2019届泰安中考数学阶段检测试卷(三)含答案
- 格式:docx
- 大小:412.40 KB
- 文档页数:21
山东省泰安市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)米折返跑.在整个过程中,跑步者距起跑线的距离y(单1.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次2.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣73.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.x•x4=x5B.x6÷x3=x2C.3x2﹣x2=3 D.(2x2)3=6x65.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹6.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°7.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数 2 3 4 1分数80 85 90 95则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.58.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣59.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°10.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c11.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)12.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.15.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.16.已知a<0,那么2a2a|可化简为_____.17.不等式42x>4﹣x的解集为_____.18.如图,矩形OABC的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC 边上,BP=1.①特殊情形:若MP过点A,NP过点D,则PAPD=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时ECFC的值.20.(6分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x <80 40 n 80≤x <90 m 0.35 90≤x≤100500.25请根据所给信息,解答下列问题:m = ,n = ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(8分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.23.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒. (1)求AB 的长(精确到0.13 1.732 1.41≈≈,);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.24.(10分)阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kxy b d k-+=+计算.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:00221(2)1122111kx y b d k -+⨯--+====++.根据以上材料,求:点(1,1)P 到直线32y x =-的距离,并说明点P 与直线的位置关系;已知直线1y x =-+与3y x =-+平行,求这两条直线的距离.25.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(12分)如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°. (1)求这条抛物线的表达式;(2)过点C 作CE ⊥OB ,垂足为E ,点P 为y 轴上的动点,若以O 、C 、P 为顶点的三角形与△AOE 相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+12E′B的最小值.27.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.2.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.3.D【解析】【分析】根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.5.B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B . 6.D 【解析】 【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断. 【详解】 解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则 AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D . 【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”. 7.A 【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5; 故选:A .“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.B【解析】【分析】由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.9.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.10.A【解析】【分析】根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.11.C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.12.A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1.答:这两年平均每年绿地面积的增长率为10%.故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)×1=12;n=4时,S=1+(4-2)×1=18;…;所以,S与n的关系是:S=1+(n-2)×1=1n-1.故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴=由旋转的性质结合已知条件易得:,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022360ππ⨯⨯+⨯⨯+⨯⨯-=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.16.﹣3a【解析】【分析】根据二次根式的性质和绝对值的定义解答.【详解】∵a<0,∴2a2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【点睛】本题主要考查了根据二次根式的意义化简.2a当a≥0时,2a a;当a≤0时,2a =﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.17.x>1.【解析】【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.18.122.【解析】【分析】设AD=a,则AB=OC=2a,根据点D在反比例函数y=kx的图象上,可得D点的坐标为(a,ka),所以OA=ka;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=ka,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=12a,即可求得EM=12ka-;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=24ak,即可得点E的坐标为(24ak,12a),根据点E在在反比例函数y=kx的图象上,可得24ak·12a=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,∵点D在反比例函数y=kx的图象上,∴D(a,ka ),∴OA=k a ,过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=k a ,∵△OEC的面积为12,OC=2a,∴EN=12a,∴EM=MN-EN=ka-12a=12ka-;设ON=x,则NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴EM BM EN ON=,即12212k a x a xa--=, 解得x=24a k, ∴E(24a k ,12a ), ∵点E 在在反比例函数y=k x 的图象上, ∴24a k ·12a =k , 解得k=±∵k >0,∴故答案为:.【点睛】本题是反比例函数与几何的综合题,求得点E 的坐标为(24a k ,12a )是解决问题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或1 【解析】【分析】(1)证明Rt ABP Rt CDP V V ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【详解】解:(1)APB DPC 90DPC PDC 90Q =,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴V V ∽, 21512PA AB PD CP ∴===-, 故答案为12; (2)点E 与点B 重合时,四边形EBFA 为矩形, 则PE 1PF 2=为定值; (3)①当AEB 90∠︒=时,如图3,过点E 、F 分别作直线BC 的垂线交于点G ,H ,由(1)知:ECB CFH α==∠∠,AB 2AE 1ABE 30∠︒=,=,则=, EB ABcos303︒则==,3cos 602GB EB ︒==,同理32EG =, 322cos cos 2GC EC FH AB αα+==== . 则FH 2cos cos FC αα==, 则314EC FC =+ ; ②当EAB 90∠︒=时,如图4,GB EA 1EG FH AB 2==,===,则BE 5GC 3=,=,22EG G 13EC C =+=,EG 2tan tan GC 3EGC α∠===,则cos 13α= FH 13cos FC α==,则4EC FC = , 故EC 4FC =或314+ . 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.20.(1)70,0.2(2)70(3)750【解析】【分析】(1)根据题意和统计表中的数据可以求得m 、n 的值;(2)根据(1)中求得的m 的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【详解】解:(1)由题意可得,m =200×0.35=70,n =40÷200=0.2,故答案为70,0.2;(2)由(1)知,m =70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x <1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.22.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.23.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长. (2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.24.(1)点P 在直线32y x =-上,说明见解析;(2.【解析】【详解】解:(1) 求:(1)直线32y x =-可变为320x y --=,0d ==说明点P 在直线32y x =-上;(2)在直线1y x =-+上取一点(0,1),直线3y x =-+可变为30x y +-=则d ==∴这两条平行线的距离为2.25.(1)作图见解析;(2)3;(3)7 12【解析】【分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.26.(1) y=3x2﹣23x;(2)点P坐标为(0,3)或(0,43);(3)212.【解析】【分析】(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE,OC=233,推出当OP=12OC或OP′=2OC时,△POC与△AOE相似;(3)如图,取Q(12,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出12E Q OEBE OB''==',推出E′Q=12BE′,推出AE′+12BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+12E′B的最小值就是线段AQ的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=3, ∴A 点坐标为:(-1,3),B 点坐标为:(2,0),将两点代入y=ax 2+bx 得: 3420a b a b ⎧-⎪⎨+⎪⎩==, 解得:323a b ⎧⎪⎪⎨⎪-⎪⎩==,∴抛物线的表达式为:y=33x 2-233x ; (2)如图,∵C (1,3, ∴tan ∠EOC=3EC OE = ∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE ,OC=33, ∴当OP=12OC 或OP′=2OC 时,△POC 与△AOE 相似, ∴OP=33,OP′=433, ∴点P 坐标为(030,33). (3)如图,取Q (12,0).连接AQ ,QE′.∵12 OE OQ OB OE'==',∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴12E Q OEBE OB''==',∴E′Q=12 BE′,∴AE′+12BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+12E′B的最小值就是线段AQ的长,最小值为22321()(3)2+=.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.27.(1)证明见解析;(2)9﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD 得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD 为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.。
小题,在每小题给出的四个选项中,只有一个是正确的,请20一、(本大题共分,错选、不选或选出的答案超过一个,3把正确的选项选出来,每小题选对得均记零分)0)(?2计算) +9÷(-3)的结果是( 1.4.﹣.﹣1 3D.﹣B.﹣2 CAB 【答案】【解析】、灵活运用有理数的除法法则是解题的关键.原式试题分析:任何不为0的数的零次幂为1 =1+(﹣,﹣23)= (2)、有理数的除法运算(1)考点:、零指数幂的计算;) 2.下列计算正确的是(22235632a??4((a)?a?2a)mm?m B.A. C.462aaa?? D.D【答案】(3)、幂的乘方运算(1)考点:、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;下列图形:3.任取一个是中心对称图形的概率是()311 1 .A.DCB ..442C 【答案】【解析】1试题分析:由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.∵共有4种等可能的结果,任取一个是中心对称图形的有3种情3.况,∴任取一个是中心对称图形的概率是4考点:概率公式的应用22?4a?4a2?4a??4.化简:的结果为()222a(a?1)?a?2a?1a?2a?4a D.a C.B ..A 2aa?2?a?2【答案】C【解析】试题分析:先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最221))(a?(a?2)(a?2a?22a????. =后计算分式的加法即可.原式=22a?2))2(a??(a1a?2a?2a?2考点:分式的混合运算5.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()° D.150 B.A90°.120°135C.°B【答案】、扇形的弧长(2)、圆锥的侧面展开图;(3)、圆锥的计算;考点:(1)万亿元,将这)约为67.6720156.国家统计局的相关数据显示,年我国国民生产总值(GDP 个数据用科学记数法表示为()210.6.767×10元×D10元 B.6.767×10元 6.767C.A.6.767×13121214元A 【答案】【解析】试题分析:首先把5.3万亿化为53000亿,再用科学记数法表示53000,科学记数法的表示n10的形式,其中1≤|a|<10,n形式为a×为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.考点:科学记数法的表示方法AE+AFF,则E,交BA的延长线于,∠中,AB=6,BC=8C的平分线交AD于7.如图,在?ABCD )的值等于(6. 3C.4D2 A.B.C【答案】、等腰三角形的判定(1)、平行四边形的性质;(2)考点:,,n,若n+q=0,则mQqp,在数轴上对应的点分别为M,N,P,n8.如图,四个实数m,,) p,q四个实数中,绝对值最大的一个是(n.D.A.p mC.BqA 【答案】【解析】的关系,从而可以判定原点的位置,从而可以得到哪、可以得到试题分析:根据n+q=0nq的中点处,NQ0互为相反数,qn,∴n+q=0个数的绝对值最大,本题得以解决.∵和在线段3∴绝对值最大的点P表示的数p,考点:(1)、实数与数轴;(2)、数形结合思想2271)??2(x?(x?1)的根的情况是( 9.一元二次方程)B.有一正根一负根 A.无实数根D.有两个负根C.