【点评】本题考查了空间角的计算,三角函数的应用,属于中档题.9.(4分)(2018•浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1B.+1C.2D.2﹣【分析】把等式﹣4•+3=0变形,可得得,即()⊥(),设,则的终点在以(2,0)为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O的两条射线y=(x>0)上,画出图形,数形结合得答案.【解答】解:由﹣4•+3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x>0)上.不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.即.故选:A.【点评】本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.(4分)(2018•浙江)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【分析】利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.【点评】本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二.填空题(共7小题,满分36分)11.(6分)(2018•浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=8,y=11.【分析】直接利用方程组以及z的值,求解即可.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.【点评】本题考查方程组的解法,是基本知识的考查.12.(6分)(2018•浙江)若x,y满足约束条件,则z=x+3y的最小值是﹣2,最大值是8.【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.【解答】解:作出x,y满足约束条件表示的平面区域,如图:其中B(4,﹣2),A(2,2).设z=F(x,y)=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.(4,﹣2)=﹣2.∴z最小值=F可得当l经过点A时,目标函数z达到最最大值:z最大值=F(2,2)=8.故答案为:﹣2;8.【点评】本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.(6分)(2018•浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【分析】由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.【点评】本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.(4分)(2018•浙江)二项式(+)8的展开式的常数项是7.【分析】写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.【解答】解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.(6分)(2018•浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是{x|1<x<4}.若函数f(x)恰有2个零点,则λ的取值范围是(1,3]∪(4,+∞).【分析】利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).【点评】本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.(4分)(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)【分析】可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.(4分)(2018•浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大.【分析】设A(x1,y1),B(x2,y2),运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣()2,运用二次函数的最值求法,可得所求最大值和m的值.【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),=2,可得﹣x1=2x2,1﹣y1=2(y2﹣1),即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+()2,即有x22=m﹣()2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.【点评】本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三.解答题(共5小题,满分74分)18.(14分)(2018•浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【分析】(Ⅰ)由已知条件即可求r,则sin(α+π)的值可得;(Ⅱ)由已知条件即可求sinα,cosα,cos(α+β),再由cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα代值计算得答案.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P (﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.【点评】本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.(15分)(2018•浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【分析】(I)利用勾股定理的逆定理证明AB1⊥A1B1,AB1⊥B1C1,从而可得AB1⊥平面A1B1C1;(II)以AC的中点为坐标原点建立空间坐标系,求出平面ABB1的法向量,计算与的夹角即可得出线面角的大小.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A 1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B 1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC 1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.【点评】本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.(15分)(2018•浙江)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【分析】(Ⅰ)运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,运用数列的递推式可得c n=4n﹣1,再由数列的恒等式求得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1),运用错位相减法,可得所求数列的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n+1﹣b n)a n=4n﹣1,即有b n+1﹣b n=(4n﹣1)•()n﹣1,可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.【点评】本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.(15分)(2018•浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.