2012年1月各区县期末考试题填空选择最后一题
- 格式:doc
- 大小:700.52 KB
- 文档页数:6
八年级第一学期期末考试数学试卷 姓名 得分一 、选择题(本题共30分,每小题3分)下列各小题均有4个选项,其中只有一个..选项是正确的,请你把正确答案的字母序号填在下表中相应题号的下面 1.若分式21x -的值为0,则x 的值为( ) A .1B .1-C .1±D .22实数范围内有意义,则x 的取值范围是( )A .1x >B .1x ≥C .1x <D .1x ≤ 3.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .4cmB .5cmC .6cmD .13cm4.如图,AC ∥BD ,AD 与BC 相交于O ,4530A B ∠=∠=,,那么AOB ∠等于( ) A .75° B .60° C .45° D .30°5.下列判断中,你认为正确的是( ) AB .π是有理数C xD 26.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手B .冠军属于外国选手C .冠军属于中国选手甲D .冠军属于中国选手乙7.下列运算中正确的是 ( )A .623x x x = B .1x y x y -+=-+ C .22222a ab b a ba b a b+++=-- D .11x x y y +=+ 8.如图,在Rt △ABC 中,∠C =90︒,AB=4,BC =2, D 为AB 的中点,则△ACD 的面积是( ) AB .C .2D .49.2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁.为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?设原计划每天铺设x 米管道,所列方程正确的是( )A .5505505(110%)x x -=+B .5505505(110%)x x -=+ C .5505505(110%)x x-=- D .5505505(110%)x x-=- 10.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是 第10题A .60°B .70°C .80°D .不确定 二、填空题(本题共15分,每小题3分) 11.如图,在ABC △中,∠C 是直角,AD 平分∠BAC 交BC 于点D .如果AB =8,CD =2那么△ABD 的面积 等于 .12.计算:222233y x y x-÷= . 第11题 13.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .若4BC =, 则BE CF +=_____________. 14.如果11m m-=-,那么2m m += . 15.一般的,形如1x a x+=(a 是已知数)的分式方程有两个解,通常用1x ,2x 表示. 请你观察下列方程及其解的特征: (1)12x x +=的解为121x x ==;(2)152x x +=的解为12122x x ==,; (3)1103x x +=的解为12133x x ==,;…… ……解答下列问题:(1)猜想:方程1265x x +=的解为1x = ,2x = ; (2)猜想:关于x 的方程1x x += 的解为121(0)x a x a a==≠,.三、计算题(本题共15分,每小题5分) 16.. 解:CBAF E B C D A第13题17.22⎤+-⎦.解:18.2222+224a a a a a a +⎛⎫∙ ⎪+-+⎝⎭. 解:四、解答题(本题共10分,每小题5分)19. 已知:如图,在△ABC 中,∠B=∠C .求证:AB =AC .小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下: 小红:“过点A 作AD ⊥BC 于点D ”;小聪:“作BC 的垂直平分线AD ,垂足为D ”.(1) 请你判断小红和小聪的辅助线作法是否正确; (2) 根据正确的辅助线作法,写出证明过程. 解:(1)判断: ; (2)证明:20.如图,在ABC △中,AB=AC ,D 是AB 的中点,点P 是线段CD 上不与端点重合的任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F . 求证:(1)CAE CBF =∠∠; (2)AE BF =. 证明:(1)(2)五、解答题(本题共15分,每小题5分) 21.已知20x y -=, 求22y 1x y x y÷-- 的值.解:22. 解分式方程: 223124x x x --=+-. 解:23.列方程或方程组解应用题:随着人们环保意识的增强,环保产品进入千家万户.今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米? 解:六、解答题(本题共9分,其中24小题4分,25小题小题5分)24. 如图,ABC △中,90ACB ∠=°,将ABC △沿着一条直线折叠后,使点A 与点C 重合(图②).(1)在图①中画出折痕所在的直线l .设直线l 与AB AC ,分别相交于点D E ,,连结CD .(画图工具不限,不要求写画法) (2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明) 解:(2)① A B② B折叠后25. 已知:如图,ABC △中,45ACB ∠=︒,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,BAD FCD ∠=∠. 求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC . 证明:(1)(2)七、解答题(本题6分)26.已知ABC △,以AC 为边在ABC △外作等腰ACD △, 其中AC =AD .(1)如图1,若2DAC ABC ∠=∠,△ACB ≌△DAC , 则ABC ∠= °;(2)如图2,若30ABC ∠=︒,ACD △是等边三角形, AB =3,BC =4. 求BD 的长. 解:(2)答案及评分参考一 、选择题(本题共30分,每小题3分)二、填空题(共5个小题,每小题3分,共15分)11. 8, 12.392x -, 13. 2, 14. 