有两个正根C【答案】考点:一元二次方程的解法10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()D.22.5 ° 15 .12.5°B.°°C.20AB 【答案】【解析】试题分析:根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,1∠BOF=15°, BAF= AOF=30BOF=∴∠∠°,由圆周角定理得∠2 4、等边三角形的性质的综合运、平行四边形的性质定理;(3)考点:(1)、圆周角定理;(2) 用“我最喜欢的一门选修课,现选取若干学生进行了ABCDEF共611.某学校将为初一学生开设门选修课”调查,将调查结果绘制成如图统计图表(不完整)F E A 选修课 B C D人数 4010060)根据图表提供的信息,下列结论错误的是(人 A.这次被调查的学生人数为400 部分扇形的圆心角为72°E B.扇形统计图中70 80,、C .被调查的学生中喜欢选修课EF的人数分别为 CD.喜欢选修课的人数最少D【答案】错误; DA 10%12.5%∵>,∴喜欢选修课的人数最少,∴选项 (2)(1)考点:、条形统计图;、扇形统计图5+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是(12.二次函数y=ax2).CB.A. D.A【答案】考点:二次函数和一次函数的图象零件,已知每人每天个2100A零件,1200个B13.某机加工车间共有26名工人,现要加工(每人B零件20个,问怎样分工才能确保同时完成两种零件的加工任务A加工零件30个或只能加工一种零件)?设安排x人加工A零件,由题意列方程得()120012002100210012002100???A B. C..)?x26202630x20(?x)x30(x?x261200210020?30?? D.xx?26 6A 【答案】【解析】零件,同时完成两种零件的加工任B2100个A零件,1200个试题分析:直接利用现要加工12002100?零件,由题意列方程得:人加工A.务,进而得出等式即可.设安排x)xx20(26?30考点:由实际问题抽象出分式方程42x4x????2x)时,方程当x满足 -2x-5=0的根是( 14.11?)66(x?)(x???23?6666﹣. A.1±1+ B.1﹣1 C.DD【答案】考点:(1)、一元一次不等式;(2)、一元二次方程的解+n(x﹣mm,1,2这五个数中任取两数,n,则二次函数y=115.在﹣2,﹣,0 )2的顶点在)坐标轴上的概率为(2111. A.C.D. B 2545【答案】A【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.画树状图得:7种8n,一共有20种可能,其中取到0的有这五个数中任取两数,﹣∵﹣21,0,1,2m,可能,82 ∴顶点在坐标轴上的概率为205考点:列表法或树状图法求概率16.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()D.43.1641.68B22.48 A..C.55.63B【答案】8考点:锐角三角函数的应用AB交⊙O于E,交ACBAB如图,△ABC内接于⊙O,是⊙O的直径,∠B=30°,CE平分∠17. S,连接AE,则S:的值等于()D于点CDBADE△△23:3 2C.1:2D.1B.:.A1:D 【答案】【解析】3AC?,根据三°,根据已知条件得到的直径,得到∠是⊙试题分析:由ABOACB=90BC3角形的角平分线933311111)·×ABABS:=(×(AB·AB):(:AD`OE)(BD`CE)=S∴CDB△△ADE4222223?333? 3=2:.、、三角形的面积的计算;(4)(1)、圆周角定理;(2)、三角形的角平分线定理;(3)考点:直角三角形的性质,若AM=BK上的点,且,BN=AKK,分别是PA,PB,ABMPAB18.如图,在△中,PA=PB,,N 的度数为(P )∠MKN=44°,则∠°. 88 66B°.A44 .°C.° D92D【答案】10、三角形的外角的性(3)、等腰三角形的性质;(2)、全等三角形的判定和性质;考点:(1) 质 m 的取值范围是()时,≤x≤4mx﹣4<0,则19.当1 <4 D ..mB.<1Cm>A.m1 >4mB 【答案】【解析】<<m﹣40,解得m4,,即时,﹣试题分析:设y=mx4,由题意得,当x=1y <0 1,的取值范围是,,解得,﹣<当x=4时,y0,即4m4<0m<1 则mm<考点:含字母系数的一元一次不等式的解法°,20.如图,正△ABC重合)、C,且∠APD=60(不与点BCP的边长为4,点为边上的任意一点B )的函数图象大致是(关于,则,.设于点交PDABDBP=xBD=yyxBA...C. DC【答案】11(3)、相似三角形的判定与性质(1)、动点问题;(2)、二次函数的图象;考点:只要求填写最后结果,每小题填对分.二、填空题(本大题共4小题,满分12 )得3分,2个单位,那么得到的抛物线向左平移3个单位,再向下平移4将抛物线y=2(x﹣1)+221. 的表达式为.2)?2(x2 【答案】y=2﹣【解析】2)x?1(向左平移试题分析:按照“左加右减,上加下减”的规律求得即可.抛物线y=2+22)(x?2.故得到抛物线的解析式为个单位得到个单位,再向下平移4y=2﹣232)?2(x 2y=y=2.﹣考点:函数图象的平移OAAOBCD交直线,连接,交切于点的斜边ABDOB于点C△与的⊙如图,半径为22.3ORt .的长为°,则线段,若∠于点EB=30AE3【答案】12考点:切线的性质,则于点F于点E,交BCADBC=8ABCD23.如图,矩形中,已知AB=6,,BD的垂直平分线交△BOF的面积为.75【答案】813考点:(1)、矩形的性质;(2)、线段垂直平分线的性质;(3)、勾股定理的应用24.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A,点A,A,…321在直线l上,点B,B,B,…在x轴的正半轴上,若△AOB,△ABB,△ABB,…,依32331121122次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形ABB顶点B的n1nnn﹣横坐标为.1n?2-2【答案】【解析】ABABBAB BBBA O,=O =2,,==8=试题分析:由题意得OA=O=4=2,∴21211113322432BB B222 2,14=,…﹣2,6=﹣﹣22(,0),6(,0),14(,0)…, 2=∴2131n?B2.∴﹣的横坐标为2n、等腰直角三角形的性质(2)、规律型;(3)考点:(1)、点的坐标;解答应写出必要的文字说明、证明过程或.小题,满分48分三、解答题(共5 推演步骤),0的坐标为(OABC的顶点O与坐标原点重合,点C25.如图,在平面直角坐标系中,正方形,一次函数,AM=2MOOA上,且AD=2DBM在x轴的负半轴上,点D、分别在边AB、)3,点A? N.D,与BC的交点为的图象经过点y=Dy=kx+b的图象过点和M,反比例函数x)求反比例函数和一次函数的表达式;(1 P的面积相等,求点的坐标.OMNCOPMDMP2()若点在直线上,且使△的面积与四边形149))或(8,﹣9y=-x-1;(2)、(﹣10,、【答案】(1) 【解析】,AD=2DB确定出边长,及四个角为直角,根据坐标,(1)、由正方形OABC的顶点C试题分析:的MO的值,再由AM=2MO,确定出求出AD的长,确定出D坐标,代入反比例解析式求出m即可确定出一次函数解的值,与bM与D 坐标代入一次函数解析式求出k长,即M坐标,将,(x坐标,得到NC的长,设P(2)析式;、把y=3代入反比例解析式求出x的值,确定出NP确定出的值,进而得到x的值,根据△OPM的面积与四边形OMNC的面积相等,求出y,y)坐标即可.(5)性质;、三角形面积计算某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品26.个乒乓球,乒乓球的单店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10副横拍球拍比元;购买10副横拍球拍花费个,若购买/20副直拍球拍和159000元价为2 16005购买副直拍球拍多花费元.15(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】(1)、直拍球拍每副220元,横拍球每副260元;(2)、购买直拍球拍30副,则购买横拍球10副时,费用最少.【解析】试题分析:(1)、设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;考点:(1)、二元一次方程组;(2)、一元一次不等式解实际问题27.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.、求证:AC=CD·BC;2 (1)(2)、过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.16. (2)、证明过程见解析【答案】(1)、证明过程见解析;【解析】2.构建直(2)、①连接AH=CDBC,只需推知△ACD∽△BCA即可;AC试题分析:(1)、欲证明,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:角△AHC ;°,即FH⊥GH∠∠FHG=CAB=90“直角三角形斜边上的30度角所对的直角边等于斜边的一半”、②利用“在直角三角形中,是菱形.AKEC 中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形.、菱形的判定、直角三角形的性质;、相似三角形的判定与性质;考点:(1)(2)(3) 17轴交于点),与yy=ax+bx+c的顶点坐标为(2,928.如图,在平面直角坐标系中,抛物线、2Ax轴交于点EB.(0,5),与2的表达式; (1)、求二次函数y=ax+bx+c(2)、过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)、若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.252x,点坐标为(2,8)时,N;(2)、(3);、当M点的坐标为((1)【答案】、y=-1+4x+52,3)2,8)时,N点坐标为(,M13);当点的坐标为(32x+4x+5),∴D(,﹣(;设﹣的解析式为∴直线 ABy=x+5Pxx,﹣x+5),1812222xxxx+10x)(×PD=2-=-2,+5x+4x+5+x﹣5=-=,+5x ∵AC=4,∴S×AC∴PD=-APCD四边形2 10525?时, x=∴当∴S=,最大APCD四边形?2?(?2)22(3)如图,、平行四边形的性(3)、待定系数法求函数关系式;(2)、函数极值额确定方法;考点:(1) 质和判定上一点,BC上,E是直线D其底边是△ABC是等腰三角形,BC,点在线段AB已知:29.(1)、EB=AD°(如图①),若∠∠且∠DEC=DCEA=60.求证:;19,其它条件不的延长线上”在线段在线段AB上”改为“点DAB(2)、若将(1)中的“点D (1)的结论是否成立,并说明理由;变(如图②),EB的值是多°”改为“若∠A=90°”,其它条件不变,则)中的“若∠(3)、若将(1A=60AD少?(直接写出结论,不要求写解答过程)2 (3)、【答案】(1)、证明过程见解析;(2)、成立;理由见解析;【解析】,AFD=∠ACB于F,由平行线的性质得出∠ADF=∠ABC,∠∥试题分析:(1)、作DFBC交AC是等边三角形,证出△ADF 是等边三角形,得出∠ABC=∠ACB=60°,FDC=∠∠DCE,证明△ABC,≌△AAS证明△DBECFDDEC 得出AD=DF,由已知条件得出∠FDC=∠,ED=CD,由DFC=120∠°,,CFD≌△同(1)证出△DBEFBC、EB=DF得出,即可得出结论;(2)作DF∥交AC的延长线于,于∥BC交AC、作EB=DF得出,即可得出结论; (3)DFEBDF22 ∴∴,.ADAD 20、等腰三角形、等边三角形的判定与性质;(2)、全等三角形的判定与性质;(3)(1)考点:、等腰直角三角形的判定与性质;的判定与性质;(4)(5)、平行线的性质21。
2019年泰安学生学业水平测试数学样题一、选择题(本大题共12个小题,满分36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分.)1.在1,-2,0,-3.6 这四个数中,最大的数是( ) A .-2 B . 0 C .-3.6 D .12.下列计算正确的是A .()235x x -=B .()23636x x -=C .()221x x--= D .632x x x ÷=3.如图的几何体是由五个相同的小立方体搭成,它的左视图是( )A .B .C .D .4.鲁教版五四制初中数学教科书共八册,总字数约计1655000,用科学记数法可将1655000表示为 ( )A . 3165510⨯B .61.65510⨯C .516.5510⨯D . 70.165510⨯ 5.如图,直角三角板的直角顶点在正方形的顶点上,若0160∠=,则下列结论错误的是( ) A .0260∠= B .0360∠= C .∠4=450 D . ∠5=300 6.下列图形:任取一个是中心对称图形的概率是( ) A .B .C .D .17.若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是( )A .a >4B .a < 4C .4≥aD . 4≤a8.如图,将□ABCD 分别沿BF 、CE 折叠,使点A 、D 分别落在BC 上,折痕分别为BF 、CE , 若AB=6,EF=2,则BC 长为( )A .8B . 10C . 12D . 149. 下列函数中,对于任意实数1x ,2x ,当12x x >时,满足12y y <的是( )A .y=﹣3x +2B .y=2x +1C .y=2x 2+1D .y=﹣10.工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm .A . 119B .1192C .64D . 1192111.如图,抛物线c bx ax y ++=2(a ≠0)的对称轴为直x =1,与x 轴 的一个交点坐标为(-1,0),其部分图象如图所示.下列结论:① 24ac b <;②方程c bx ax++2=0的两个根是11-=x ,32=x ; ③30a c +>;④当0y >时,x 的取值范围是-13x ≤<;⑤当x1< x 2<0时,y1<y 2.其中结论正确的个数是( )A.1个B.2个C.3个D.4个 12.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点 D ,C.若∠ACB=30°,AB=3,则阴影部分的面积是( )A.32B.6πC.32-6πD.33-6π二、填空题(本大题共6小题,满分18分。
阶段检测三一、选择题1.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.根据如图所示的程序计算函数值,若输入的x值为,则输出的y值为( )A.B.C. D.3.将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是y=-2x2+4x+1,则将该抛物线沿y轴翻折后所得抛物线的函数关系式是( )A.y=-2(x-1)2+6B.y=-2(x-1)2-6C.y=-2(x+1)2+6D.y=2(x+1)2-64.(2017河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O.固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为( )A.(,1)B.(2,1)C.(1,)D.(2,)5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙的速度的一半.其中,正确结论的个数是( )A.4B.3C.2D.16.如图,正方形OABC,正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是( )A.(+1,-1)B.(3+,3-)C.(-1,+1)D.(3-,3+)7.已知一次函数y=kx+b的图象与直线y=-5x+1平行,且过点(2,1),那么此一次函数的关系式为( )A.y=-5x-2B.y=-5x-6C.y=-5x+10D.y=-5x+118.已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )9.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.-1610.一元二次方程(x+1)(x-2)=10的根的情况是( )A.无实数根B.有两个正根C.有两个根,且都大于-1D.有两个根,其中一个根大于 211.如图,正方形ABCD的边长为2 cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2.其中,正确的结论有( )A.1个B.2个C.3个D.4个二、填空题13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是.14.如图,一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,则S的取值范围是.15.如图,线段AB的长为2,C为AB上一个动点,分别以AC,BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.16.如图,已知A,B两点的坐标分别为(2,0),(0,2),☉C的圆心坐标为(-1,0),半径为1.若D是☉C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.三、解答题17.随着“一带一路”的进一步推进,我国瓷器更被“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:①每个茶壶的批发价比茶杯多110元;②一套茶具包括一个茶壶与四个茶杯;③600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.18.抛物线L:y=ax2+bx+c与已知抛物线y=x2的形状相同,开口方向也相同,且顶点坐标为(-2,-4).(1)求L的解析式;(2)若L与x轴的交点为A,B(A在B的左侧),与y轴的交点为C,求△ABC的面积.19.如图,已知一次函数y=x-3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点 B.(1)求反比例函数的表达式;(2)将线段AB沿x轴向右平移5个单位到DC,设DC与双曲线交于点E,求点E到x轴的距离.20.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作,那么锻造的操作时间有多长?21.