【分析】(Ⅰ)设P(m,n),A(,y1),B(,y2),运用中点坐标公式可得M 的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;(Ⅱ)由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM|•|y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.【解答】解:(Ⅰ)证明:可设P(m,n),A(,y1),B(,y2),AB中点为M的坐标为(,),抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得()2=4•,()2=4•,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由(Ⅰ)可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM|•|y1﹣y2|=(﹣m)•=[•(4n2﹣16m+2n2)﹣m]•=(n2﹣4m),可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈[6,],△PAB面积的取值范围为[6,].【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.(15分)(2018•浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【分析】(Ⅰ)推导出x>0,f′(x)=﹣,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到+=,由基本不等式得:=≥,从而x 1x2>256,由题意得f(x1)+f(x2)==﹣ln(x1x2),设g(x)=,则,利用导数性质能证明f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x0∈(m,n),使f(x0)=kx0+a,对于任意的a∈R及k∈(0,+∞),直线y=kx+a 与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:x(0,16)16(16,+∞)g′(x)﹣0+g(x)↓2﹣4ln2↑∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【点评】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
2018年浙江省台州市高考数学一模试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)设集合P={0,1,2,3},Q={x∈R||x|<2},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.{1}2.(4分)若复数z=(1﹣i)(2+i)(其中i为虚数单位),则z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)设A,B,C为△ABC的内角,则“A<B”是“cosA>cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.1 D.35.(4分)在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数为Y,则()A.E(X)>E(Y),D(X)>D(Y)B.E(X)=E(Y),D(X)>D(Y)C.E(X)>E(Y),D(X)=D(Y)D.E(X)=E(Y),D(X)=D(Y)6.(4分)设数列{a n},{b n}满足a n+b n=700,,n∈N*,若a6=400,则()A.a4>a3B.b4<b3C.a3>b3D.a4<b47.(4分)在△ABC中,边a,b,c所对的角分别为A,B,C,若,sinC=2cosB,则()A.B.C.D.c=2a8.(4分)设实数x,y满足条件,若z=2x2﹣y﹣2,则()A.z的最小值为B.z的最小值为﹣3C.z的最大值为33 D.z的最大值为69.(4分)已知单位向量,且,若向量满足,则的取值范围为()A.B.C.D.10.(4分)设f'(x)为函数f(x)的导函数(x∈R),且f(x)<0,2f'(x)+f (x)>0(e为自然对数的底数),若x1<x2,则()A. B.C.D.二、填空题:本大题共7小题,共36分.多空题每小题6分;单空题每小题6分.11.(6分)设实数a满足2a=3,则a=,log312﹣log36=(用a表示).12.(6分)抛物线C:y2=8x的焦点F坐标为,若点在抛物线C上,则线段PF的长度为.13.(6分)若函数是奇函数,则a=,函数f(x)的值域为.14.(6分)若非负实数x,y满足x2+4y2+4xy+4x2y2=32,则x+2y的最小值为,的最大值为.15.(4分)在(2x﹣1)2+(2x﹣1)3+…+(2x﹣1)8的展开式中,含x2项的系数为.16.(4分)若关于x的不等式(acosx﹣1)(ax2﹣x+16a)<0在(0,+∞)上有解,则实数a的取值范围为.17.(4分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=1,AC=CD=DA=2,动点M在边DC上(不同于D点),P为边AB上任意一点,沿AM将△ADM翻折成△AD'M,当平面AD'M垂直于平面ABC时,线段PD'长度的最小值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18.(14分)已知函数f(x)=sinxcosx+cos2x.(Ⅰ)求函数f(x)的最小正周期,并写出f(x)图象的对称轴方程;(Ⅱ)若将函数y=f(x)图象向右平行移动个单位,得到函数y=g(x)的图象,求满足g(x0)≥1的实数x0的集合.19.(15分)如图,在三棱锥D﹣ABC中,CA=CB=,DA=DB=,AB=2.(Ⅰ)求证:AB⊥CD;(Ⅱ)若顶点D在底面ABC上的射影落在△ABC的内部,当直线AD与底面ABC 所成角的正弦值为时,求二面角C﹣AD﹣B的平面角的余弦值.20.(15分)已知函数f(x)=2x3﹣3(m+1)x2+6mx,m∈R.(Ⅰ)若m=2,写出函数f(x)的单调递增区间;(Ⅱ)若对于任意的x∈[﹣1,1],都有f(x)<4,求m的取值范围.21.(15分)已知椭圆C:=1(a>b>0)经过点,且离心率为.(Ⅰ)求a,b的值,并写出椭圆C的方程;(Ⅱ)设A,B分别为椭圆C的左、右顶点,在椭圆C上有异于A,B的动点P,若直线PA,PB与直线l:x=m(m为常数)分别交于不同的两点M,N,则当点P运动时,以MN为直径的圆是否经过定点?22.(15分)在正项数列{a n}中,已知1≤a1≤11,a n+12=133﹣12a n,n∈N*.(Ⅰ)求证:1≤a n≤11;(Ⅱ)设b n=n(a2n﹣1+a2n),S n表示数列{b n}前n项和,求证:S n≥6n(n+1);(Ⅲ)若a1=8,设c n=a2n﹣1﹣a2n,T n表示数列{c n}前n项和.(i)比较a n与7的大小;(ii)求证:T n<13.2018年浙江省台州市高考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)设集合P={0,1,2,3},Q={x∈R||x|<2},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.{1}【分析】解不等式化简集合Q,根据交集的定义写出P∩Q.【解答】解:集合P={0,1,2,3},Q={x∈R||x|<2}={x∈R|﹣2<x<2},则P∩Q={0,1}.故选:A.【点评】本题考查了集合的化简与运算问题,是基础题.2.(4分)若复数z=(1﹣i)(2+i)(其中i为虚数单位),则z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数代数形式的乘除运算化简,求出z在复平面内对应的点的坐标得答案.【解答】解:z=(1﹣i)(2+i)=3﹣i,则z在复平面内对应的点的坐标为:(3,﹣1),位于第四象限.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.(4分)设A,B,C为△ABC的内角,则“A<B”是“cosA>cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用余弦函数的单调性和充分条件和必要条件的定义进行判断即可.