1 ,15.1215,5x x ==(2分);21a a +(1分)三、计算下列各题(本题共20分,每小题5分) 16.解:1=3452⨯⨯⨯==分分.................................................................5分222(13)(62)..........................................288⎤-⎦=+--=++=分分....................................4=分分2222222+224(2)2(2)(2)=.......................3(2)(2)(2)(2)422+4(2)................................................4(2)(2)4............2aa a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫∙ ⎪+-+⎝⎭⎡⎤-+++∙⎢⎥+-+-+⎣⎦-++=∙+-+=-分分....................................................................5分四、解答题(本大题共2个小题,每小题5分,共10分) 19. 解:(1)判断:小红的辅助线作法正确 ;………….1分 (2)证明:∵AD ⊥BC ,∴ ∠ADB=∠ADC =90°.…………………………2分 ∵ ∠B=∠C ,AD =AD . ………………………………………3分 ∴ △ABD ≌△ACD .………………………………4分 ∴ AB =AC . ……………………………………..5分 20.证明(1) ∵ AB=AC ,D 是AB 的中点,∴ CD 平分∠ACB ………………………………………1分 ∴ ACP BCP ∠=∠ ∵ CP CP =,∴ △ACP ≌△BCP ………………………………2分 ∴ CAE CBF ∠=∠…………………………………3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴ △ACE ≌△BCF …………………………………………………………………4分 ∴ BFAE =.………………………………………………………………………5分 五、解答题(本大题共15分,每小题5分)21.解:原式=()())(y x y x y x y-⋅-+………………………………………………………2分=yx y+………………………………………………………………………3分 ∵ 20x y -=, ∴ x =2y∴y x y +=312=+y y y ………………………………………………………………5分 22. 解分式方程:223124x x x --=+-. 解:22(2)(4)3x x ---=..................................................................................................2分45x -=-.………………………………………………………………3分54x =.………………………………………………………………..4分经检验,54x =是原方程的解.……………………………………………………….5分23.解:解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x .………………………………………….2分 解这个方程,得x =30 .…………………………………………………………………..3分 经检验,x =30是所列方程的根.………….……………………………………………….4分 答:小明家2月份用气30立方米. …………………………………………………….5分 六、解答题(本大题共9分,其中24小题4分,25小题小题5分) 24. 解:(1)如图所示: 2分 (2)ADC △,BDC △为等腰三角形. 4分25,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒……………………..1分∴ AD=CD. ………………………………………2分 ∵ BAD FCD ∠=∠,∴ △ABD ≌△CFD ………………………………3分(2) ∴ BD=FD. ………………………………………………………………………4分 ∵ ∠FDB=90°,A B∴ 45FBD BFD ∠=∠=︒. ∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒.∴ BE ⊥AC .……………………………………………………………………………5分 七、解答题(本题6分)26. 解:(1)45;…….………………………………………………………………………..2分 (2)如图2,以A 为顶点AB 为边在ABC △外作BAE ∠=60°, 并在AE 上取AE =AB ,连结BE 和CE .∵ ACD △是等边三角形, ∴AD =AC ,DAC ∠=60°. ∵ BAE ∠=60°,∴ DAC ∠+BAC ∠=BAE ∠+BAC ∠.即EAC ∠=BAD ∠. ∴EAC △≌BAD △. …….…………………………….3分∴ EC =BD.∵ BAE ∠=60°,AE =AB=3, ∴ AEB △是等边三角形,∴ =60EBA ∠︒,EB =3.………………………………………………………………….4分∵ 30ABC ∠=︒, ∴ 90EBC ∠=︒.∵ 90EBC ∠=︒,EB =3,BC =4,∴ EC =5…………………………………………………………………………………5分 ∴ BD =5. ……………………………………………………………………………….6分AEBCD2图。
2012年1月北京市海淀区高三第一学期期末语文试题答案2012年1月北京市海淀区高三第一学期期末语文试题答案2012.1第一部分(共27分)一、本大题共5小题,每小题3分,共15分。
1.B2. C3. B4. D5. D二、本大题共4小题,每小题3分,共12分。
6.A7.D8.D9.C第二部分(共123分)三、本大题共4小题,共30分。
10.(10分)第一问:(2分)“以天下为务”具体所指,国君(政府、官员)恤民、知怨、修政(照抄原文不得分,答对1-2个得1分,答对3个得2分;信息转换正确即可)。
第二问:(8分)观点明确2分;联系实际或阅读积累2分(恰当1分,具体1分);分析有理有据2分;语言2分(顺畅1分,表达清晰1分)。