如图,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且D点的横坐标是它的纵坐标的2倍.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O 与点F重合,折痕分别与x轴,y轴正半轴交于点H,G,求线段OG的长.22.如图,已知抛物线y=-x2-x+2与x轴交于A,B两点,与y轴交于点C.(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是抛物线对称轴上的点,求以A,B,E,F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得∠MBO=∠ACO?若存在,请求出点M的坐标;若不存在,请说明理由.阶段检测三一、选择题1.B ∵x2≥0,∴x2+1≥1,∴点P(-2,x2+1)在第二象限.故选B.2.B ∵2≤≤4,∴将x=代入y=,得y=.故选B.3.A y=-2x2+4x+1=-2(x-1)2+3.∵将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是y=-2x2+4x+1,∴此函数关系式为y=-2(x+1)2+6,该抛物线的顶点坐标为(-1,6),∴将该抛物线沿y轴翻折后所得抛物线的顶点坐标为(1,6),故其函数关系式为y=-2(x-1)2+6.故选A.4.D 由题意可知AD'=AD=CD=C'D'=2,AO=BO=1,在Rt△AOD'中,由勾股定理得OD'=.由C'D'∥AB可得点C'的坐标为(2,),故选D.5.B 由题图可得:A,B两地相距120千米,行驶1小时时甲、乙两人相遇,故①正确;乙行驶1.5小时到达A地,甲行驶3小时到达B地,故③错误;乙的速度为120÷1.5=80(千米/时),甲的速度为120÷3=40(千米/时),∴甲的速度是乙的速度的一半,故④正确;出发1.5小时时,乙比甲多行驶了 1.5×(80-40)=60(千米),故②正确.故选B.6.A ∵正方形OABC,点B在反比例函数y=(x>0)的图象上,设点B的坐标为(a,a),∴a×a=4,a=2(负值舍去).设点E的横坐标为b,则纵坐标为b-2,代入反比例函数y=中,即b-2=.解之,得b=+1(负值舍去),即E点坐标为(+1,-1).故选A.7.D ∵一次函数y=kx+b的图象与直线y=-5x+1平行,∴k=-5.∵一次函数的图象过点(2,1),∴1=-5×2+b,解得b=11,∴一次函数的关系式为y=-5x+11.故选D.8.C 由题图可知,m<-1,n=1,∴m+n<0,∴一次函数y=mx+n的图象经过第二、四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二、四象限.纵观各选项,只有C选项符合题意.故选C.9.C ∵图中阴影部分的面积等于16,∴正方形OABC的面积为16.∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=-1舍去),∴P点坐标为(4,1).把P(4,1)代入y=,得k=4×1=4.故选C.10.D 将抛物线y=(x+1)(x-2)向下平移10个单位可得出新抛物线y=(x+1)(x-2)-10,如图所示.∵抛物线y=(x+1)(x-2)与x轴交于点(-1,0),(2,0),∴抛物线y=(x+1)(x-2)-10与x轴有两个交点,一个在(-1,0)的左侧,一个在(2,0)的右侧,∴方程(x+1)(x-2)=10有两个不相等的实数根,一个根小于-1,一个根大于2.故选D.11.B 当P点由A点运动到B点,即0≤x≤2时,y=×2x=x,当P点由B点运动到C点,即2<x≤4时,y=×2×2=2,符合题意的函数关系的图象是选项B所示,故选B.12.B ①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2-4ac>0,故②正确;③当x=-2时,y<0,即4a-2b+c<0(1).当x=1时,y<0,即a+b+c<0(2).(1)+(2)×2得:6a+3c<0,即2a+c<0.∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=-1时,y=a-b+c>0,∴(a+b+c)(a-b+c)<0,即[(a+c)+b][(a+c)-b]=(a+c)2-b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选B.二、填空题13.答案k≤4解析当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3时,函数y=(k-3)x2+2x+1是二次函数,且函数的图象与x轴有交点.∴22-4(k-3)≥0,∴k≤4,综上,k的取值范围是k≤4.14.答案≤S≤2解析将B(3,1)代入y=,∴k=3.将A(m,3)代入y=,∴m=1,∴A(1,3).将A(1,3)代入y=-x+b,∴b=4,∴y=-x+4.设P(x,y),由题意可知1≤x≤3,∴PD=y=-x+4,OD=x,∴S=x(-x+4)=-(x-2)2+2,由二次函数的图象可知≤S≤2.15.答案 1解析如图,连接DE.设AC=x,则BC=2-x.∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2-x),∴∠DCE=90°,∴DE2=DC2+CE2=x2+(2-x)2=x2-2x+2=(x-1)2+1.当x=1时,DE2取得最小值,DE也取得最小值,最小值为 1. 故答案为 1.16.答案2-解析如图所示,当AD与☉C相切时,线段BE最短,此时△ABE的面积最小. ∵A(2,0),C(-1,0),☉C的半径为1,∴AO=2,AC=2+1=3,CD=1.在Rt△ACD中,AD=-=-=2.∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE.在△AOE与△ADC中,,,∴△AOE∽△ADC,∴=,即=,解得EO=.∵点B(0,2),∴OB=2,∴BE=OB-OE=2-,∴△ABE面积的最小值为×BE×AO=×-×2=2-.故答案为2-.三、解答题17.解析(1)设茶杯的批发价为x元/个,则茶壶的批发价为(x+110)元/个,根据题意得:=,解得x=40,经检验,x=40是原分式方程的解,∴x+110=150.答:茶杯的批发价为40元/个,茶壶的批发价为150元/个.(2)设商户购进茶壶m个,则购进茶杯(5m+20)个,根据题意得:m+5m+20≤200,解得m≤30.设利润为w元,则w=m(500-150-4×40)+m×(270-150)+5m+20-×4m×(70-40)=245m+600.∵w随着m的增大而增大,∴当m取最大值时,利润w最大,即当m=30时,w=7 950,∴当购进30个茶壶、170个茶杯时,有最大利润,最大利润为7 950元.18.解析(1)∵抛物线y=ax2+bx+c与已知抛物线y=x2的形状相同,开口方向也相同,∴a=.∵抛物线的顶点坐标为(-2,-4),∴y=(x+2)2-4.(2)∵L与x轴的交点为A,B(A在B的左侧),与y轴的交点为C,∴令y=0得0=(x+2)2-4,解得x1=-6,x2=2.令x=0得y=-3.故A(-6,0),B(2,0),C(0,-3),则△ABC的面积为×AB×CO=×8×3=12.19.解析(1)把点A(4,n)代入一次函数y=x-3,可得n=×4-3=3.把点A(4,3)代入反比例函数y=,可得3=,解得k=12,∴反比例函数的表达式为y=.(2)设E,,B点坐标为(2,0).∵tan∠ECx=tan∠ABC,∴=,-解得m=(负根舍去),∴点E到x轴的距离为.20.解析(1)材料锻造时,设y=(k≠0),由题意得600=,解得k=4 800.当y=800时,=800,解得x=6,∴点B的坐标为(6,800).材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时y与x的函数关系式为y=128x+32(0≤x≤6);锻造操作时y与x的函数关系式为y=(6<x≤150).(2)把y=480代入y=,得x=10,10-6=4(分钟).答:锻造的操作时间为4分钟.21.解析(1)如图,过D作DM⊥x轴,交x轴于点M.∵D点的横坐标是它的纵坐标的2倍,即OM=2DM, ∴OA=2AB.∵E(4,n),即OA=4,AE=n,∴AB=2.(2)∵D为OB的中点,B(4,2),∴D(2,1).把D(2,1)代入y=中,得1=,即k=2,∴反比例函数的解析式为y=,把E(4,n)代入反比例函数的解析式得n==.(3)如图,连接GF,FH.易知F(1,2),∴CF=1.由折叠得△OGH≌△FGH,∴OG=FG.∵OC=AB=2,设OG=FG=x,得到CG=2-x.在Rt△CFG中,由勾股定理得FG2=CG2+CF2,即x2=(2-x)2+1,整理得4x=5,解得x=,则OG=.22.解析(1)令y=0得-x2-x+2=0,∴x2+2x-8=0,解得x1=-4,x2=2,∴点A的坐标为(2,0),点B的坐标为(-4,0).令x=0,得y=2,∴点C的坐标为(0,2).(2)①当AB为平行四边形的边时,∵AB=EF=6,抛物线的对称轴为直线x=-1,∴点E的横坐标为-7或5,∴点E的坐标为-,-或,-,此时点F的坐标为-,-, ∴以A,B,E,F为顶点的平行四边形的面积是6×=.②当AB为平行四边形的对角线时,∵A,B两点关于抛物线的对称轴x=-1对称,则抛物线的顶点为E,得点E的坐标为-,,∴点F的坐标为-,-,∴以A,B,E,F为顶点的平行四边形的面积是×6×=.答:以A,B,E,F为顶点的平行四边形的面积为或.(3)如图所示,由(1)可知点A的坐标为(2,0),点C的坐标为(0,2).当==1时,∠MBO=∠ACO,由于NB=3,可得MN=3,∴点M的坐标为(-1,3)或(-1,-3).别想一下造出大海,必须先由小河川开始。
阶段检测一一、选择题1.在12,0,-1,-12这四个数中,最小的数是( ) A.12 B .0 C.-12 D.-12.(2018江苏南京)计算a 3·(a 3)2的结果是( )A.a 8B.a 9C.a 11D.a 183.(2017山东滨州)计算-(-1)+|-1|,结果为( )A.-2B.2C.0D.-14.(2018青岛)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5 克.将0.000 000 5用科学记数法表示为( )A.5×107B.5×10-7C.0.5×10-6D.5×10-65.下列式子是分式的是( )A.x 2B .x x+1 C.x 2+y D.x π6.(2018深圳)下列运算正确的是( )A.a 2·a 3=a 6B.3a-a=2aC.a 8÷a 4=a 2D.√a +√b =√ab7.如果(a m b n )2=a 8b 6,那么m 2-2n 的值是( )A.10B.52C.20D.328.(2017重庆B 卷)若二次根式√a -2有意义,则a 的取值范围是( )A.a≥2B.a≤2C.a>2D.a≠29.已知实数x,y 满足|x-4|+√=0,则以x,y 的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16D.以上均不对10.已知A=4x 2-4,B=1x+2+12-x ,其中x≠±2,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B11.(2018淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A.60x -60(1+25%)x =30 B.60(1+25%)x -60x =30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x x =30二、填空题12.(2018江苏连云港)分解因式:16-x 2= .13.若x,y 为实数,且|x+2|+√y -3=0,则(x+y)2 018的值为 .14.(2017滨州)计算:√3+(√3-3)0-|-√12|-2-1-cos 60°= . 15.(2018滨州)若分式x 2-9x -3的值为0,则x 的值为 .16.(2018淄博)将从1开始的自然数按如图所示的规律排列,例如位于第3行第4列的数是12,则位于第45行第8列的数是 .三、解答题17.(1)(2018浙江舟山)计算:2(√8-1)+|-3|-(√3-1)0;(2)(5a 2-ab+1)-2(2a 2-2ab +12);(3)(√6-4√12+3√8)÷(2√2);(4)(m +2-5m -2)÷m -32m -4.18.设3<a<4,且|a-3|-|a-4|=0,求-4a 2+8a-3的值.19.(2018广东深圳)先化简,再求值:(x x -1-1)÷x 2+2x+1x 2-1,其中x=2.20.(2017威海)先化简x 2-2x+1x -1÷(x -1x+1-x +1),然后从-√√合适的整数作为x 的值代入求值.21.(2018湖南娄底)先化简,再求值:(1x+1+1x 2-1)÷x x 2+2x+1,其中x=√2.22.已知x 为整数,且2x+3+23-x +2x+18x 2-9为整数,求所有符合条件的x 值的和.阶段检测卷 答案精解精析阶段检测一一、选择题1.D2.B a 3·(a 3)2=a 3·a 6=a 3+6=a 9.3.B 原式=1+1=2.4.B ∵5前边有7个0,∴0.000 000 5=5×10-7.5.B ∵x 2,x 2+y,x π的分母中均不含有字母,∴它们都不是分式.∵x x+1的分母中含有字母,∴它是分式.故选B.6.B7.A ∵(a m b n )2=a 2m ·b 2n =a 8·b 6,∴2m=8,2n=6,∴m=4,n=3,∴m 2-2n=10.8.A ∵二次根式√a -2有意义,∴a -2≥0,即a≥2.9.B ∵|x -4|≥0,√≥0,|x -4|+√-4|=0,x=4,√=0,y=8.根据三角形的三边关系可知:4,4,8不能成为三角形的三边长;4,8,8可以成为三角形的三边长,且周长为20.10.C ∵B=1x+2+12-x =1x+2-1x -2=x -2-(x+2)x 2-4=-4x 2-4,∴A 与B 互为相反数.11.C 实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为x 1+25%万平方米,依题意得60x 1+25%-60x =30,即60×(1+25%)x -60x =30.二、填空题12.答案 (4+x)(4-x)13.答案 1解析 由题意,得{x +2=0,y -3=0,解得{x =-2,y =3,∴(x+y)2 018=(-2+3)2 018=1. 14.答案 -√3解析 ①√3=√3;②(√3-3)0=1;③√=√4×√3=2√3;④2-1=12;⑤原式=√3+1-2√3-12-12=-√3. 15.答案 -3解析 分式的值为零,分子为零,分母不为零.16.答案 2 018解析 观察题图可知:第n 行第1列的数是n 2, ∴第45行第1列的数是2 025,∴第45行第8列的数是2 025-7=2 018.三、解答题17.解析 (1)原式=4√2-2+3-1=4√2.(2)原式=5a 2-ab+1-4a 2+4ab-1=a 2+3ab. (3)原式=(√6-2√2+6√2)÷(2√2)=(√6+4√2)÷(2√2) =√32+2.(4)原式=(m+2)(m -2)-5m -2·2m -4m -3 =m 2-9m -2·2(m -2)m -3 =(m -3)(m+3)m -2·2(m -2)m -3=2m+6.18.解析 ∵3<a<4,|a -3|-|a-4|=0,∴a -3+(a-4)=0,解得a=72. 把a=72代入-4a 2+8a-3得: -4×(72)2+8×72-3 =-4×494+28-3=-49+28-3=-24. 19.解析 (x x -1-1)÷x 2+2x+1x -1 =x -x+1x -1·(x+1)(x -1)(x+1)2 =1x+1.当x=2时,原式=13.20.解析x 2-2x+1x -1÷(x -1x+1-x +1) =(x -1)2(x+1)(x -1)÷x -1-(x -1)(x+1)x+1 =x -1x+1·x+1x -1-x 2+1 =x -1-x (x -1)=-1x .∵-√√x+1≠0,x -1≠0,x≠0,x 是整数, ∴x=-2时,原式=-1-2=12. 21.解析 原式=x -1+1(x+1)(x -1)·(x+1)2x =x (x+1)(x -1)·(x+1)2x =x+1x -1.当x=√2时,原式=√2+1√2-1=3+2√2. 22.解析 2x+3+23-x+2x+18x 2-9=2x+6x 2-9=2x -3. ∵x 为整数且2x -3也是整数,∴x -3=±2或±1,则x=5或1或4或2.故所有符合条件的x值的和为12.。
