六年级 第二课时 方程
- 格式:docx
- 大小:183.64 KB
- 文档页数:2
小学六年级方程知识点总结方程是数学中的重要概念,在小学六年级的学习中,我们也开始接触和学习一元一次方程。
方程是一个数学等式,在方程中,我们用字母表示未知数,通过运算求出未知数的值。
接下来,让我们来总结一下小学六年级方程的主要知识点。
一、方程的基本概念方程是由等号连接的两个代数式,其中含有未知数。
在一元一次方程中,我们只有一个未知数。
例如:3x + 2 = 8,其中的 x 就是未知数。
二、方程的解在方程中,我们需要找到使等式成立的未知数的值,这个值就是方程的解。
对于一元一次方程,我们通常使用逆运算的方法求解。
例如:对于方程 3x + 2 = 8,我们可以先减去2,再除以3,得到 x = 2。
三、方程的解的判断在解方程的过程中,我们需要验证求得的解是否符合原始方程。
将求得的解代入方程中,如果等式仍然成立,则我们找到了方程的解;如果等式不成立,则需要重新检查求解步骤。
四、用方程解决问题方程可以帮助我们解决很多实际问题。
在解决问题时,我们需要先列出方程,然后通过求解方程找到问题的答案。
例如:小明年龄的三分之一比小红年龄少4岁,如果小明的年龄是 x,那么我们可以列出方程:(1/3)x = x - 4,通过求解这个方程,我们可以得到小明的年龄。
五、方程的应用方程在日常生活中有着广泛的应用。
除了用于解决问题外,方程还可以用来描述自然界中的现象规律,例如牛顿第二定律 F = ma,也是一个方程。
方程还可以用于经济学、物理学、化学等各个领域的研究中。
六、常见的方程错误在解方程的过程中,有些常见的错误需要我们注意避免。
例如,漏解方程中的负数解、在计算过程中的运算错误、代入验证时的计算错误等。
我们在解方程时,要仔细思考每一步的计算和验证,避免这些错误的出现。
通过本文的总结,我们了解了小学六年级方程的主要知识点。
方程作为数学的重要内容,不仅在学习中有着重要的作用,也广泛应用于各个领域。
在今后的学习和实践中,我们要继续加深对方程的理解,提高解方程的能力,更好地应用方程解决实际问题。
六年级上数学方程一、方程的基本概念。
1. 方程的定义。
- 含有未知数的等式叫做方程。
例如:2x + 3=9,这里x是未知数,整个式子是一个等式,所以它是方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值,叫做方程的解。
在方程2x + 3 = 9中,当x = 3时,方程左边=2×3+3 = 6 + 3=9,方程右边=9,左右两边相等,所以x = 3就是这个方程的解。
3. 解方程。
- 求方程的解的过程叫做解方程。
二、解方程的方法(以简单的一元一次方程为例)1. 利用等式的性质解方程。
- 等式的性质1:等式两边同时加上(或减去)同一个数,等式仍然成立。
- 例如解方程x - 5=8,根据等式性质1,等式两边同时加上5,得到x-5 + 5=8+5,即x = 13。
- 等式的性质2:等式两边同时乘(或除以)同一个不为0的数,等式仍然成立。
- 例如解方程3x=18,根据等式性质2,等式两边同时除以3,得到3x÷3 = 18÷3,即x = 6。
2. 移项法解方程(本质也是利用等式性质)- 在方程中,把含未知数的项移到等号一边,常数项移到等号另一边,注意移项要变号。
- 例如方程2x+5 = 3x - 1,把3x移到左边变为-3x,5移到右边变为-5,得到2x-3x=-1 - 5,即-x=-6,解得x = 6。
三、列方程解决实际问题的步骤。
1. 审题。
- 认真读题,理解题意,找出题目中的已知条件和所求问题。
- 例如:小明有一些铅笔,他给了小红5支后,还剩下8支,问小明原来有多少支铅笔?这里已知给小红5支后剩下8支,求原来的铅笔数。
2. 设未知数。
- 一般设所求的量为x。
在上述例子中,设小明原来有x支铅笔。
3. 列方程。
- 根据题目中的等量关系列出方程。
在这个例子中,等量关系是原来的铅笔数减去给小红的铅笔数等于剩下的铅笔数,所以方程为x - 5=8。
4. 解方程。
- 按照前面提到的解方程的方法求出方程的解。
年级:六 科目:数学 日期:2013.9.8
第 1页, 共2页
第二课时 方程
一、旧知回顾:
例1、同学们栽了25棵杨树,还载了3行松树。
松树和杨树一共载了61棵。
平均每行松树多少棵?
例2、一幢16层的大楼高52.5米。
一楼是大厅,层高4.5米。
其余15层平均每层高多少米?
二、新知探究
例1、学校买皮球和足球共70个,皮球的个数是足球的4倍。
两种球各几个?
思考 等量关系:皮球个数+足球个数=球的总数 解答 解:设足球有x 个,皮球有4x 个。
x+4x=70 5x=70 X=70÷5
x=14 4x=4×14=56
检验:14+56=70(个) 56÷14=4(个) 答:足球有14个,皮球有56个。
举一反三
1、北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。
颐和园的陆地和水面大约各有多少公顷?
2、少先队员去植树,五年级植的棵数十三年级的5倍,三年级比五年级少植120棵。
五年级植树多少棵?
3、学校美术小组共51人,男生人数是女生人数的2.4倍。
美术小组男、女生各多少人?
例2、解方程1.2x-x=12
思考 形如c bx ax =±的方程,先用乘法分配律将将它化简为(a+b )x=c 或(a-b )x=c ,再作答。
解答 解:(1.2-1)x=12 0.2x=12 X=60
年级:六 科目:数学 日期:2013.9.8
第 2页, 共2页
举一反三 解方程
2.5x-x=3 6.5x-3x=14 (4x+7x )×2=66
误区 一个长方形的周长是19.2米,长是宽的3倍。
这个长方形的宽是几米?
错误解法 正确解法 解:设这个长方形的宽是x 米。
x+3x=19.2 4x=19.2
x=4.8
答:宽是4.8米。
智力冲浪 一、解方程。
19x+x=0.76 2.3x-x=3.9 3x-2.32x=0.204 14x+16x=31.5
二、在括号例填上含有字母的式子。
1、小明今年x 岁,王老师的岁数是小明的4倍。
王老师( )岁,小明和王老师共( )岁,王老师比小明大( )岁。
2、杨树有x 棵,柳树的棵数是杨树的3.2倍。
柳树有( )棵,两种树
一共有( )棵,柳树比杨树多( )棵。
三、列方程解决问题
1、两袋大米共重88千克,甲袋的重量是乙袋的3倍。
两袋各多少千克?
2、有两袋面粉,甲袋比乙袋重34千克,甲袋的重量是乙袋的3倍。
两袋各重多少千克?
五、思维拓展。
1、一桶油连桶重17.5千克,用去油的一半后,连桶重10千克。
这桶油重多少千克?
2、妈妈买了6米布,给小亮做了2套同样的衣服后,还剩下2.4米。
小亮的每套衣服用布多少米?。