【解答】解:在三角形中,0<A,B<π.因为y=cosx在(0,π)上为单调减函数,所以若A<B,则cosA>cosB.若cosA>cosB,则A<B.所以,A<B是cosA>cosB的充要条件.故选:C.【点评】本题主要考查三角函数的图象和性质,以及充分条件和必要条件的应用,利用余弦函数的单调性是解决本题的关键.4.(4分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.1 D.3【分析】由已知中的三视图可得:该几何体是以侧视图为底面的四棱锥,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是以侧视图为底面的四棱锥,其底面面积S=1×1=1,高h=1,故体积V=×1×1=,故选:B.【点评】本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.5.(4分)在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数为Y,则()A.E(X)>E(Y),D(X)>D(Y)B.E(X)=E(Y),D(X)>D(Y)C.E(X)>E(Y),D(X)=D(Y)D.E(X)=E(Y),D(X)=D(Y)【分析】推导出X~B(5,),Y~B(5,),由此得到E(X)>E(Y),D(X)=D(Y).【解答】解:在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数为Y,则X~B(5,),Y~B(5,),E(X)==,E(Y)=5×=,D(X)==,D(Y)==,∴E(X)>E(Y),D(X)=D(Y).故选:C.【点评】本题考查离散型随机变量的数学期望、方差的求法及应用,考查二项公布的性质等基础知识,考查对立事件概率计算公式运算求解能力,考查函数与方程思想,是中档题.6.(4分)设数列{a n},{b n}满足a n+b n=700,,n∈N*,若a6=400,则()A.a4>a3B.b4<b3C.a3>b3D.a4<b4【分析】由题意可得a n=a n+280,可得a n+1﹣400=(a n﹣400),由a6=400,+1可得a n=400,b n=300,即可得到所求结论.【解答】解:a n+b n=700,,可得b n=700﹣a n,=a n+280,即有a n+1﹣400=(a n﹣400)可得a n+1可得a n﹣400=(a6﹣400)•()n﹣6=0,即有a n=400,b n=300,则a4=a3,b4=b3,a3>b3,a4>b4,故选:C.【点评】本题数列的通项的求法,注意运用构造等比数列法,考查运算能力,属于中档题.7.(4分)在△ABC中,边a,b,c所对的角分别为A,B,C,若,sinC=2cosB,则()A.B.C.D.c=2a【分析】由已知及余弦定理可得cosA=,可得A=,利用三角函数恒等变换的应用可求tanB=,由B∈(0,π),可得B=,进而可求C=,即可得解c=2a.【解答】解:∵,∴由余弦定理可得:cosA===,可得A=,∴sinA=,∵sinC=2cosB,可得:sin(﹣B)=2cosB,可得:cosB+sinB=2cosB,∴tanB=,由B∈(0,π),可得:B=,C=,∴c=2a.故选:D.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,考查了计算能力和转化思想,属于基础题.8.(4分)设实数x,y满足条件,若z=2x2﹣y﹣2,则()A.z的最小值为B.z的最小值为﹣3C.z的最大值为33 D.z的最大值为6【分析】先根据约束条件画出可行域,由z=2x2﹣y﹣2可得y=2x2﹣2﹣z,再利用z的几何意义求最值,只需求出z=2x2﹣y﹣2过可行域内的点A时,从而得到z 值即可【解答】解:实数x,y满足条件,作可行域如图,由z=2x2﹣y﹣2可得y=2x2﹣2﹣z,上下平移y=2x2﹣2﹣z,当经过点A时,过可行域内的点A时,z最小,设抛物线y=2x2﹣2﹣z与直线y=x+1相切于点A,切点为(x0,y0)∴y′=4x,∴4x0=1,解得x0=,代入y=x+1,可得y0=,∴z=2×﹣﹣2=﹣,故选:A.【点评】本题考查了简单的线性规划,考查了转化的解题思想方法,体现了数形结合的数学思想方法,是中档题.9.(4分)已知单位向量,且,若向量满足,则的取值范围为()A.B.C.D.【分析】根据题意求出|+|,把化为﹣||﹣≤0,解不等式求出||的取值范围.【解答】解:单位向量,且,c<,>=120°,∴|+|==1;若向量满足,则﹣•(+)+•=,∴||2﹣﹣•(+)=∴||2﹣||•cos<+>=解得﹣≤||≤+;∴的取值范围是(﹣,+].故选:C.【点评】本题考查了平面向量的模长与夹角的运算问题,是中档题.10.(4分)设f'(x)为函数f(x)的导函数(x∈R),且f(x)<0,2f'(x)+f (x)>0(e为自然对数的底数),若x1<x2,则()A. B.C.D.【分析】设g(x)=e x f2(x),判断g(x)的单调性,根据单调性得出结论.【解答】解:设g(x)=e x f2(x),则g′(x)=e x f2(x)+e x2f(x)f′(x)=e x f(x)[f(x)+2f′(x)]<0,∴g(x)在R上单调递减,又x1<x2,∴g(x1)>g(x2),即e f2(x1)>e f2(x2),∴f2(x1)>e f2(x2),又x2﹣x1>,∴e>e,∴e f2(x2)>e f2(x2),∴f2(x1)>e f2(x2),故选:D.【点评】本题考查了函数单调性与导数的关系,函数单调性的判断与应用,属于中档题.二、填空题:本大题共7小题,共36分.多空题每小题6分;单空题每小题6分.11.(6分)设实数a满足2a=3,则a=log23,log312﹣log36=(用a表示).【分析】直接由对数的运算性质计算得答案.【解答】解:∵实数a满足2a=3,∴a=log23;∴log312﹣log36=.故答案为:log23;.【点评】本题考查了对数的运算性质,是基础题.12.(6分)抛物线C:y2=8x的焦点F坐标为(2,0),若点在抛物线C上,则线段PF的长度为+2.【分析】根据抛物线的方程得出开口方向和焦点坐标,准线方程,利用抛物线的定义得出PF.【解答】解:抛物线方程为y2=8x,∴抛物线开口向右,∴2p=8,p=4,∴=0,∴抛物线焦点为(2,0),抛物线的准线方程为L:x=﹣2,∴点P到准线的距离为,由抛物线的定义可知PF=.故答案为:(2,0),.【点评】本题考查了抛物线的定义,简单性质,属于基础题.13.(6分)若函数是奇函数,则a=﹣1,函数f(x)的值域为(﹣∞,﹣1)∪(1,+∞).【分析】由奇函数的定义可得f(﹣x)+f(x)=0,解方程可得a,再由指数函数的值域,解不等式可得值域.【解答】解:函数是奇函数,可得f(﹣x)+f(x)=a﹣+a﹣=2a﹣(+)=2a+2=0,解得a=﹣1,则y=f(x)=﹣1﹣,可得1﹣2x=,即有2x=>0,解得y>1或y<﹣1,可得值域为(﹣∞,﹣1)∪(1,+∞),故答案为:﹣1,(﹣∞,﹣1)∪(1,+∞),.【点评】本题考查函数的奇偶性的判断和值域的求法,注意运用定义法和指数函数的值域,考查运算能力,属于基础题.14.(6分)若非负实数x,y满足x2+4y2+4xy+4x2y2=32,则x+2y的最小值为4,的最大值为4+4.【分析】第一空,不等式配方是关键,因为x2+4y2+4xy+4x2y2=32,所以(x+2y)2+4x2y2=32≤(x+2y)2+(x+2y)4,从而由(x+2y)4+16(x+2y)2﹣32×16≥0,解得x+2y的最小值为4,第二空,因为x2+4y2+4xy+4x2y2=32≥4xy+4xy+4x2y2,解得xy的最大值为2.则(x+2y)+2xy的最大值为4+4.【解答】解:因为x2+4y2+4xy+4x2y2=32,即(x+2y)2+4x2y2=32≤(x+2y)2+(x+2y)4,即(x+2y)4+16(x+2y)2﹣32×16≥0,故(x+2y)2≥16,或(x+2y)2≤﹣32(舍)故x+2y≥4,或x+2y≤﹣4(舍)故x+2y的最小值为4,故答案为:4因为x2+4y2+4xy+4x2y2=32,所以x2+4y2+4xy+4x2y2=32≥4xy+4xy+4x2y2,则x2y2+2xy﹣8≤0,解得﹣4≤xy≤2,所以xy的最大值为2.