2019年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)在实数| 3.14|-,3-,π中,最小的数是( )A .B .3-C .| 3.14|-D .π选B .2.(4分)下列运算正确的是( ) A .633a a a ÷=B .428a a a =C .236(2)6a a =D .224a a a +=【解析】A 、633a a a ÷=,故此选项正确;B 、426a a a =,故此选项错误;C 、236(2)8a a =,故此选项错误;D 、2222a a a +=,故此选项错误;选A .3.(4分)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A .94.210⨯米B .84.210⨯米C .74210⨯米D .74.210⨯米【解析】42万公里420000000m =用科学记数法表示为:84.210⨯米, 选B .4.(4分)下列图形:是轴对称图形且有两条对称轴的是( ) A .①②B .②③C .②④D .③④【解析】①是轴对称图形且有两条对称轴,故本选项正确; ②是轴对称图形且有两条对称轴,故本选项正确; ③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误. 选A .5.(4分)如图,直线121//1,130∠=︒,则23(∠+∠= )A .150︒B .180︒C .210︒D .240︒【解析】过点E 作1//1EF , 121//1,1//1EF , 12//1//1EF ∴,130AEF ∴∠=∠=︒,3180FEC ∠+∠=︒,23330180210AEF FEC ∴∠+∠=∠+∠+∠=︒+︒=︒,选C .6.(4分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.2【解析】由图可得,数据8出现3次,次数最多,所以众数为8,故A 选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是1(88)82+=,故B 选项正确;平均数为1(6728392102)8.210+⨯+⨯+⨯+⨯=,故C 选项正确; 方差为22222222221[(68.2)(78.2)(78.2)(88.2)(88.2)(88.2)(98.2)(98.2)(108.2)(108.2)] 1.5610-+-+-+-+-+-+-+-+-+-=,故D 选项错误;选D .7.(4分)不等式组542(1),2532132x x x x +-⎧⎪+-⎨->⎪⎩…的解集是( )A .2x …B .2x -…C .22x -<…D .22x -<…【解析】()54212532132x x x x ⎧+-⎪⎨+-->⎪⎩①②…,由①得,2x -…, 由②得,2x <,所以不等式组的解集是22x -<…. 选D .8.(4分)如图,一艘船由A 港沿北偏东65︒方向航行至B 港,然后再沿北偏西40︒方向航行至C 港,C 港在A 港北偏东20︒方向,则A ,C 两港之间的距离为( )km .A.30+B.30+C.10+D.【解析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,AB = 过B 作BE AC ⊥于E , 90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,AB =30AE BE AB km ∴===, 在Rt CBE ∆中,60ACB ∠=︒,CE ∴==,30AC AE CE ∴=+=+A ∴,C 两港之间的距离为(30km +,选B .9.(4分)如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32︒B .31︒C .29︒D .61︒【解析】如图所示:连接OC 、CD , PC 是O 的切线, PC OC ∴⊥, 90OCP ∴∠=︒, 119A ∠=︒,18061ODC A ∴∠=︒-∠=︒, OC OD =,61OCD ODC ∴∠=∠=︒, 18026158DOC ∴∠=︒-⨯︒=︒, 9032P DOC ∴∠=︒-∠=︒;选A .10.(4分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.45【解析】画树状图如图所示:共有25种等可能的结果,两次摸出的小球的标号之和大于5的有15种结果,∴两次摸出的小球的标号之和大于5的概率为153 255=;选C.11.(4分)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为()A.12πB.πC.2πD.3π【解析】连接OA、OB,作OC AB⊥于C,由题意得,12OC OA=,30OAC∴∠=︒,OA OB=,30OBA OAC∴∠=∠=︒,120AOB∴∠=︒,∴AB的长12032180ππ⨯==,选C.12.(4分)如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .2B .4CD .【解析】如图:当点F 与点C 重合时,点P 在1P 处,11CP DP =, 当点F 与点E 重合时,点P 在2P 处,22EP DP =, 12//PP CE ∴且1212PP CE =当点F 在EC 上除点C 、E 的位置处时,有DP FP = 由中位线定理可知:1//PP CE 且112PP CF = ∴点P 的运动轨迹是线段12P P , ∴当12BP PP ⊥时,PB 取得最小值矩形ABCD 中,4AB =,2AD =,E 为AB 的中点, CBE ∴∆、ADE ∆、1BCP ∆为等腰直角三角形,12CP = 145ADE CDE CPB ∴∠=∠=∠=︒,90DEC ∠=︒ 2190DP P ∴∠=︒ 1245DPP ∴∠=︒2190P PB ∴∠=︒,即112BP PP ⊥, BP ∴的最小值为1BP 的长在等腰直角1BCP 中,12CP BC ==1BP ∴=PB ∴的最小值是选D .二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.(4分)已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是 114k <-. 【解析】∴△22(21)4(3)41120k k k =--+=-+->, 解得114k <-; 答案:114k <-. 14.(4分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 911(10)(8)13x y y x x y =⎧⎨+-+=⎩.【解析】设每枚黄金重x 两,每枚白银重y 两,由题意得: 911(10)(8)13x yy x x y =⎧⎨+-+=⎩, 答案:911(10)(8)13x y y x x y =⎧⎨+-+=⎩.15.(4分)如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若3OA =,则阴影都分的面积为34π .【解析】连接OC ,作CH OB ⊥于H , 90AOB ∠=︒,30B ∠=︒, 60OAB ∴∠=︒,26AB OA ==,由勾股定理得,OB = OA OC =,60OAB ∠=︒, AOC ∴∆为等边三角形, 60AOC ∴∠=︒, 30COB ∴∠=︒,CO CB ∴=,1322CH OC ==,∴阴影都分的面积226031133033333602223604πππ⨯⨯=-⨯⨯+⨯-=,答案:34π.16.(4分)若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 12x =,24x = .【解析】二次函数25y x bx =+-的对称轴为直线2x =,∴22b-=, 得4b =-,则25213x bx x +-=-可化为:245213x x x --=-, 解得,12x =,24x =. 故意答案为:12x =,24x =.17.(4分)在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,⋯⋯,点1A ,2A ,3A ,4A ,⋯⋯在直线l 上,点1C ,2C ,3C ,4C ,⋯⋯在x 轴正半轴上,则前n 1)n - .【解析】由题意可得,点1A 的坐标为(0,1),点2A 的坐标为(1,2),点3A 的坐标为(3,4),点4A 的坐标为(7,8),⋯⋯, 11OA ∴=,122C A =,234C A =,348C A =,⋯⋯,∴前n 111223341)2482)n n n OA C A C A C A C A --++++⋯+=++++⋯+,设112482n S -=++++⋯+,则1224822n n S -=+++⋯++, 则221n S S -=-, 21n S ∴=-,11248221n n -∴++++⋯+=-,∴前n (21)n -,1)n -,18.(4分)如图,矩形ABCD 中,AB =12BC =,E 为AD 中点,F 为AB 上一点,将AEF ∆沿EF折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是【解析】如图,连接EC , 四边形ABCD 为矩形,90A D ∴∠=∠=︒,12BC AD ==,DC AB ==E 为AD 中点,162AE DE AD ∴=== 由翻折知,AEF GEF ∆≅∆,6AE GE ∴==,AEF GEF ∠=∠,90EGF EAF D ∠=∠=︒=∠, GE DE ∴=, EC ∴平分DCG ∠, DCE GCE ∴∠=∠,90GEC GCE ∠=︒-∠,90DEC DCE ∠=︒-∠, GEC DEC ∴∠=∠,1180902FEC FEG GEC ∴∠=∠+∠=⨯︒=︒,90FEC D ∴∠=∠=︒,又DCE GCE ∠=∠, FEC EDC ∴∆∆∽,∴FE ECDE DC=,22EC DE =∴6FE =FE ∴=答案:三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:2541(9)(1)11a a a a a --+÷--++,其中a = 【解析】原式228925141()()1111a a a a a a a a ----=+÷-++++22816411a a a a a a -+-=÷++2(4)11(4)a a a a a -+=+- 4a a-=,当a原式1=-20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)求出a ,b 的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【解析】(1)抽取学生人数1025%40÷=(人),第2组人数4050%812⨯-=(人),第4组人数4050%1037⨯--=(人),12a ∴=,7b =;(2)33602740︒⨯=︒, ∴ “第5组”所在扇形圆心角的度数为27︒;(3)成绩高于80分:180050%900⨯=(人),∴成绩高于80分的共有900人.21.(11分)已知一次函数y kx b =+的图象与反比例函数m y x =的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S ∆=. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP ∆是等腰三角形,求点P 的坐标.【解析】(1)如图1,过点A 作AD x ⊥轴于D ,(5,0)B ,5OB ∴=,152OAB S ∆=, ∴115522AD ⨯⨯=, 3AD ∴=,OB AB =,5AB ∴=,在Rt ADB ∆中,4BD ==,9OD OB BD ∴=+=,(9,3)A ∴,将点A 坐标代入反比例函数m y x =中得,9327m =⨯=, ∴反比例函数的解析式为27y x=, 将点(9,3)A ,(5,0)B 代入直线y kx b =+中,9350k b k b +=⎧⎨+=⎩, ∴3434k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB 的解析式为3344y x =-; (2)由(1)知,5AB =,ABP ∆是等腰三角形,∴①当AB PB =时,5PB ∴=,(0,0)P ∴或(10,0),②当AB AP =时,如图2,由(1)知,4BD =,易知,点P 与点B 关于AD 对称,4DP BD ∴==,54413OP ∴=++=,(13,0)P ∴,③当PB AP =时,设(,0)P a ,(9,3)A ,(5,0)B ,22(9)9AP a ∴=-+,22(5)BP a =-,22(9)9(5)a a ∴-+=-658a ∴=, 65(8P ∴,0), 即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或65(8,0).22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【解析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:1500150011001.2x x+=,解得: 2.5x=,经检验, 2.5x=是原方程的解,且符合题意,1.23x∴=.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600)m-个,依题意,得:3 2.5(2600)7000m m+-…,解得:1000m….答:A种粽子最多能购进1000个.23.(13分)在矩形ABCD中,AE BD⊥于点E,点P是边AD上一点.(1)若BP平分ABD∠,交AE于点G,PF BD⊥于点F,如图①,证明四边形AGFP是菱形;(2)若PE EC⊥,如图②,求证:AE AB DE AP=;(3)在(2)的条件下,若1AB=,2BC=,求AP的长.【解答】(1)证明:如图①中,四边形ABCD 是矩形,90BAD ∴∠=︒,AE BD ⊥,90AED ∴∠=︒,90BAE EAD ∴∠+∠=︒,90EAD ADE ∠+∠=︒,BAE ADE ∴∠=∠,AGP BAG ABG ∠=∠+∠,APD ADE PBD ∠=∠+∠,ABG PBD ∠=∠, AGP APG ∴∠=∠,AP AG ∴=,PA AB ⊥,PF BD ⊥,BP 平分ABD ∠,PA PF ∴=,PF AG ∴=,AE BD ⊥,PF BD ⊥,//PF AG ∴,∴四边形AGFP 是平行四边形,PA PF =,∴四边形AGFP 是菱形.(2)证明:如图②中,AE BD ⊥,PE EC ⊥,90AED PEC ∴∠=∠=︒,AEP DEC ∴∠=∠,90EAD ADE ∠+∠=︒,90ADE CDE ∠+∠=︒,EAP EDC ∴∠=∠,AEP DEC ∴∆∆∽, ∴AE AP DE DC=, AB CD =,AE AB DE AP ∴=;(3)解:四边形ABCD 是矩形,2BC AD ∴==,90BAD ∠=︒,BD ∴=,AE BD ⊥,1122ABD S BD AE AB AD∆∴==,AE ∴, DE ∴AE AB DE AP =;112AP ∴==. 24.(13分)若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使A B O A B M ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.【解析】(1)二次函数的图象经过点(3,0)A 、(0,2)B -、(2,2)C -∴930002422a b c c a b c ++=⎧⎪++=-⎨⎪++=-⎩ 解得:23432a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴二次函数表达式为224233y x x =-- (2)如图1,设直线BP 交x 轴于点C ,过点P 作PD x ⊥轴于点D设(P t ,2242)(3)33t t t --> OD t ∴=,224233PD t t =-- 设直线BP 解析式为2y kx =-把点P 代入得:2242233kt t t -=-- 2433k t ∴=- ∴直线24:()233BP y t x =-- 当0y =时,24()2033t x --=,解得:32x t =- 3(2C t ∴-,0) 3t >21t ∴-> ∴332t <-,即点C 一定在点A 左侧 33(3)322t AC t t -∴=-=-- 111()4222PBA ABC ACP S S S AC OB AC PD AC OB PD ∆∆∆=+=+=+=∴213(3)24(22)42233t t t t -+--=- 解得:14t =,21t =-(舍去)∴2243216102233333t t --=--= ∴点P 的坐标为10(4,)3 (3)在抛物线上(AB 下方)存在点M ,使ABO ABM ∠=∠.如图2,作点O 关于直线AB 的对称点E ,连接OE 交AB 于点G ,连接BE 交抛物线于点M ,过点E 作EF y ⊥轴于点FAB ∴垂直平分OEBE OB ∴=,OG GE =ABO ABM ∴∠=∠(3,0)A 、(0,2)B -,90AOB ∠=︒3OA ∴=,2OB =,ABsin OB OAB AB ∴∠==,cos OA OAB AB ∠==1122AOB S OA OB AB OG ∆== 613OA OB OG AB ∴==2OE OG ∴==90OAB AOG AOG BOG ∠+∠=∠+∠=︒OAB BOG ∴∠=∠Rt OEF ∴∆中,sin EF BOG OE ∠==cos OF BOG OE ∠==2413EF ∴==,3613OF == 24(13E ∴,36)13- 设直线BE 解析式为2y ex =- 把点E 代入得:243621313e -=-,解得:512e =- ∴直线5:212BE y x =-- 当2524221233x x x --=--,解得:10x =(舍去),2118x =∴点M横坐标为118,即点M到y轴的距离为118.25.(14分)如图,四边形ABCD是正方形,EFC∆是等腰直角三角形,点E在AB上,且90CEF∠=︒,FG AD⊥,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【解析】(1)AG FG=,理由如下:如图,过点F作FM AB⊥交BA的延长线于点M四边形ABCD是正方形∠=︒=∠B BAD∴=,90AB BC⊥,90FM ABMAD⊥∠=︒,FG AD∴四边形AGFM是矩形=,AG MF∴=,AM FG∠=︒,CEF90∠+∠=︒BEC BCEFEM BEC∴∠+∠=︒,9090∠=∠=︒,EF EC=∴∠=∠,且90M BFEM BCEEFM CEB AAS∴∆≅∆()∴=,ME BCBE MF=∴==ME AB BC∴==BE MA MF∴=,AG FG(2)DH HG⊥理由如下:如图,延长GH交CD于点N,FG AD⊥⊥,CD AD∴//FG CD∴FG FH GHCN CH NH==,且CH FH=,GH HN∴=,NC FG=AG FG NC∴==又AD CD=,GD DN∴=,且GH HN= DH GH∴⊥。
2019年山东省泰安市中考数学试卷一、选择题1.在实数| 3.14|-,3-,3-,π中,最小的数是( ) A .3-B .3-C .| 3.14|-D .π2.下列运算正确的是( ) A .633a a a ÷=B .428a a a =gC .236(2)6a a =D .224a a a +=3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A .94.210⨯米 B .84.210⨯米C .74210⨯米D .74.210⨯米4.下列图形:是轴对称图形且有两条对称轴的是( ) A .①②B .②③C .②④D .③④5.如图,直线121//1,130∠=︒,则23(∠+∠= )A .150︒B .180︒C .210︒D .240︒6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.27.不等式组542(1),2532132x x x x +-⎧⎪+-⎨->⎪⎩…的解集是( )A .2x „B .2x -…C .22x -<„D .22x -<„8.如图,一艘船由A 港沿北偏东65︒方向航行302km 至B 港,然后再沿北偏西40︒方向航行至C 港,C 港在A 港北偏东20︒方向,则A ,C 两港之间的距离为( )km .A .30303+B .30103+C .10303+D .3039.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32︒B .31︒C .29︒D .61︒10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A .15B .25 C .35D .4511.如图,将O e 沿弦AB 折叠,¶AB 恰好经过圆心O ,若O e 的半径为3,则劣¶AB 的长为( )A .12πB .πC .2πD .3π12.如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .2B .4C .2D .22二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分) 13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是 .14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 . 15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若3OA =,则阴影部分的面积为 .16.若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 .17.在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,⋯⋯,点1A ,2A ,3A ,4A ,⋯⋯在直线l 上,点1C ,2C ,3C ,4C ,⋯⋯在x 轴正半轴上,则前n 个正方形对角线长的和是 .18.如图,矩形ABCD 中,36AB =,12BC =,E 为AD 中点,F 为AB 上一点,将AEF ∆沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:2541(9)(1)11a a a a a --+÷--++,其中2a = 20.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别 分数人数 第1组 90100x <„ 8 第2组 8090x <„ a第3组7080x <„10第4组 6070x <„ b第5组5060x <„3请根据以上信息,解答下列问题: (1)求出a ,b 的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21.已知一次函数y kx b =+的图象与反比例函数my x=的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S ∆=. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP ∆是等腰三角形,求点P 的坐标.22.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A 、B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍. (1)求A 、B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A 、B 两种粽子共2600个,已知A 、B 两种粽子的进价不变.求A 种粽子最多能购进多少个?23.在矩形ABCD 中,AE BD ⊥于点E ,点P 是边AD 上一点.(1)若BP 平分ABD ∠,交AE 于点G ,PF BD ⊥于点F ,如图①,证明四边形AGFP 是菱形;(2)若PE EC ⊥,如图②,求证:AE AB DE AP =g g ; (3)在(2)的条件下,若1AB =,2BC =,求AP 的长.24.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.25.如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G .(1)试判断AG 与FG 是否相等?并给出证明;(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不垂直,说明理由.参考答案一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数| 3.14|-,3-,π中,最小的数是( )A .B .3-C .| 3.14|-D .π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反而小. 【解答】解:||3|3=<-=Q(3)>-C 、D 项为正数,A 、B 项为负数,正数大于负数, 故选:B .【点评】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负数的绝对值为正数“. 2.下列运算正确的是( ) A .633a a a ÷=B .428a a a =gC .236(2)6a a =D .224a a a +=【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A 、633a a a ÷=,故此选项正确; B 、426a a a =g ,故此选项错误; C 、236(2)8a a =,故此选项错误;D 、2222a a a +=,故此选项错误;故选:A .【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A .94.210⨯米B .84.210⨯米C .74210⨯米D .74.210⨯米【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <„,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:42万公里420000000m =用科学记数法表示为:84.210⨯米, 故选:B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <„,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列图形:是轴对称图形且有两条对称轴的是( ) A .①②B .②③C .②④D .③④【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解. 【解答】解:①是轴对称图形且有两条对称轴,故本选项正确; ②是轴对称图形且有两条对称轴,故本选项正确; ③是轴对称图形且有4条对称轴,故本选项错误; ④不是轴对称图形,故本选项错误. 故选:A .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,直线121//1,130∠=︒,则23(∠+∠= )A .150︒B .180︒C .210︒D .240︒【分析】过点E 作1//1EF ,利用平行线的性质解答即可.【解答】解:过点E 作1//1EF ,121//1Q ,1//1EF , 12//1//1EF ∴,130AEF ∴∠=∠=︒,3180FEC ∠+∠=︒,23330180210AEF FEC ∴∠+∠=∠+∠+∠=︒+︒=︒,故选:C .【点评】此题考查平行线的性质,关键是根据平行线的性质解答. 6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.2【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项. 【解答】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A 选项正确; 10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是1(88)82+=,故B 选项正确;平均数为1(6728392102)8.210+⨯+⨯+⨯+⨯=,故C选项正确;方差为22222222221[(68.2)(78.2)(78.2)(88.2)(88.2)(88.2)(98.2)(98.2)(108.2)(108.2)] 1.56 10-+-+-+-+-+-+-+-+-+-=,故D选项错误;故选:D.【点评】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.不等式组542(1),2532132x xx x+-⎧⎪+-⎨->⎪⎩…的解集是()A.2x„B.2x-…C.22x-<„D.22x-<„【分析】先求出两个不等式的解集,再求其公共解.【解答】解:()54212532132x xx x⎧+-⎪⎨+-->⎪⎩①②…,由①得,2x-…,由②得,2x<,所以不等式组的解集是22x-<„.故选:D.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.如图,一艘船由A港沿北偏东65︒方向航行302km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为()km.A.303+B.30103+C.10303+D.303【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,302AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【解答】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,302AB =, 过B 作BE AC ⊥于E , 90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒Q ,302AB =, 2302AE BE AB km ∴===, 在Rt CBE ∆中,60ACB ∠=︒Q , 31033CE BE km ∴==, 30103AC AE CE ∴=+=+,A ∴,C 两港之间的距离为(30103)km +,故选:B .【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.9.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32︒B .31︒C .29︒D .61︒【分析】连接OC、CD,由切线的性质得出90OCP∠=︒,由圆内接四边形的性质得出18061ODC A∠=︒-∠=︒,由等腰三角形的性质得出61OCD ODC∠=∠=︒,求出58DOC∠=︒,由直角三角形的性质即可得出结果.【解答】解:如图所示:连接OC、CD,PCQ是Oe的切线,PC OC∴⊥,90OCP∴∠=︒,119A∠=︒Q,18061ODC A∴∠=︒-∠=︒,OC OD=Q,61OCD ODC∴∠=∠=︒,18026158DOC∴∠=︒-⨯︒=︒,9032P DOC∴∠=︒-∠=︒;故选:A.【点评】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.45【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图如图所示:Q共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴两次摸出的小球的标号之和大于5的概率为123 205=;故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.11.如图,将Oe沿弦AB折叠,¶AB恰好经过圆心O,若Oe的半径为3,则劣¶AB的长为()A.12πB.πC.2πD.3π【分析】连接OA、OB,作OC AB⊥于C,根据翻转变换的性质得到12OC OA=,根据等腰三角形的性质、三角形内角和定理求出AOB∠,根据弧长公式计算即可.【解答】解:连接OA、OB,作OC AB⊥于C,由题意得,12OC OA=,30OAC∴∠=︒,OA OB=Q,30OBA OAC∴∠=∠=︒,120AOB∴∠=︒,∴劣¶AB的长12032180ππ⨯==,故选:C.【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.如图,矩形ABCD中,4AB=,2AD=,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A .2B .4C .2D .22【分析】根据中位线定理可得出点点P 的运动轨迹是线段12PP ,再根据垂线段最短可得当12BP PP ⊥时,PB 取得最小值;由矩形的性质以及已知的数据即可知112BP PP ⊥,故BP 的最小值为1BP 的长,由勾股定理求解即可. 【解答】解:如图:当点F 与点C 重合时,点P 在1P 处,11CP DP =, 当点F 与点E 重合时,点P 在2P 处,22EP DP =, 12//PP CE ∴且1212PP CE = 当点F 在EC 上除点C 、E 的位置处时,有DP FP = 由中位线定理可知:1//PP CE 且112PP CF = ∴点P 的运动轨迹是线段12PP , ∴当12BP PP ⊥时,PB 取得最小值Q 矩形ABCD 中,4AB =,2AD =,E 为AB 的中点, CBE ∴∆、ADE ∆、1BCP ∆为等腰直角三角形,12CP =145ADE CDE CPB ∴∠=∠=∠=︒,90DEC ∠=︒ 2190DP P ∴∠=︒ 1245DPP ∴∠=︒2190P PB ∴∠=︒,即112BP PP ⊥,BP ∴的最小值为1BP 的长在等腰直角1BCP 中,12CP BC ==1BP ∴=PB ∴的最小值是故选:D .【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分) 13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是 4k < . 【分析】根据方程有两个不相等的实数根可得△22(21)4(3)0k k =--+>,求出k 的取值范围;【解答】解:Q 原方程有两个不相等的实数根, ∴△22(21)4(3)41120k k k =--+=-+->,解得114k <-; 故答案为:114k <-. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:①当△0>时,方程有两个不相等的两个实数根;②当△0=时,方程有两个相等的两个实数根;③当△0<时,方程无实数根.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为911(10)(8)13x yy x x y =⎧⎨+-+=⎩. 【分析】根据题意可得等量关系:①9枚黄金的重量11=枚白银的重量;②(10枚白银的重量1+枚黄金的重量)(1-枚白银的重量8+枚黄金的重量)13=两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: 911(10)(8)13x yy x x y =⎧⎨+-+=⎩, 故答案为:911(10)(8)13x y y x x y =⎧⎨+-+=⎩.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若3OA =,则阴影部分的面积为34π .【分析】连接OC ,作CH OB ⊥于H ,根据直角三角形的性质求出AB ,根据勾股定理求出BD ,证明AOC ∆为等边三角形,得到60AOC ∠=︒,30COB ∠=︒,根据扇形面积公式、三角形面积公式计算即可.【解答】解:连接OC ,作CH OB ⊥于H , 90AOB ∠=︒Q ,30B ∠=︒, 60OAB ∴∠=︒,26AB OA ==,由勾股定理得,2233OB AB OA =-= OA OC =Q ,60OAB ∠=︒, AOC ∴∆为等边三角形, 60AOC ∴∠=︒, 30COB ∴∠=︒,CO CB ∴=,1322CH OC ==,∴阴影部分的面积2260313133033333336022223604πππ⨯⨯=-⨯⨯⨯+⨯⨯-=, 故答案为:34π.【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.16.若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 12x =,24x = .【分析】根据对称轴方程求得b ,再解一元二次方程得解. 【解答】解:Q 二次函数25y x bx =+-的对称轴为直线2x =, ∴22b-=, 得4b =-,则25213x bx x +-=-可化为:245213x x x --=-, 解得,12x =,24x =. 故答案为:12x =,24x =.【点评】本题主要考查的是抛物线与x 轴的交点,一元二次方程等知识,利用抛物线的对称性求得b 的值是解题的关键.17.在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,⋯⋯,点1A ,2A ,3A ,4A ,⋯⋯在直线l 上,点1C ,2C ,3C ,4C ,⋯⋯在x 轴正半轴上,则前n 个正方形对角线长的和是 2(21)n - .【分析】根据题意和函数图象可以求得点1A ,2A ,3A ,4A 的坐标,从而可以得到前n 个正方形对角线长的和,本题得以解决. 【解答】解:由题意可得,点1A 的坐标为(0,1),点2A 的坐标为(1,2),点3A 的坐标为(3,4),点4A 的坐标为(7,8),⋯⋯, 11OA ∴=,122C A =,234C A =,348C A =,⋯⋯, ∴前n 个正方形对角线长的和是:1112233412()2(12482)n n n OA C A C A C A C A --++++⋯+=++++⋯+,设112482n S -=++++⋯+,则1224822n n S -=+++⋯++, 则221n S S -=-, 21n S ∴=-,11248221n n -∴++++⋯+=-,∴前n 2(21)n -,2(21)n -,【点评】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,矩形ABCD 中,36AB =,12BC =,E 为AD 中点,F 为AB 上一点,将AEF ∆沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 215 .【分析】连接EC ,利用矩形的性质,求出EG ,DE 的长度,证明EC 平分DCF ∠,再证90FEC ∠=︒,最后证FEC EDC ∆∆∽,利用相似的性质即可求出EF 的长度.【解答】解:如图,连接EC , Q 四边形ABCD 为矩形,90A D ∴∠=∠=︒,12BC AD ==,36DC AB ==,E Q 为AD 中点, 162AE DE AD ∴=== 由翻折知,AEF GEF ∆≅∆,6AE GE ∴==,AEF GEF ∠=∠,90EGF EAF D ∠=∠=︒=∠, GE DE ∴=, EC ∴平分DCG ∠, DCE GCE ∴∠=∠,90GEC GCE ∠=︒-∠Q ,90DEC DCE ∠=︒-∠, GEC DEC ∴∠=∠,1180902FEC FEG GEC ∴∠=∠+∠=⨯︒=︒, 90FEC D ∴∠=∠=︒,又DCE GCE ∠=∠Q , FEC EDC ∴∆∆∽, ∴FE ECDE DC=, 22226(36)310EC DE DC =+=+=Q ,∴310636FE = 215FE ∴=故答案为:215.【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE ,构造相似三角形,最终利用相似的性质求出结果.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:2541(9)(1)11a a a a a --+÷--++,其中2a = 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【解答】解:原式228925141()()1111a a a a a a a a ----=+÷-++++ 22816411a a a a a a -+-=÷++ 2(4)11(4)a a a a a -+=+-g 4a a-=, 当2a =时, 原式241222-=-【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次根式的运算能力.20.