则(x+2y)+2xy=+2xy=+2xy≤+4=4+4,故答案为:4+4.【点评】考查不等式的解法,配方是关键,运算量比较大,务必要细心,属于中档题.15.(4分)在(2x﹣1)2+(2x﹣1)3+…+(2x﹣1)8的展开式中,含x2项的系数为.【分析】利用二项展开式的通项依次写出每一个二项式中含x2的项,则答案可求.【解答】解:在(2x﹣1)2+(2x﹣1)3+…+(2x﹣1)8的展开式中,含x2项为,则含x2项的系数为4(1﹣3+6﹣10+15﹣21+28)=64.故答案为:64.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.16.(4分)若关于x的不等式(acosx﹣1)(ax2﹣x+16a)<0在(0,+∞)上有解,则实数a的取值范围为(﹣∞,﹣1)∪(0,+∞).【分析】根据余弦函数的性质和二次函数的性质,分类讨论即可求出.【解答】解:①当a=0时,不等式可化为x<0,此时不等式在(0,+∞)无解,②当a>0时,﹣a﹣1<acosx﹣1<a﹣1,因为﹣a﹣1<﹣1,a﹣1>﹣1,因为y=ax2﹣x+16a,开口向上,此时在(0,+∞)一定有解,故y=acosx﹣1<0即可,由于y=acosx﹣1为周期函数,此时y=acosx﹣1在(0,+∞)有负解,故(acosx﹣1)(ax2﹣x+16a)<0在(0,+∞)上有解,③当a<﹣1时,a﹣1<acosx﹣1<﹣a﹣1,因为a﹣1<﹣1,﹣a﹣1>0,而y=ax2﹣x+16a,开口向下,此时△=1﹣64a2<0,即ax2﹣x+16a<0恒成立,故y=acosx﹣1>0即可,由于y=acosx﹣1为周期函数,此时y=acosx﹣1在(0,+∞)有正解,故(acosx﹣1)(ax2﹣x+16a)<0在(0,+∞)上有解,④当a=﹣1时,不等式可化为(cosx+1)(x2+x+16)<0,此时无解,acosx﹣1<0恒成立,⑤当﹣1<a<0时,a﹣1<acosx﹣1<﹣a﹣1,因为﹣2<a﹣1<﹣1,﹣1<﹣a ﹣1<0,此时acosx﹣1<0恒成立而y=ax2﹣x+16a,开口向下,对称轴为x=<0,与y轴的交点16a<0,此时y=ax2﹣x+16a>0,在(0,+∞)一定有解故原不等式在(0,+∞)有解,综上所述a的取值范围为(﹣∞,﹣1)∪(0,+∞),故答案为:(﹣∞,﹣1)∪(0,+∞)【点评】本题考查了不等式恒成立的问题,关键是分类讨论,掌握余弦函数的有解性,属于难题17.(4分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=1,AC=CD=DA=2,动点M在边DC上(不同于D点),P为边AB上任意一点,沿AM将△ADM翻折成△AD'M,当平面AD'M垂直于平面ABC时,线段PD'长度的最小值为.【分析】设D′在平面ABCD上的射影为H,根据H到直线AB的最小值及距离公式计算.【解答】解:设D′在平面ABCD上的射影为H,显然当∠AMD最小值时,H到直线AB的距离最小,故折痕为AC时,H为AC的中点,此时D′H=DH=,此时,H到直线AB的最小距离为h=BC=,∴PD′的最小距离为=.故答案为:.【点评】本题考查了空间线面位置关系即空间距离的计算,属于中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18.(14分)已知函数f(x)=sinxcosx+cos2x.(Ⅰ)求函数f(x)的最小正周期,并写出f(x)图象的对称轴方程;(Ⅱ)若将函数y=f(x)图象向右平行移动个单位,得到函数y=g(x)的图象,求满足g(x0)≥1的实数x0的集合.【分析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期,和对称轴方程;(Ⅱ)求出g(x)的解析式,结合不等式进行求解即可.【解答】解:(Ⅰ)f(x)=sinxcosx+cos2x=sin2x+(1+cos2x)=(sin2x+cos2x)+=sin(2x+)+,则函数f(x)的最小正周期T==π,由2x+=+kπ,k∈Z,得x=,k∈Z,得f(x)图象的对称轴方程为x=,k∈Z;(Ⅱ)由题意得g(x)=sin(2(x﹣)+)+=sin2x+,由g(x0)≥1得sin2x0+≥1,即sin2x0≥,∴+2kπ≤2x0≤+2kπ,k∈Z得+kπ≤x0≤+kπ,k∈Z即所求实数x0的集合为{x0|+kπ≤x0≤+kπ,k∈Z}.【点评】本题主要考查三角函数的图象和性质,利用辅助角公式进行化简结合三角函数的图象变换关系是解决本题的关键.19.(15分)如图,在三棱锥D﹣ABC中,CA=CB=,DA=DB=,AB=2.(Ⅰ)求证:AB⊥CD;(Ⅱ)若顶点D在底面ABC上的射影落在△ABC的内部,当直线AD与底面ABC 所成角的正弦值为时,求二面角C﹣AD﹣B的平面角的余弦值.【分析】(Ⅰ)取AB中点E,连接CE,DE,结合已知条件即可得到AB⊥平面DEC,由此能证明AB⊥CD;(Ⅱ)作DO⊥CE于点O,结合(Ⅰ)可得DO⊥平面ABC,则∠DAO为直线AD 与平面ABC所成的角,求出DO,OE的值,再过C作CM⊥DE于点M,取AD的中点G,连接CG,GM,同上可得CM⊥平面ABD,则∠CGM为二面角C﹣AD﹣B的平面角,由此可求出二面角C﹣AD﹣B的平面角的余弦值.【解答】(Ⅰ)证明:如图,取AB中点E,连接CE,DE,∵CA=CB,DA=DB,∴CE⊥AB,DE⊥AB,又DE∩CE=E,∴AB⊥平面DEC,又DC⊂平面DEC,∴AB⊥CD;(Ⅱ)解:如图,作DO⊥CE于点O,由(Ⅰ)可得平面DEC⊥平面ABC,且交于CE,∴DO⊥平面ABC,∴∠DAO为直线AD与平面ABC所成的角,=,即DO=,OE=,∴O为CE的中点.∴.过C作CM⊥DE于点M,取AD的中点G,连接CG,GM,同上可得CM⊥平面ABD,∴CM⊥AD,∵CG⊥AD,∴∠CGM为二面角C﹣AD﹣B的平面角,CG=,在△CDE中,.在Rt△CMG中,,∴.则.∴二面角C﹣AD﹣B的平面角的余弦值为.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,是中档题.20.(15分)已知函数f(x)=2x3﹣3(m+1)x2+6mx,m∈R.(Ⅰ)若m=2,写出函数f(x)的单调递增区间;(Ⅱ)若对于任意的x∈[﹣1,1],都有f(x)<4,求m的取值范围.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)求出函数的导数,通过讨论m的范围,求出函数的最大值即可.【解答】解:(Ⅰ)若m=2,则f(x)=2x3﹣9x2+12x,∵f′(x)=6x2﹣18x+12=6(x2﹣3x+2)=6(x﹣1)(x﹣2),令f′(x)>0,则x<1或x>2,故函数f(x)的递增区间是(﹣∞,1),(2,+∞);(Ⅱ)f(x)=2x3﹣3(m+1)x2+6mx,f′(x)=6(x﹣1)(x﹣m),①当m≥1时,f(x)在(﹣1,1)递增,f(x)max=f(1)=3m﹣1<4,故m<,∴1≤m<;②当﹣1<m<1时,f(x)在(﹣1,m)递增,在(m,1)递减,f(x)max=f(m)=﹣m3+3m2<4,即m3﹣3m2+4>0,(m+1)(m﹣2)2>0恒成立,∴﹣1<m<1;③当m<﹣1时,f(x)在(﹣1,1)递减,f(x)max=f(﹣1)=﹣9m﹣5<4,综上,m的范围是﹣1<m<.【点评】本题考查了函数的单调性问题,考查导数的应用以及求函数的最值问题以及求函数的最值问题,是一道中档题.21.(15分)已知椭圆C:=1(a>b>0)经过点,且离心率为.(Ⅰ)求a,b的值,并写出椭圆C的方程;(Ⅱ)设A,B分别为椭圆C的左、右顶点,在椭圆C上有异于A,B的动点P,若直线PA,PB与直线l:x=m(m为常数)分别交于不同的两点M,N,则当点P运动时,以MN为直径的圆是否经过定点?【分析】(Ⅰ)由题意可得+=1,=,a2=b2+c2,解得即可;(Ⅱ)A(﹣2,0),B(2,0),设PA,PB的斜率分别为k1,k2,分别设出直线方程,即可得到圆的方程,根据斜率的关系即可求出k1k2=﹣,即可得到(x﹣m)2=(m2﹣8),分类讨论即可求出.