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别分数 人数 第1组90100x <„ 8 第2组8090x <„ a 第3组 7080x <„ 10第4组6070x <„ b 第5组5060x <„ 3请根据以上信息,解答下列问题:(1)求出a ,b 的值; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【分析】(1)抽取学生人数1025%40÷=(人),第2组人数4030%12⨯=(人),第4组人数4050%1037⨯--=(人),所以12a =,7b =;(2)33602740︒⨯=︒,所以“第5组”所在扇形圆心角的度数为27︒; (3)成绩高于80分:180050%900⨯=(人),所以成绩高于80分的共有900人.【解答】解:(1)抽取学生人数1025%40÷=(人),第2组人数4030%12⨯=(人),第4组人数4050%1037⨯--=(人),12a ∴=,7b =;(2)33602740︒⨯=︒, ∴ “第5组”所在扇形圆心角的度数为27︒;(3)成绩高于80分:180050%900⨯=(人),∴成绩高于80分的共有900人.【点评】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键.21.已知一次函数y kx b =+的图象与反比例函数m y x=的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S ∆=. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP ∆是等腰三角形,求点P 的坐标.【分析】(1)先求出OB ,进而求出AD ,得出点A 坐标,最后用待定系数法即可得出结论;(2)分三种情况,①当AB PB =时,得出5PB =,即可得出结论;②当AB AP =时,利用点P 与点B 关于AD 对称,得出4DP BD ==,即可得出结论; ③当PB AP =时,先表示出22(9)9AP a =-+,22(5)BP a =-,进而建立方程求解即可得出结论.【解答】解:(1)如图1,过点A 作AD x ⊥轴于D ,(5,0)B Q ,5OB ∴=,152OAB S ∆=Q , ∴115522AD ⨯⨯=, 3AD ∴=,OB AB =Q ,5AB ∴=,在Rt ADB ∆中,224BD AB AD =-=,9OD OB BD ∴=+=,(9,3)A ∴,将点A 坐标代入反比例函数m y x =中得,9327m =⨯=, ∴反比例函数的解析式为27y x=, 将点(9,3)A ,(5,0)B 代入直线y kx b =+中,9350k b k b +=⎧⎨+=⎩,∴34154 kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为31544y x=-;(2)由(1)知,5AB=,ABP∆Q是等腰三角形,∴①当AB PB=时,5PB∴=,(0,0)P∴或(10,0),②当AB AP=时,如图2,由(1)知,4BD=,易知,点P与点B关于AD对称,4DP BD∴==,54413OP∴=++=,(13,0)P∴,③当PB AP=时,设(,0)P a,(9,3)AQ,(5,0)B,22(9)9AP a∴=-+,22(5)BP a=-,22(9)9(5)a a∴-+=-658a∴=,65(8P∴,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或65(8,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.22.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600)m-个,根据总价=单价⨯数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:1500150011001.2x x+=,解得: 2.5x=,经检验, 2.5x=是原方程的解,且符合题意,1.23x∴=.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600)m-个,依题意,得:3 2.5(2600)7000m m+-„,解得:1000m„.答:A种粽子最多能购进1000个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.在矩形ABCD 中,AE BD ⊥于点E ,点P 是边AD 上一点.(1)若BP 平分ABD ∠,交AE 于点G ,PF BD ⊥于点F ,如图①,证明四边形AGFP 是菱形;(2)若PE EC ⊥,如图②,求证:AE AB DE AP =g g ;(3)在(2)的条件下,若1AB =,2BC =,求AP 的长.【分析】(1)想办法证明AG PF =,//AG PF ,推出四边形AGFP 是平行四边形,再证明PA PF =即可解决问题.(2)证明AEP DEC ∆∆∽,可得AE AP DE DC=,由此即可解决问题. (3)利用(2)中结论.求出DE ,AE 即可.【解答】(1)证明:如图①中,Q 四边形ABCD 是矩形,90BAD ∴∠=︒,AE BD ⊥Q ,90AED ∴∠=︒,90BAE EAD ∴∠+∠=︒,90EAD ADE ∠+∠=︒,BAE ADE ∴∠=∠,AGP BAG ABG ∠=∠+∠Q ,APB ADE PBD ∠=∠+∠,ABG PBD ∠=∠,AGP APG ∴∠=∠,AP AG ∴=,PA AB ⊥Q ,PF BD ⊥,BP 平分ABD ∠,PA PF ∴=,PF AG ∴=,AE BD ⊥Q ,PF BD ⊥,//PF AG ∴,∴四边形AGFP 是平行四边形,PA PF =Q ,∴四边形AGFP 是菱形.(2)证明:如图②中,AE BD ⊥Q ,PE EC ⊥,90AED PEC ∴∠=∠=︒,AEP DEC ∴∠=∠,90EAD ADE ∠+∠=︒Q ,90ADE CDE ∠+∠=︒,EAP EDC ∴∠=∠,AEP DEC ∴∆∆∽, ∴AE AP DE DC=, AB CD =Q ,AE AB DE AP ∴=g g ;(3)解:Q 四边形ABCD 是矩形,2BC AD ∴==,90BAD ∠=︒,225BD AB AD ∴=+=,AE BD ⊥Q ,1122ABD SBD AE AB AD ∆∴==g g g g , 255AE ∴=, 22455DE AD AE ∴=-=, AE AB DE AP =Q g g ;251152455AP ⨯∴==. 【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.【分析】(1)用A 、B 、C 三点坐标代入,用待定系数法求二次函数表达式.(2)设点P 横坐标为t ,用t 代入二次函数表达式得其纵坐标.把t 当常数求直线BP 解析式,进而求直线BP 与x 轴交点C 坐标(用t 表示),即能用t 表示AC 的长.把PBA ∆以x 轴为界分成ABC ∆与ACP ∆,即得到1()42PBA S AC OB PD ∆=+=,用含t 的式子代入即得到关于t 的方程,解之即求得点P 坐标.(3)作点O 关于直线AB 的对称点E ,根据轴对称性质即有AB 垂直平分OE ,连接BE 交抛物线于点M ,即有BE OB =,根据等腰三角形三线合一得ABO ABM ∠=∠,即在抛物线上(AB 下方)存在点M 使ABO ABM ∠=∠.设AB 与OE 交于点G ,则G 为OE 中点且OG AB ⊥,利用OAB ∆面积即求得OG 进而得OE 的长.易求得OAB BOG ∠=∠,求OAB ∠的正弦和余弦值,应用到Rt OEF ∆即求得OF 、EF 的长,即得到点E 坐标.求直线BE 解析式,把BE 解析式与抛物线解析式联立,求得x 的解一个为点B 横坐标,另一个即为点M 横坐标,即求出点M 到y 轴的距离.【解答】解:(1)Q 二次函数的图象经过点(3,0)A 、(0,2)B -、(2,2)C -∴930002422a b c c a b c ++=⎧⎪++=-⎨⎪++=-⎩ 解得:23432a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴二次函数表达式为224233y x x =--(2)如图1,记直线BP 交x 轴于点N ,过点P 作PD x ⊥轴于点D设(P t ,2242)(3)33t t t --> OD t ∴=,224233PD t t =-- 设直线BP 解析式为2y kx =-把点P 代入得:2242233kt t t -=-- 2433k t ∴=- ∴直线24:()233BP y t x =-- 当0y =时,24()2033t x --=,解得:32x t =- 3(2N t ∴-,0) 3t >Q21t ∴-> ∴332t <-,即点N 一定在点A 左侧 33(3)322t AN t t -∴=-=-- 111()4222PBA ABN ANP S S S AN OB AN PD AN OB PD ∆∆∆=+=+=+=Q g g∴213(3)24(22)42233t t t t -+--=-g g 解得:14t =,21t =-(舍去) ∴2243216102233333t t --=--= ∴点P 的坐标为10(4,)3(3)在抛物线上(AB 下方)存在点M ,使ABO ABM ∠=∠. 如图2,作点O 关于直线AB 的对称点E ,连接OE 交AB 于点G ,连接BE 交抛物线于点M ,过点E 作EF y ⊥轴于点FAB ∴垂直平分OEBE OB ∴=,OG GE =ABO ABM ∴∠=∠(3,0)A Q 、(0,2)B -,90AOB ∠=︒3OA ∴=,2OB =,AB ==sin OB OAB AB ∴∠==,cos OA OAB AB ∠==1122AOB S OA OB AB OG ∆==Q g gOA OB OG AB ∴==g2OE OG ∴==90OAB AOG AOG BOG ∠+∠=∠+∠=︒Q OAB BOG ∴∠=∠Rt OEF ∴∆中,sin EF BOG OE ∠==cos OF BOG OE ∠==2413EF ∴=,3613OF == 24(13E ∴,36)13- 设直线BE 解析式为2y ex =-把点E 代入得:243621313e -=-,解得:512e =- ∴直线5:212BE y x =--当2524221233x x x --=--,解得:10x =(舍去),2118x = ∴点M 横坐标为118,即点M 到y 轴的距离为118.【点评】本题考查了待定系数法求二次函数、一次函数解析式,一元二次方程的解法,轴对称的性质,等腰三角形性质,三角函数的应用.第(3)题点的存在性问题,可先通过画图确定满足ABO ABM ∠=∠的点M 位置,通过相似三角形对应边成比例或三角函数为等量关系求线段的长.25.如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G .(1)试判断AG 与FG 是否相等?并给出证明;(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不垂直,说明理由.【分析】(1)过点F 作FM AB ⊥交BA 的延长线于点M ,可证四边形AGFM 是矩形,可得AG MF =,AM FG =,由“AAS ”可证EFM CEB ∆≅∆,可得BE MF =,ME BC AB ==,可得BE MA MF AG FG====;(2)延长GH交CD于点N,由平行线分线段成比例可得FG FH GHCN CH NH==,且CH FH=,可得GH HN=,NC FG=,即可求DG DN=,由等腰三角形的性质可得DH HG⊥.【解答】解:(1)AG FG=,理由如下:如图,过点F作FM AB⊥交BA的延长线于点MQ四边形ABCD是正方形AB BC∴=,90B BAD∠=︒=∠FM AB⊥Q,90MAD∠=︒,FG AD⊥∴四边形AGFM是矩形AG MF∴=,AM FG=,90CEF∠=︒Q,90FEM BEC∴∠+∠=︒,90BEC BCE∠+∠=︒FEM BCE∴∠=∠,且90M B∠=∠=︒,EF EC=()EFM CEB AAS∴∆≅∆BE MF∴=,ME BC=ME AB BC∴==BE MA MF∴==AG FG∴=,(2)DH HG⊥理由如下:如图,延长GH交CD于点N,FG AD⊥Q,CD AD⊥//FG CD∴∴FG FH GHCN CH NH==,且CH FH=,GH HN∴=,NC FG=AG FG NC∴==又AD CD=Q,GD DN∴=,且GH HN=DH GH∴⊥【点评】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明EFM CEB∆≅∆是本题的关键.。
山东省泰安市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A .8B .10C .21D .222.将1、2、3、6按如图方式排列,若规定(m 、n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A .6B .6C .2D .33.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =4.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③BC=2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个5.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .146.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m7.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .8.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .9.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC 为13m ,河面宽AB 为24m,则桥高CD 为( )A .15mB .17mC .18mD .20m10.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x ,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些11.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 12.下列实数中,有理数是( )A .2B .2.1&C .πD .53二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)y x x=> 与此正方形的边有交点,则a 的取值范围是________.14.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.15.如图,直线y=2x+4与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为 .16.把抛物线y=2x 2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____. 17.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____18.化简:34()2b a b --=r r r ________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O 是△ABC 的外接圆,点O 在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD 、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .求证:PD 是⊙O 的切线;求证:△ABD ∽△DCP ;当AB=5cm ,AC=12cm 时,求线段PC 的长.20.(6分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.21.(6分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣81m+)2269m mm m-++.22.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为»BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=63,求阴影区域的面积.(结果保留根号和π)23.(8分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.24.(10分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.25.(10分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.26.(12分)计算:230120.12520041 2-⎛⎫-⨯++- ⎪⎝⎭27.(12分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.2.B【解析】【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1,则(1,5)与(13,1)表示的两数之积是1.故选B .3.B【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x +=-. 故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 4.D【解析】等腰直角三角形纸片ABC 中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴CD=2222DE CE-=,∴BD=BC﹣DC=4﹣22>1,∴BD>CE,故②正确;∵BC=4,2CD=4,∴BC=2CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=42,∵△DCE的周长=1+3+22=4+22,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣22)=4+22,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.A【解析】【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.6.A【解析】【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C .考点:简单组合体的三视图.8.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B .考点:简单组合体的三视图.9.C【解析】连结OA ,如图所示:∵CD ⊥AB ,∴AD=BD=12AB=12m.在Rt △OAD 中,OA=13,5=,所以CD=OC+OD=13+5=18m.故选C.10.B【解析】试题解析:方差越小,波动越小.22,A B s s >Q数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x-2)=2x+1.故选:A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.12.B【解析】【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【详解】A 、二次根2不能正好开方,即为无理数,故本选项错误,B 、无限循环小数为有理数,符合;C 、π为无理数,故本选项错误;D 、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】【分析】根据题意得出C 点的坐标(a-1,a-1),然后分别把A 、C 的坐标代入求得a 的值,即可求得a 的取值范围.【详解】解:反比例函数经过点A 和点C .当反比例函数经过点A 时,即2a =3,解得:;当反比例函数经过点C 时,即2(1)a -=3,解得:,故答案为:. 【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=k x (k 为常数,k≠0)的图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .14.3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴影部分的面积为πx 2×80360oo =29×πx 2=2π,。