【解答】解:(Ⅰ)由题知:+=1,=,a2=b2+c2,解得a=2,b=2,∴=1;(Ⅱ)A(﹣2,0),B(2,0),设PA,PB的斜率分别为k1,k2,则PA,PB方程分别为y=k1(x+2),y=k2(x﹣2),∴M(m,k1(m+2)),N((m,k2(m+2)),∴圆的方程为(x﹣m)2+(y﹣k1(m+2))•(y﹣k2(m+2))=0,即(x﹣m)2+y2﹣(k1(m+2))+k2(m+2))y+k1k2(m2﹣8)=0,设点P(x0,y0),则+=1,即y02=4(1﹣),∴k1k2=•==﹣,由y=0,得(x﹣m)2﹣(m2﹣8)=0,∴(x﹣m)2=(m2﹣8),当m2﹣8<0时,即﹣2<m<2,方程无实数解,该圆不经过原点,当m2﹣8≥0时,即m≥2或m≤﹣2,m±,即定点为Q(m±,0).【点评】本题考查了椭圆的方程,以及直线和椭圆的位置关系,直线的斜率,方程的解,考查了运算能力和转化能力,属于中档题.22.(15分)在正项数列{a n}中,已知1≤a1≤11,a n+12=133﹣12a n,n∈N*.(Ⅰ)求证:1≤a n≤11;(Ⅱ)设b n=n(a2n﹣1+a2n),S n表示数列{b n}前n项和,求证:S n≥6n(n+1);(Ⅲ)若a1=8,设c n=a2n﹣1﹣a2n,T n表示数列{c n}前n项和.(i)比较a n与7的大小;(ii)求证:T n<13.【分析】(I)利用数学归纳法即可证明.(Ⅱ)由a2n﹣1+a2n=﹣+a2n +=﹣+,根据1≤a2n≤11,可得a2n﹣1+a2n≥12,b n=n(a2n﹣1+a2n)≥12n,利用求和公式等即可证明.(III)(i)由a1=8,可得=133﹣96=37,解得a2,a1>7,a2<7.由﹣72=﹣12(a n﹣7),可得(a n+1﹣7)(a n﹣7)<0,可得a2n﹣1>7>a2n.再利用条件可得数列{a2n﹣1}与数列{a2n}的单调性即可得出结论.(ii)T n=c1+c2+……+c n=a1﹣7+7﹣a2+……+a2n﹣1﹣7+7﹣a2n=|a1﹣7|+|a2﹣7|+……+|a2n﹣7|,利用=≤=<,且a1﹣7=1.再利用求和公式结论得出.【解答】证明:(I)(i)n=1时,1≤a1≤11;(ii)假设n=k时,有1≤a k≤11成立,则n=k+1时,∵1≤133﹣12a k≤121,∴1≤≤121.∵a n>0,∴1≤a k+1≤11成立.综上可得:1≤a n≤11.(Ⅱ)∵a2n﹣1+a2n=﹣+a2n +=﹣+,∵1≤a2n≤11,∴a2n﹣1+a2n≥12,∴b n=n(a2n﹣1+a2n)≥12n,∴S n=b1+b2+……+b n≥12(1+2+……+n)=12×=6n(n+1).∴S n≥6n(n+1).(III)(i)∵a1=8,∴=133﹣96=37,∴a2=,∴a1>7,a2<7.由﹣72=133﹣72﹣12a n=84﹣12a n=﹣12(a n﹣7),∴(a n+1﹣7)(a n﹣7)<0,∴a2n﹣1>7>a2n.=133﹣12a2n ,=133﹣12a2n﹣1,第21页(共22页)第22页(共22页)∴﹣=﹣12(a 2n ﹣a 2n ﹣1),即=﹣12(a 2n ﹣a 2n ﹣1),∴﹣=﹣﹣12(a 2n ﹣a 2n ﹣1)=(a 2n ﹣a 2n ﹣1)(a 2n +a 2n ﹣1﹣12)<0, 同理可得:﹣=(a 2n ﹣1﹣a 2n ﹣2)(a 2n ﹣1+a 2n ﹣2﹣12)>0,综上可得:数列{a 2n ﹣1}单调递减,即a 2n ﹣1>a 2n +1>7.数列{a 2n }单调递增,即a 2n <a 2n +2<7.(ii )T n =c 1+c 2+……+c n=a 1﹣7+7﹣a 2+……+a 2n ﹣1﹣7+7﹣a 2n=|a 1﹣7|+|a 2﹣7|+……+|a 2n ﹣7|, ∵=≤=<,且a 1﹣7=1.∴T n ≤1++……+=<=13.【点评】本题考查了数列递推关系、数列的单调性、方程与不等式的性质、分类讨论方法、放缩方法,考查了推理能力与计算能力,属于难题.。
台州市2023学年第一学期高一年级期末质量评估试卷数学2024.1(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若幂函数()f x x α=的图象过点()4,2,则()3f 的值为()A.19B.33C.32D.【答案】D 【解析】【分析】代入点可求出解析式,即可求出答案.【详解】由幂函数()f x x α=的图象过点()4,2,所以()442f α==,解得12α=,故()12f x x =,所以()1233f =故选:D.2.函数()()lg 1f x x =-的定义域是()A.()1,∞+B.[)1,∞+ C.()(),11,∞∞-⋃+ D.R【答案】A 【解析】【分析】根据对数函数定义域即可得出结论.【详解】由题意,在()()lg 1f x x =-中,10x ->即1x >,所以()f x 的定义域为()1,+∞.故选:A.3.下列函数在其定义域上单调递增的是()A.()1f x x=-B.()12xf x ⎛⎫= ⎪⎝⎭C.()2log f x x =D.()tan f x x=【答案】C 【解析】【分析】利用基本初等函数的单调性逐项判断,可得出合适的选项.【详解】反比例函数()1f x x=-在(),0∞-和()0,∞+上单调递增,在定义域上不单调,A 选项不满足条件;指数函数()12xf x ⎛⎫= ⎪⎝⎭在定义域上单调递减,B 选项不满足条件;对数函数()2log f x x =在其定义域上单调递增,C 选项满足条件;正切函数()tan f x x =在定义域上不单调,D 选项不满足条件.故选:C4.若0a >,01b a b >+=,,则()A.111a b+≤ B.41ab ≤C.221a b +≥D.1≤【答案】B 【解析】【分析】结合已知条件,利用基本不等式判断各选项中的结论是否成立.【详解】若0a >,01b a b >+=,,()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当12a b ==等号成立,A 选项错误;24412a b ab +⎛⎫≤⨯= ⎪⎝⎭,当且仅当12a b ==等号成立,B 选项正确;()()22222122a b a b ab a b =+=++≤+,得2212a b +≥,当且仅当12a b ==等号成立,C 选项错误;()222a b a b +=+++=≤,当且仅当12a b ==等号成立,D 选项错误.故选:B5.下列四组函数中,表示同一函数的是()A.y x u ==,B.2ln 2ln y x s t ==,C.2111x y m n x -==+-, D.c π sin os 2y x y x ⎛⎫=+=- ⎪⎝⎭,【答案】A 【解析】【分析】逐项判断选项中两个函数的定义域与对应法则是否相同,即可得出结果.【详解】A 选项中,函数y x =与u v ==,定义域相同,对应关系也相同,是同一函数;B 选项中,函数2ln y x =定义域为()(),00,∞-+∞U ,函数2ln s t =定义域为()0,∞+,定义域不同,不是同一函数;C 选项中,函数211x y x -=-定义域为()(),11,-∞+∞ ,函数1m n =+定义域为R ,定义域不同,不是同一函数;D 选项中,函数2sin cos πy x x ⎛⎫=+= ⎪⎝⎭与函数cos y x =-,对应关系不同,不是同一函数.故选:A6.已知()tan 2αβ+=-,()tan 7αβ-=,则tan2α=()A.13B.13-C.913 D.913-【答案】A 【解析】【分析】()()2ααβαβ=++-,利用两角和的正切公式求解.【详解】已知()tan 2αβ+=-,()tan 7αβ-=,则()()()()()()()tan tan 271tan2tan 1tan tan 1273αβαβααβαβαβαβ++--+⎡⎤=++-===⎣⎦-+---⨯.故选:A7.已知lg20.3010≈,若()2nn ∈N 是10位数,则n 的最小值是()A.29B.30C.31D.32【答案】B 【解析】【分析】由92110n ≥⨯,求满足条件的最小自然数即可.【详解】若2n 是10位数,则n 取最小值时,应满足92110n ≥⨯,则有lg 29n ≥,9929.9lg 20.3010n ≥≈≈,由n ∈N ,则n 的最小值是30.故选:B8.已知函数()(){}()222123i i x n m i iif x m n i --=∈∈R ,,,,部分图象如图所示,则()A.1212m m n n =>,B.1212m m n n >=,C.3131m m n n >>,D.3232m m n n >>,【答案】C 【解析】【分析】分析函数的单调性、对称性,确定对称轴及最大值与i i m n ,的关系,求解即可.【详解】由函数()()222i i x n m i f x --=,令()()222i i ix n g x m-=-,由二次函数性质可知:()i g x 图象关于i x n =对称,i x n <时,()i g x 单调递增,i x n >时,()i g x 单调递减,在i x n =处达到最大值,由图象得:()0i i f n >,则0i m >,根据复合函数的性质可得:()i f x 图象关于i x n =对称,i x n <时,()i f x 单调递增,i x n >时,()i f x 单调递减,在i x n =处达到最大值,则312n n n >=,且最大值为()i i f n =,结合图象可知()()()113322f n f n f n >>,所以132m m m <<.故选:C二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知0a b c >>>,则()A.a c b c +>+B.ac bc >C.a ba cb c>++ D.c ca b <【答案】ABC 【解析】【分析】根据给定条件,利用不等式的性质,结合幂函数性质逐项判断即得.【详解】由0a b c >>>,得a c b c +>+,ac bc >,AB 正确;显然0()()a b ac bc a c b c a c b c --=>++++,即a b a c b c>++,C 正确;函数c y x =在(0,)+∞上单调递增,则c c a b >,D 错误.故选:ABC10.已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()A.函数()f x 的最小正周期为2πB.点π,08⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心C.函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上单调递减D.函数()f x 的最大值为1【答案】BC 【解析】【分析】利用二倍角公式及辅助角等公式化简得到()πsin 224f x x ⎛⎫=+ ⎪⎝⎭,借助三角函数的性质逐一判断即可.【详解】结合题意:()ππ1π1sin cos sin cos sin 2sin 244222f x x x x x x x ⎛⎫⎛⎫⎛⎫=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()112πcos 2sin 222224f x x x x ⎛⎫=+=+ ⎪⎝⎭.对于选项A:由()πsin 224f x x ⎛⎫=+ ⎪⎝⎭可得2ω=,所以2ππT ω==,故选项A 错误;对于选项B:将π8x =-代入()2πsin 224f x x ⎛⎫=+ ⎪⎝⎭得:πππsin 2sin 0082842f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心,故选项B 正确;对于选项C:对于()πsin 224f x x ⎛⎫=+ ⎪⎝⎭,令π24t x =+,则2=sin 2y t ,因为π5π,88x ⎡⎤∈⎢⎥⎣⎦,所以ππ3π2,422t x ⎡⎤=+∈⎢⎥⎣⎦,而2=sin 2y t 在π3π,22⎡⎤⎢⎥⎣⎦上单调递减,所以函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上单调递减,故选项C 正确;对于选项D:对于()2πsin 224f x x ⎛⎫=+ ⎪⎝⎭,当ππ22π+,Z 42x k k +=∈,即ππ+,Z 8x k k =∈,()max =122f x ⨯=,故选项D 错误.故选:BC.11.定义域均为R 的奇函数()f x 和偶函数()g x ,满足()()2cos xf xg x x +=+,则()A.0R x ∃∈,使得()0R f x m m =∈,B.0R x ∃∈,使得()00g x =C .R x ∀∈,都有()()1f xg x -< D.R x ∀∈,都有()()()()0f xg x f x g x +--=【答案】ACD 【解析】【分析】由两函数的奇偶性列方程组可求出两函数的解析式,对于选项A:利用函数()f x 在R 上单调递增,且值域为R ,即可判断;对于选项B:借助基本不等式及三角函数的最值即可判断;对于选项C:利用函数的值域求出()()1cos 12xf xg x x ⎛⎫-=--< ⎪⎝⎭即可判断;对于选项D:利用函数的奇偶性即可判断.【详解】因为()()2cos xf xg x x +=+,则()()()2cos xf xg x x --+-=+-,因为()f x 为奇函数和()g x 为偶函数,所以()()()(),f x f x g x g x -=--=,所以()()()2cos xf xg x x --+=+-,联立()()()()2cos 2cos xxf xg x x f x g x x -⎧+=+⎪⎨-+=+⎪⎩,可得()()1222x x f x -=-,()()122cos 2x x g x x -=++,对于选项A:由()()111222222x x x x f x -⎛⎫=-=- ⎪⎝⎭,易判断函数()f x 在R 上单调递增,且值域为R ,故0R x ∃∈,使得()0R f x m m =∈,,故选项A 正确;对于选项B:由()()122cos 2xx g x x -=++,因为20,20x x ->>,所以()1122122x x -+≥⨯=,当且仅当22-=x x ,即0x =时,()1222x x -+取得最小值1,而[]cos 1,1x ∈-,当且仅当2ππ,Z x k k =+∈时取到1-,故()()122cos 02xx g x x -=++>(不能同时取等),故不存在0R x ∈,使得()00g x =,故选项B 错误;对于选项C:由()()1222x x f x -=-,()()122cos 2x x g x x -=++,可得()()1cos 2x f x g x x ⎛⎫-=-- ⎪⎝⎭,而102x⎛⎫-< ⎪⎝⎭,[]cos 1,1x -∈-,所以()()1cos 12xf xg x x ⎛⎫-=--< ⎪⎝⎭,故R x ∀∈,都有()()1f x g x -<,故选项C 正确;对于选项D:因为()f x 为奇函数和()g x 为偶函数,所以()()()(),f x f x g x g x -=--=,()()()()()()()()0f x g x f x g x f x g x f x g x +--=-=,故R x ∀∈,都有()()()()0f x g x f x g x +--=,故选项D 正确.故选:ACD.12.设n 是正整数,集合(){}{}12,,,1,11,2,,n i A x x x x i n αα==∈-= ∣,,.对于集合A 中任意元素()12,,,n y y y β= 和()12,,n z z z γ= ,,记()1122,n n P y z y z y z βγ=+++ ,()()111122221,2n n n n M y z y z y z y z y z y z βγ=++-+++-++++- .则()A.当3n =时,若()()1,1,11,1,1βγ==--,,则(),2M βγ=B.当3n =时,(),P r β的最小值为3-C.当6n =时,()(),,M P βγβγ≥恒成立D.当6n =时,若集合B A ⊆,任取B 中2个不同的元素,βγ,(),2P βγ≥,则集合B 中元素至多7个【答案】BD 【解析】【分析】根据()(),,,M P βγβγ的计算公式即可求解AB ,举反例即可求解C ,根据所给定义,即可求解D.