山东省泰安市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-10-4的结果是( )A .-7B .7C .-14D .132.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.63.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°4.计算33x x x -+的结果是( ) A .6x x+ B .6x x -C .12D .15.如图,△ABC 中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A .4,30°B .2,60°C .1,30°D .3,60°6.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >47.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 8.下列计算正确的是( ) A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a9.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数 45678人数36542每天加工零件数的中位数和众数为( ) A .6,5 B .6,6C .5,5D .5,610.一、单选题 在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B .C . D .11.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④12.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.14.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,那么AODO等于( )A .253; B .13; C .23; D .12. 15.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.17.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.18.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.20.(6分)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.求点B的坐标;若△ABC的面积为4,求2l的解析式.21.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.22.(8分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.23.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.24.(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?25.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.26.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.27.(12分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:-10-4=-1.故选C.2.B【解析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.3.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.D【解析】【分析】根据同分母分式的加法法则计算可得结论.【详解】33x x x -+=33x x -+=xx=1. 故选D . 【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则. 5.B 【解析】试题分析:∵∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合, ∴∠A′B′C=60°,AB=A′B′=A′C=4, ∴△A′B′C 是等边三角形, ∴B′C=4,∠B′A′C=60°, ∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60° 故选B .考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定 6.C 【解析】 【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可. 【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0), ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4, 故选C . 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 7.B 【解析】 【分析】根据分式的运算法则即可求出答案. 【详解】解:原式=()23-31a a -=()23-11a a -()=31a - 故选;B 【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 8.D 【解析】 【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案. 【详解】解:A .x 4•x 4=x 4+4=x 8≠x 16,故该选项错误; B .(a 3)2=a 3×2=a 6≠a 5,故该选项错误; C .(ab 2)3=a 3b 6≠ab 6,故该选项错误; D .a+2a=(1+2)a=3a ,故该选项正确; 故选D .考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项. 9.A 【解析】 【分析】根据众数、中位数的定义分别进行解答即可. 【详解】由表知数据5出现了6次,次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6, 故选A . 【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 10.B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.11.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.12.A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 5【解析】【详解】解:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82 205=.【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.14.D【解析】【分析】利用△DAO与△DEA相似,对应边成比例即可求解.【详解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA ∴△DAO∽△DEA∴AO DO AE DA=即AO AF DO DA=∵AE=12AD∴12 AO DO=15.4.02×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题1717【解析】【分析】过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=32,DF=2,BF=6,再结合△BGD∽△BEF即可. 【详解】过点E作EF⊥BC交BC于点F.∵AB=AC,AD为BC的中线∴AD⊥BC ∴EF为△ADC的中位线.又∵cos∠C=45,AB=AC=5,∴AD=3,BD=CD=4,EF=32,DF=2∴BF=6∴在Rt△BEF中22BF EF317又∵△BGD∽△BEF∴BG BD=BE BF,即171717.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.18.50°【解析】【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m=30, n=20,图详见解析;(2)90°;(3)727. 【解析】分析:(1)、根据B 的人数和百分比得出总人数,从而根据总人数分别求出m 和n 的值;(2)、根据C 的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D 组人数m=100×30%=30,E 组人数n=100×20%=20, 补全条形图如下:(2)扇形统计图中“C 组”所对应的圆心角的度数是360°×=90°,(3)记通过为A 、淘汰为B 、待定为C , 画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况, ∴E 组学生王云参加鄂州市“汉字听写”比赛的概率为727. 点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解. 20.(1)(0,3);(2)112y x =-. 【解析】 【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标; (2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中, ∵222OA OB AB +=,∴2222OB +=, ∴OB=3,∴点B 的坐标是(0,3) . (2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4, ∴C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入得:20{1k b b +==-,∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质. 21.(1)10;(2) 【解析】 【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP ∽△PDA ;根据△OCP 与△PDA 的面积比为1:4,得出CP=12AD=4,设OP=x ,则CO=8﹣x ,由勾股定理得 x 2=(8﹣x )2+42,求出x ,最后根据AB=2OP 即可求出边AB 的长;(2)作MQ ∥AN ,交PB 于点Q ,求出MP=MQ ,BN=QM ,得出MP=MQ ,根据ME ⊥PQ ,得出EQ=12PQ ,根据∠QMF=∠BNF ,证出△MFQ ≌△NFB ,得出QF=12QB ,再求出EF=12PB ,由(1)中的结论求出=,最后代入EF=12PB 即可得出线段EF 的长度不变 【详解】(1)如图1,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形22.(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)22【解析】【分析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.23.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.24.(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×2460=4(人).考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.25.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.26.(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.27.(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】【分析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,∴a=-1,∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由()()22133y xy x m⎧=--+⎪⎨=--+⎪⎩解得x=12+m∴点C的横坐标为12+m∵MN=m-1,四边形MDEN是正方形,∴C(12+m,m-1)把C点代入y=-(x-1)2+3,得m-1=-2(1)4m-+3,解得m=3或-5(舍去)∴平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(12+m,1-m)把C点代入y=-(x-1)2+3,得1-m=-2(1)4m-+3,解得m=7或-1(舍去)∴平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.。
泰安市2019年初中学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.在实数| 3.14|-,3-,π中,最小的数是( )A. B. 3- C. | 3.14|- D. π 【答案】B根据实数的比较大小的规则比较即可. 【详解】解:-3.14=3.14;因此根据题意可得-3是最小的故选B.【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.下列运算正确的是( )A. 633a a a ÷=B. 428a a a ⋅=C. ()32626a a =D. 224a a a += 【答案】A根据整式的运算法则逐个计算即可.【详解】A 正确,63633a a a a -÷==B 错误,44262a a a a +==⋅C 错误,()32628a a =D 错误,2222a a a +=故选A.【点睛】本题主要考查整式的计算法则,关键在于幂指数的计算法则,是常考点.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里,远地点约42万公里的地月转移轨道.将数据42万公里用科学记数法表示为( )A. 94.210⨯米B. 84.210⨯米C. 74210⨯米D. 74.210⨯米【答案】B根据科学记数法的表示方法表示即可.详解】解:42万公里=84.210⨯米故选B. 【点睛】本题主要考查科学记数法的表示方法,关键在于指数的计算. 4.下列图形:其中是轴对称图形且有两条对称轴的是( ) A. ①② B. ②③C. ②④D. ③④ 【答案】A根据题意首先将各图形的对称轴画出,在数对称轴的条数即可. 【详解】1有两条对称轴;2有两条对称轴;3有四条对称轴;4不是对称图形故选A. 【点睛】本题主要考查图形的对称轴,关键在于对称轴的概念的掌握.5.如图,直线12l l ,130∠=︒,则23∠+∠=( )A. 150°B. 180°C. 210°D. 240°【答案】C【根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A. 众数8B. 中位数是8C. 平均数是8.2D. 方差是1.2 【答案】D首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯ 方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.7.不等式组542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩的解集是( ) A. 2x ≤B. 2x ≥-C. 22x -<≤D. 22x -≤<【答案】D根据不等式的性质解不等式组即可.【详解】解: 542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩化简可得:22x x ≥-⎧⎨<⎩ 因此可得22x -≤<故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.8.如图,一艘船由A 港沿北偏东65°方向航行至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A. 30+B. 30+C. 10+D. 【答案】B 根据题意作BD 垂直于AC 于点D ,根据计算可得45DAB ︒∠=,60BCD ︒∠=;根据直角三角形的性质求解即可.【详解】解:根据题意作BD 垂直于AC 于点D.