【详解】对于A ,当()()1,1,1,1,1,1βγ==--时,()()()1,11111111111132M βγ⎡⎤=+++--+-+--+--=⎣⎦,故A 错误,对于B ,()112233,P y z y z y z βγ=++,而{}1,1,1,2,3i i y z i ∈-=,故当1i i y z =-时,此时()112233,P y z y z y z βγ=++取最小值3-,比如()()1,1,1,1,1,1βγ==---时,(),3P r β=-,故B 正确,对于C ,6n =时,()()1,1,1,1,1,1,1,1,1,1,1,1βγ=------=-----,()()1111222266661,42M y z y z y z y z y z y z βγ=++-+++-++++-=- ,()112266,4P y z y z y z βγ=+++= ,不符合()(),,M P βγβγ≥,故C 错误,对于D ,不妨设B 中一个元素(){}126,,,,1,1i y y y y β=∈- ,1,2,3,4,5,6i =由于(),2P βγ≥,则,βγ中相同位置上的数字最多有两对互为相反数,其他相同位置上的数字对应相同,若,βγ中相同位置中有一对的数字互为相反数,其他相同位置上的数字对应相同,不妨设()126,,,,y y Y γ= 此时(),42P βγ=≥,那么与()126,,,y y Y γ= 相同位置中有一对的数字互为相反数,其他相同位置上的数字对应相同的元素有()11256,,,,y y Y Y γ= ()212456,,,,,y y Y y Y γ= ()3123456,,,,,,y y Y y y Y γ=()4123456,,,,,,y Y y y y Y γ=()5123456,,,,,,Y y y y y Y γ=此时(),42i P γγ=≥,其中1,2,3,4,5i =,(),22,,i j P i j γγ=≥≠,1,2,3,4,5i j =,而i γ,1,2,3,4,5i =与β中相同位置上的数字有两对是不相同的,此时(),22i P γβ=≥,满足,若与()126,,,y y Y γ= 相同位置中有2对的数字互为相反数,那么就与(){}126,,,,1,1i y y y y β=∈- 有3对相同位置上的元素互为相反数,不符合,因此此时B 中满足条件的元素有7个,若,βγ中相同位置中有两对的数字互为相反数,其他相同位置上的数字对应相同,不妨设()126,,,,Y y Y γ'= (),42P γγ=≥',此时()126,,,Y y Y γ'= 与元素()5123456,,,,,Y y y y y Y γ=重复,综上可知B 中元素最多7个,D 正确,故选:BD【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.三、填空题:本大题共4小题,每小题5分,共20分.13.120 角是第_____________象限角.【答案】二【解析】【分析】直接由象限角的概念得答案.【详解】由象限角的定义可知,120 的角是第二象限角.故答案为:二.14.已知函数()1xf x a =+(0a >,且1a ≠)的图象过定点,则该定点的坐标是_________.【答案】()0,2【解析】【分析】借助指数函数令0x =,代入函数式可得定点纵坐标.【详解】在函数()1xf x a =+(0a >,且1a ≠)中,令0x =,则()0012f a =+=,所以该定点的坐标是()0,2.故答案为:()0,2.15.已知tan 3α=,()()πsin πsin 2πcos πcos 2αααα⎛⎫-+- ⎪⎝⎭⎛⎫+-+ ⎪⎝⎭的值为_________.【答案】2【解析】【分析】利用诱导公式化简,结合齐次式代入计算即可.【详解】因为tan 3α=,所以()()πsin πsin sin cos tan 13122πcos sin 1tan 13cos πcos 2αααααααααα⎛⎫-+- ⎪+++⎝⎭====-+-+-+⎛⎫+-+ ⎪⎝⎭.故答案为:2.16.若函数()()220f x x x x a a =-+->在[]0,2上的最小值为1,则正实数a 的值为_________.【答案】134【解析】【分析】对参数a 进行分类讨论,根据分段函数的单调性和最值,即可求得结果.【详解】由题可得()222,23,x x a x af x x x x a x x a x a⎧--≥=-+-=⎨-+<⎩,因为函数()()220f x x x x a a =-+->在[]0,2上的最小值为1,当102a <≤时,在[]0,2上,()f x 在10,2⎡⎤⎢⎥⎣⎦单调递减,1,22⎛⎤ ⎥⎝⎦单调递增,所以()min 111124f x f a ⎛⎫==--= ⎪⎝⎭,解得74a =(舍);当1322a <≤时,在[]0,2上()f x 在[]0,a 单调递减,(],2a 单调递增,所以()()2min 21f x f a a a ==-=,解得1a =(舍);当32a >时,在[]0,2上,()f x 在30,2⎡⎤⎢⎥⎣⎦单调递减,3,22⎛⎤⎥⎝⎦单调递增,所以()min 3991242f x f a ⎛⎫==-+=⎪⎝⎭,解得134a =.故答案为:134四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.计算:(1211333822--⨯;(2)23lg4lg25log 3log 4+-⨯.【答案】(1)π(2)0【解析】【分析】(1)根据根式的性质及分数指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】()2112303333822π322π341π-+-⨯=-+-=-+-=.【小问2详解】()2232323lg4lg25log 3log 4lg 425log 3log 2lg1002log 3log 2220.+-⨯=⨯-⨯=-⨯=-=18.已知()(){130}A x x x =--<∣,{}B xx m =>∣.(1)若2m =,求A B ⋂;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【答案】(1){23}x x ∈<<R∣(2)(],1-∞【解析】【分析】(1)由交集的定义直接求解;(2)由题意AB ,利用集合的包含关系求m 的取值范围.【小问1详解】若2m =,则{13}A x x =∈<<R∣,{2}B x x =∈>R ∣,所以{23}A B x x ⋂=∈<<R∣.【小问2详解】若x A ∈是x B ∈的充分不必要条件,则A B ,得1m £,故m 的取值范围是(]1-∞,.19.已知函数()23sin cos 22x f x x m =++的最大值为2.(1)求常数m 的值;(2)先将函数()f x 的图象上所有点的横坐标缩短到原来的12(纵坐标不变),再将所得图象向右平移π6个单位长度,得到函数()g x 的图象,求()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围.【答案】(1)12(2)1,22⎡⎤⎢⎥⎣⎦【解析】【分析】(1)利用二倍角公式和辅助角公式化简函数解析式,由函数最大值求常数m 的值;(2)求出图象变换后的函数解析式,然后利用正弦函数的性质求值域.【小问1详解】()211π1sin cos cos sin 2222262x f x x m x x m x m ⎛⎫=++=+++=+++ ⎪⎝⎭.因为()f x 的最大值为2,所以1122m ++=,故12m =.【小问2详解】()πsin 16f x x ⎛⎫=++ ⎪⎝⎭,函数()f x 的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得函数πsin 216y x ⎛⎫=++ ⎪⎝⎭的图象,再将所得图象向右平移π6个单位长度,得()πππ=sin 21sin 21666g x x x ⎡⎤⎛⎫⎛⎫-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由π02x ≤≤,得ππ5π2666x -≤-≤,所以1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,1π1sin 2226x ⎛⎫≤+-≤ ⎪⎝⎭,故()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围是1,22⎡⎤⎢⎥⎣⎦.20.从①31(log 2)3f =-;②函数()f x 为奇函数;③()f x 的值域是()1,1-,这三个条件中选一个条件补充在下面问题中,并解答下面的问题.问题:已知函数()1,R 31x a f x a =-∈+,且.(1)求函数()f x 的解析式;(2)若(32)(9)0x x f a f m ⋅+++≤对任意x ∈R 恒成立,求实数m 的最小值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)答案见解析(2)2-【解析】【分析】(1)根据题意,分别选择①②③,结合函数的性质,求得实数a 的值,即可求解;(2)根据函数的单调性的定义判定方法,得到()f x 在R 上单调递减,再由()f x 为奇函数,把不等式转化为9232x x m ≥--⋅-恒成立,结合指数函数与二次函数的性质,即可求解.【小问1详解】解:若填①:由31(log 2)3f =-,可得33log 21(log 2)1131213aa f =-=-=-++,解得2a =,所以2()131x f x =-+.若填②:由函数()131x a f x =-+,因为函数()f x 为奇函数,故()01f =,可得0(0)1031a f =-=+,解得2a =,所以2()131x f x =-+,即213()13131x x x f x -=-=++,经验证:1331()()3131x x x x f x f x -----===-++,符合题意,所以2()131x f x =-+.若填③:由131x a y =-+,可得131x a y +=+,则131011x a a y y y --=-=>++,即(1)01y a y --<+,又由()f x 的值域是()1,1-,可得11a -=,故2a =,所以2()131x f x =-+.【小问2详解】解:12,R x x ∀∈,且12x x <,则()()2112122(33)()()03131x x x x f x f x --=>++,所以函数()2131x f x =-+在R 上单调递减,又因为213()13131x x x f x -=-=++,满足1331()()3131x x x x f x f x -----===-++,所以()f x 为奇函数,由不等式(32)(9)0x x f a f m ⋅+++≤,可得(232)(9)x x f f m ⋅+≤--,则2329x x m ⋅+≥--,所以9232x x m ≥--⋅-,令30x t =>,记22923222(1)1x x y t t t =--⋅-=---=-+-,所以2y ≤-,所以2m ≥-,所以m 的最小值为2-.21.如图是一种升降装置结构图,支柱OP 垂直水平地面,半径为1的圆形轨道固定在支柱OP 上,轨道最低点D ,2PD =,12OD =.液压杆OA 、OB ,牵引杆CA 、CB ,水平横杆AB 均可根据长度自由伸缩,且牵引杆CA 、CB 分别与液压杆OA 、OB 垂直.当液压杆OA 、OB 同步伸缩时,铰点A B 、在圆形轨道上滑动,铰点C E 、在支柱OP 上滑动,水平横杆AB 作升降运动(铰点指机械设备中铰链或者装置臂的连接位置,通常用一根销轴将相邻零件连接起来,使零件之间可围绕铰点转动).(1)设劣弧 AD 的长为x ,求水平横杆AB 的长和AB 离水平地面的高度OE (用x 表示);(2)在升降过程中,求铰点C E 、距离的最大值.【答案】(1)2sin AB x =;3cos 2OE x =-(2)3-【解析】【分析】(1)轨道圆心为T ,圆的半径为1,劣弧 AD 的长为x 时,有ATD x ∠=,由三角函数表示出AB 和OE 的长;(2)证明出AEC OEA ~ ,则222sin 1cos 33cos cos 22AE x x CE OE x x -===--,通过换元利用基本不等式求出最大值.【小问1详解】记轨道圆心为T ,则1AT =,设劣弧 AD 的长为x ,则ATD x ∠=,得22sin AB AE x ==,3cos cos 2OE OT ET OT x x =-=-=-.【小问2详解】由已知,AB OP ⊥,CA OA ⊥,90CAE ACE CAE OAE ∠+∠=∠+∠= ,则ACE OAE ∠=∠,又90CEA OEA ∠=∠= ,所以AEC OEA ~ ,则222sin 1cos 33cos cos 22AE x x CE OE x x -===--,令3cos 2x t -=,有1522t ⎛⎫∈ ⎪⎝⎭,,.则2535434t t CE t t t --⎛⎫==-+ ⎪⎝⎭,1522t ⎛⎫∈ ⎪⎝⎭,,因为54t t +≥=2t =时,取到等号,所以铰点C E 、距离的最大值为3-.【点睛】方法点睛:求CE 的最大值时,证明AEC OEA ~ ,由已知的AB 和OE ,有21cos 3cos 2x CE x -=-,通过换元3cos 2x t -=,有534CE t t ⎛⎫=-+ ⎪⎝⎭,借助基本不等式可求最大值.22.已知函数()()221151221x x f x x x x ⎧-++<⎪⎪=⎨⎪+≥⎪⎩,,.(1)用单调性定义证明:()f x 在[)1,+∞上单调递增;(2)若函数()()R y f x m m =-∈有3个零点123x x x ,,,满足123x x x <<,且322112x x x x -=-.①求证:()231204x m +=-;②求[]310x 的值([]x 表示不超过x 的最大整数).【答案】(1)证明见解析(2)①证明见解析;②14【解析】【分析】(1)根据函数单调性的定义即可求解,(2)根据函数的图象,结合二次函数的对称性即可求解①,构造函数,,由单调性的定义求解其单调性,即可结合零点存在定理求解②.【小问1详解】[)12,1,x x ∞∀∈+,且12x x <有()()()()1212122212121212222x x x x x x f x f x x x x x x x ⎡⎤-+-⎣⎦-=-+-=,由[)12,1,x x ∞∈+,得122x x +>,121x x ⋅>,所以()12122x x x x +>,得()121220x x x x +->,又由12x x <,得120x x -<.于是()()1212121220x x x x x x x x ⎡⎤-+-⎣⎦<,即()()12f x f x <.所以,函数()f x 在[)1,+∞上单调递增.【小问2详解】①要使()y f x m =-有3个零点,由(1)知,函数()y f x m =-在[)1,+∞上存在一个零点3x ,在(]1∞-,上存在两个零点12x x ,,且122x x =--,代入3221212x x x x --=-,得3222111x x x --=+,于是32121x x +=+,因为()221152x m -++=,所以()()231204*x m +=-⋅②由2332x m x +=,代入()*式,得32333521980x x x +-+=,令()3252198g x x x x =+-+,[)12,1,t t ∞∀∈+,且12t t <,有()()()()221212112112555219g t g t t t t t t t t t ⎡⎤-=-++++-⎣⎦,由于12t t <,所以120t t -<,而[)12,1,t t ∞∈+,则()22221122125552195155122190t t t t t t ++++->⨯++⨯+⨯-=,故()()120g t g t -<,故函数()g x 在[)1,+∞上单调递增,又因为21220g =-<,37028g ⎛⎫=> ⎪⎝⎭,。
2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知1+2i/(1-2i),则结果为:A。
--iB。
-+iC。
--iD。
-+i解析:选D。
2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。
9B。
8C。
5D。
4解析:选A。
问题为确定圆面内整点个数。
3.函数f(x)=2/x的图像大致为:A。
B。
C。
D。
解析:选B。
f(x)为奇函数,排除A。
当x>0时,f(x)>0,排除D。
取x=2,f(2)=1,故选B。
4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。
4B。
3C。
2D。
2-2xy解析:选B。
a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。
y=±2xB。
y=±3xC。
y=±2x/abD。
y=±3x/ab解析:选A。
e=3,c=3ab=2a。
6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。
42B。
30C。
29D。
25解析:选A。
cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。