可得AB= ,652045DAB ︒︒︒∠=-=204060DCB ︒︒︒∠=+=所以可得cos 45302AD AB ︒===sin 45302BD AB ︒===tan 60BD CD ︒===因此可得30AC AD CD =+=+故选B.【点睛】本题主要考查解直角三角形的应用,根据特殊角的三角函数值计算即可.9.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A. 32°B. 31°C. 29°D. 61°【答案】A 根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.10.一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A. 15 B. 25 C. 35 D. 45【答案】C根据树状图首先计算出总数,再计算出小球标号之和大于5的数,利用概率的计算公式可得摸出的小球标号之和大于5的概率.【详解】解:根据题意可得树状图为:一共有25种结果,其中15种结果是大于5的因此可得摸出的小球标号之和大于5的概率为153255= 故选C.【点睛】本题主要考查概率计算的树状图,关键在于画树状图,根据树状图计算即可.11.如图,将O 沿弦AB 折叠,AB 恰好经过圆心O ,若O 的半径为3,则AB 的长为( )A. 12πB. πC. 2πD. 3π【答案】C 根据题意作OC AB ⊥,垂足为C ,根据题意可得OC=32,因此可得30OAB ︒∠=,所以可得圆心角120AOB ︒∠=,进而计算的AB 的长.【详解】根据题意作OC AB ⊥,垂足为CO 沿弦AB 折叠,AB 恰好经过圆心O ,若O 的半径为332OC ∴=,30OAB ︒∠= ∴圆心角120AOB ︒∠=∴AB =120232360ππ⨯⨯= 故选C.【点睛】本题主要考查圆弧的计算,关键在于确定圆心角.12.如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A. 2B. 4C.D.【答案】D 根据题意要使PB 最小,就要使DF 最长,所以可得当C 点和F 点重合时,才能使PB 最小,因此可计算的PB 的长.【详解】解:根据题意要使PB 最小,就必须使得DF 最长,因此可得当C 点和F 点重合时,才能使PB 最小.当C 和F 重合时,P 点是CD 的中点2CP ∴=BP ∴===故选D.【点睛】本题主要考查矩形中的动点问题,关键在于问题的转化,要使PB 最小,就必须使得DF 最长.二、填空题(本大题共6小题,每小题4分,满分24分)13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是_____. 【答案】114k <- 根据根与系数的关系可得要使22(21)30x k x k --++=有两个不相等的实数根,则必须>0∆,进而可以计算出k 的取值范围.【详解】解:根据根与系数的关系可得要使22(21)30x k x k --++=有两个不相等的实数根,则>0∆. 22(21)4(3)k k ∆=--+114k ∴<- 故答案为114k <-. 【点睛】本题主要考查二元一次方程的根与系数的关系,根据方程根的个数,列不等式求解.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x 两,每枚白银重y 两,根据题意可列方程组为____.【答案】911(10)(8)13x y y x x y =⎧⎨+-+=⎩根据题意甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同.故可得911x y = ,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10)(8)13y x x y +-+=,因此可得二元一次方程组.【详解】根据题意可得甲袋中的黄金9枚和乙袋中的白银11枚质量相等,可得911x y =,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两.故可得(10)(8)13y x x y +-+=.因此911(10)(8)13x y y x x y =⎧⎨+-+=⎩所以答案为911(10)(8)13x y y x x y =⎧⎨+-+=⎩【点睛】本题主要考查二元一次方程组的应用,关键在于理解题意,这是中考的必考题,必须熟练掌握.15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.【答案】34π根据题意连接OC ,可得阴影部分的面积等于两个阴影部分面积之和,再根据弧AC 所对的阴影部分面积等于弧AC 所对圆心角的面积减去OAC ∆的面积,而不规则图形BCD 的面积等于OBC ∆的面积减去弧DC 所对圆心角的面积.进而可得阴影部分的面积.【详解】解:根据题意连接OC,90903060OA OC OAB B ︒︒︒︒=∠=-∠=-=ACO ∴∆为等边三角形60AOC ︒∴∠=∴阴影部分面积1=26013333cos3036022ππ︒⨯⨯-⨯⨯=∴阴影部分面积2=2133033223604ππ⨯-⨯⨯= ∴阴影部分面积=阴影部分面积1+阴影部分面积2=34π 故答案为34π。
阶段检测三一、选择题1.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.根据如图所示的程序计算函数值,若输入的x值为,则输出的y值为( )A.B.C. D.3.将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是y=-2x2+4x+1,则将该抛物线沿y轴翻折后所得抛物线的函数关系式是( )A.y=-2(x-1)2+6B.y=-2(x-1)2-6C.y=-2(x+1)2+6D.y=2(x+1)2-64.(2017河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O.固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为( )A.(,1)B.(2,1)C.(1,)D.(2,)5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙的速度的一半.其中,正确结论的个数是( )A.4B.3C.2D.16.如图,正方形OABC,正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是( ) A.(C.(-1,+1)D.(3-,3+)7.已知一次函数y=kx+b的图象与直线y=-5x+1平行,且过点(2,1),那么此一次函数的关系式为( )A.y=-5x-2B.y=-5x-6C.y=-5x+10D.y=-5x+118.已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )9.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.-1610.一元二次方程(x+1)(x-2)=10的根的情况是( )A.无实数根B.有两个正根C.有两个根,且都大于-1D.有两个根,其中一个根大于211.如图,正方形ABCD的边长为2 cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2.其中,正确的结论有( )A.1个B.2个C.3个D.4个二、填空题13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是.14.如图,一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,则S的取值范围是.15.如图,线段AB的长为2,C为AB上一个动点,分别以AC,BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.16.如图,已知A,B两点的坐标分别为(2,0),(0,2),☉C的圆心坐标为(-1,0),半径为1.若D是☉C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.三、解答题17.随着“一带一路”的进一步推进,我国瓷器更被“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:①每个茶壶的批发价比茶杯多110元;②一套茶具包括一个茶壶与四个茶杯;③600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.18.抛物线L:y=ax2+bx+c与已知抛物线y=x2的形状相同,开口方向也相同,且顶点坐标为(-2,-4).(1)求L的解析式;(2)若L与x轴的交点为A,B(A在B的左侧),与y轴的交点为C,求△ABC的面积.19.如图,已知一次函数y=x-3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求反比例函数的表达式;(2)将线段AB沿x轴向右平移5个单位到DC,设DC与双曲线交于点E,求点E到x轴的距离.20.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作,那么锻造的操作时间有多长?21.如图,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且D点的横坐标是它的纵坐标的2倍.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O 与点F重合,折痕分别与x轴,y轴正半轴交于点H,G,求线段OG的长.22.如图,已知抛物线y=-x2-x+2与x轴交于A,B两点,与y轴交于点C.(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是抛物线对称轴上的点,求以A,B,E,F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得∠MBO=∠ACO?若存在,请求出点M的坐标;若不存在,请说明理由.阶段检测三一、选择题1.B ∵x2≥0,∴x2+1≥1,∴点P(-2,x2+1)在第二象限.故选B.2.B ∵2≤≤4,∴将x=代入y=,得y=.故选B.3.A y=-2x2+4x+1=-2(x-1)2+3.∵将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是y=-2x2+4x+1,∴此函数关系式为y=-2(x+1)2+6,该抛物线的顶点坐标为(-1,6),∴将该抛物线沿y轴翻折后所得抛物线的顶点坐标为(1,6),故其函数关系式为y=-2(x-1)2+6.故选A.4.D 由题意可知AD'=AD=CD=C'D'=2,AO=BO=1,在Rt△AOD'中,由勾股定理得OD'=.由C'D'∥AB可得点C'的坐标为(2,),故选D.5.B 由题图可得:A,B两地相距120千米,行驶1小时时甲、乙两人相遇,故①正确;乙行驶1.5小时到达A地,甲行驶3小时到达B地,故③错误;乙的速度为120÷1.5=80(千米/时),甲的速度为120÷3=40(千米/时),∴甲的速度是乙的速度的一半,故④正确;出发1.5小时时,乙比甲多行驶了1.5×(80-40)=60(千米),故②正确.故选B.6.A ∵正方形OABC,点B在反比例函数y=(x>0)的图象上,设点B的坐标为(a,a),∴a×a=4,a=2(负值舍去).设点E的横坐标为b,则纵坐标为b-2,代入反比例函数y=中,即b-2=.解之,得b=+1(负值舍去),即E点坐标为(+1,-1).故选A.7.D ∵一次函数y=kx+b的图象与直线y=-5x+1平行,∴k=-5.∵一次函数的图象过点(2,1),∴1=-5×2+b,解得b=11,∴一次函数的关系式为y=-5x+11.故选D.8.C 由题图可知,m<-1,n=1,∴m+n<0,∴一次函数y=mx+n的图象经过第二、四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二、四象限.纵观各选项,只有C选项符合题意.故选C.9.C ∵图中阴影部分的面积等于16,∴正方形OABC的面积为16.∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=-1舍去),∴P点坐标为(4,1).把P(4,1)代入y=,得k=4×1=4.故选C.10.D 将抛物线y=(x+1)(x-2)向下平移10个单位可得出新抛物线y=(x+1)(x-2)-10,如图所示.∵抛物线y=(x+1)(x-2)与x轴交于点(-1,0),(2,0),∴抛物线y=(x+1)(x-2)-10与x轴有两个交点,一个在(-1,0)的左侧,一个在(2,0)的右侧,∴方程(x+1)(x-2)=10有两个不相等的实数根,一个根小于-1,一个根大于2.故选D.11.B 当P点由A点运动到B点,即0≤x≤2时,y=×2x=x,当P点由B点运动到C点,即2<x≤4时,y=×2×2=2,符合题意的函数关系的图象是选项B所示,故选B.12.B ①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2-4ac>0,故②正确;③当x=-2时,y<0,即4a-2b+c<0(1).当x=1时,y<0,即a+b+c<0(2).(1)+(2)×2得:6a+3c<0,即2a+c<0.∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=-1时,y=a-b+c>0,∴(a+b+c)(a-b+c)<0,即[(a+c)+b][(a+c)-b]=(a+c)2-b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选B.二、填空题13.答案k≤4解析当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3时,函数y=(k-3)x2+2x+1是二次函数,且函数的图象与x轴有交点.∴22-4(k-3)≥0,∴k≤4,综上,k的取值范围是k≤4.14.答案≤S≤2解析将B(3,1)代入y=,∴k=3.将A(m,3)代入y=,∴m=1,∴A(1,3).将A(1,3)代入y=-x+b,∴b=4,∴y=-x+4.设P(x,y),由题意可知1≤x≤3,∴PD=y=-x+4,OD=x,∴S=x(-x+4)=-(x-2)2+2,由二次函数的图象可知≤S≤2.15.答案 1解析如图,连接DE.设AC=x,则BC=2-x.∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2-x),∴∠DCE=90°,∴DE2=DC2+CE2=x2+(2-x)2=x2-2x+2=(x-1)2+1.当x=1时,DE2取得最小值,DE也取得最小值,最小值为1. 故答案为1.16.答案2-解析如图所示,当AD与☉C相切时,线段BE最短,此时△ABE的面积最小. ∵A(2,0),C(-1,0),☉C的半径为1,∴AO=2,AC=2+1=3,CD=1.在Rt△ACD中,AD=-=-=2.∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE.在△AOE与△ADC中,,,∴△AOE∽△ADC,∴=,即=,解得EO=.∵点B(0,2),∴OB=2,∴BE=OB-OE=2-,∴△ABE面积的最小值为×BE×AO=×-×2=2-.故答案为2-.三、解答题17.解析(1)设茶杯的批发价为x元/个,则茶壶的批发价为(x+110)元/个,根据题意得:=,解得x=40,经检验,x=40是原分式方程的解,∴x+110=150.答:茶杯的批发价为40元/个,茶壶的批发价为150元/个.(2)设商户购进茶壶m个,则购进茶杯(5m+20)个,根据题意得:m+5m+20≤200,解得m≤30.设利润为w元,则w=m(500-150-4×40)+m×(270-150)+5m+20-×4m×(70-40)=245m+600.∵w随着m的增大而增大,∴当m取最大值时,利润w最大,即当m=30时,w=7 950,∴当购进30个茶壶、170个茶杯时,有最大利润,最大利润为7 950元.18.解析(1)∵抛物线y=ax2+bx+c与已知抛物线y=x2的形状相同,开口方向也相同,∴a=.∵抛物线的顶点坐标为(-2,-4),∴y=(x+2)2-4.(2)∵L与x轴的交点为A,B(A在B的左侧),与y轴的交点为C,∴令y=0得0=(x+2)2-4,解得x1=-6,x2=2.令x=0得y=-3.故A(-6,0),B(2,0),C(0,-3),则△ABC的面积为×AB×CO=×8×3=12.19.解析(1)把点A(4,n)代入一次函数y=x-3,可得n=×4-3=3.把点A(4,3)代入反比例函数y=,可得3=,解得k=12,∴反比例函数的表达式为y=.(2)设E,,B点坐标为(2,0).∵tan∠ECx=tan∠ABC,∴=,-解得m=(负根舍去),∴点E到x轴的距离为.20.解析(1)材料锻造时,设y=(k≠0),由题意得600=,解得k=4 800.当y=800时,=800,解得x=6,∴点B的坐标为(6,800).材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时y与x的函数关系式为y=128x+32(0≤x≤6);锻造操作时y与x的函数关系式为y=(6<x≤150).(2)把y=480代入y=,得x=10,10-6=4(分钟).答:锻造的操作时间为4分钟.21.解析(1)如图,过D作DM⊥x轴,交x轴于点M.∵D点的横坐标是它的纵坐标的2倍,即OM=2DM,∴OA=2AB.∵E(4,n),即OA=4,AE=n,∴AB=2.(2)∵D为OB的中点,B(4,2),∴D(2,1).把D(2,1)代入y=中,得1=,即k=2,∴反比例函数的解析式为y=,把E(4,n)代入反比例函数的解析式得n==.(3)如图,连接GF,FH.易知F(1,2),∴CF=1.由折叠得△OGH≌△FGH,∴OG=FG.∵OC=AB=2,设OG=FG=x,得到CG=2-x.在Rt△CFG中,由勾股定理得FG2=CG2+CF2,即x2=(2-x)2+1,整理得4x=5,解得x=,则OG=.22.解析(1)令y=0得-x2-x+2=0,∴x2+2x-8=0,解得x1=-4,x2=2,∴点A的坐标为(2,0),点B的坐标为(-4,0).令x=0,得y=2,∴点C的坐标为(0,2).(2)①当AB为平行四边形的边时,∵AB=EF=6,抛物线的对称轴为直线x=-1,∴点E的横坐标为-7或5,∴点E的坐标为-,-或,-,此时点F的坐标为-,-, ∴以A,B,E,F为顶点的平行四边形的面积是6×=.②当AB为平行四边形的对角线时,∵A,B两点关于抛物线的对称轴x=-1对称,则抛物线的顶点为E,得点E的坐标为-,,∴点F的坐标为-,-,∴以A,B,E,F为顶点的平行四边形的面积是×6×=.答:以A,B,E,F为顶点的平行四边形的面积为或.(3)如图所示,由(1)可知点A的坐标为(2,0),点C的坐标为(0,2)..当==1时,∠MBO=∠ACO,由于NB=3,可得MN=3,∴点M的坐标为(-1,3)或(-1,-3).。