11.(5分)“/”处为必断句处,“//”处为可断可不断处。
必断处每答对2处得1分。
在可断可不断处断句,不得分。
答错2处扣1分,扣完5分为止。
赵简子曰:“厥也//爱我/铎也//不爱我/厥之谏我也/必于无人之所/铎之谏我也/喜质我于人中/必使我丑/尹铎对曰:“厥也爱君之丑也,而不爱君之过也;铎也爱君之过也,而不爱君之丑也。
臣尝闻相人于师/敦颜而土色者忍丑/不质君于人中/恐君之不变也。
”翻译:赵简子说:“赵厥敬重我,尹铎不敬重我。
赵厥劝谏我的时候,一定在没有人的地方;尹铎劝谏我的时候,喜欢当着别人的面质问我,一定要让我出丑。
”尹铎回答说:“赵厥顾及您出丑,却不顾及您的过错;我顾及您的过错,却不顾及您出丑。
我曾经从老师那里听说过如何观察人,(那些)相貌敦厚、脸色土黄的人能够承受住出丑。
(我如果)不在别人面前质问您,恐怕您不能改正啊。
”12. (8分)答案略。
(每句1分,句中有错该句不得分)13.(7分)(3分)C(4分)诗中所描写的金山月如玉镜般透亮,如白银般明亮,如冰雪般洁净(特点1分,结合诗句1分),万里皓月营造了澄澈、清明、旷远的意境(1分),诗人借此映衬自己高洁的追求、旷达的胸襟(1分)。
天津市五区县2011~2012学年度第一学期期末考试 高三语文试卷参考答案 第Ⅰ卷(选择题 共36分) 一、(15分) 二、(9分) 6.D(后半句不对) 7.C(缺少“很可能”) 8.A(“尽责”“尽职”错误,它是“功利写作”的特征,而不是“趣味写作”的特征) 9.A(瞬:眨眼) 10.C(A用,介词/因为,介词B就,连词,表假设/却,连词,表转折C不译,连词,表顺承D不译,结构助词,用在主谓之间,取消独立性/不译,结构助词,定语后置的标志。
) 1.C(①说的是“治心”的用兵之术,②说的是“审势”的用兵之术,⑥说的是“守备”的用兵之术。
) 四、(21分) 13.(8分) ①所以即使吞并了天下,战士也不厌恶打仗。
这就是黄帝的军队经历了七十次战斗也不懈怠的原因。
(“虽”、“之所以”各1分,大意1分。
) ②明白道理就不会屈服,了解形势就不会丧气,懂得节制就不会困窘。
(“沮”0.5分,“穷”0.5分,大意1分。
) ③要是头戴着盔,身穿铠甲,靠着武器睡觉,那小童也敢弯弓射杀他了。
(“冠胄衣甲”、“兵”各1分,大意1分) 15.(1)安能摧眉折腰事权贵 (2)池鱼思故渊 (3)渺沧海之一粟 (4)犹抱琵琶半遮面 (6)亦使后人而复哀后人也 16.作者游黄山的兴致被浇灭了,抒发作者的遗憾之情。
(2分) 17.由遗憾---无奈---抱怨---释然。
(2分)从作者认为“已不能”参观黄山胜景的遗憾,到“只能”听雨的无奈,到认为黄山“只肯”用于来搪塞自己的抱怨。
到最后觉察出自己不曾受到尘世玷污而坦然、释然。
(解释2分) 18.认同,因为人生难免挫折,像那些文人一样在恶劣环境中顽强不屈,才能绽放其光彩。
不认同,因为顺境中的生命也能绽放光彩,生命不是只在雨中才能开放出超凡拔俗的花朵。
(答认同或不认同1分,理由2分。
) 19.表现手法(2分),效果(1分),作用(1分)。
如用词新颖,“饮”“醉”,整散结合,通感(听觉到味觉)等表现了我为黄山的雨所陶醉,黄山的雨和雄奇的自然给我以涵养,突出黄山景色醉人,表达作者娱乐心情。
13.房山 2011——2012学年度第一学期终结性检测试卷九年级数学一、(本题共32分,每小题4分)选择题(以下各题都给出了代号分别为A 、B 、C 、D 的四个备选答案,其中有且只有一个是正确的,请你把正确答案的代号填入相应的表格中):题号 1 2 3 4 5 6 7 8 答案1.若3:4:=b a ,则下列各式中正确的式子是( ).A .b a 34=B .31-=-b b a C .34=a b D .b a 43=2、两个圆的半径分别是2cm 和7cm ,圆心距是8cm ,则这两个圆的位置关系是A .外离B .外切C .相交D .内切3、已知圆锥的母线长和底面圆的直径均是10㎝,则这个圆锥的侧面积是( ). A.50π㎝2 B. 50π㎝2 C. 50π㎝2 D. 50π㎝2.4、如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD=4,BD=2,则BCDE的值是( )A.32B.21C.43D.535.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ).A .35B . 45C . 34D . 436.将抛物线22y x =向下平移1个单位,得到的抛物线解析式为( ).A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-7. 如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠= , 8PA =,那么弦AB 的长是( )A .4B .8C .43D .838、根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正PB AOED CB A1110987654321半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论: ①x <0 时,错误!未找到引用源。
天津市五区县2011~2012学年度第一学期期末考试试题七年级英语(满分100分)一、听力部分【20分】第一节. 请听录音,根据录音内容选择正确的图片。
(5分)1.A B C2.A B C3.A B C4.A B C5.A B C第二节. 请听录音,根据你所听到的问句选择正确的应答语。
(5分)6. A. Yes, can.B. No, I can’t.C. Yes, he can.7. A. No, there isn’t.B. No, sorry, can’t.C. There isn’t.8. A. Have four.B. There are four.C. At home.9. A. No, we haven’t.B. Yes, got some.C. Not any bananas.10. A. That’s a great idea.B. Yes, I would very much.C. You’re welcome.第三节. 请听录音,根据所听到的对话内容和所提问题,选择正确的答案。
(5分)11. When is Tony’s math lesson?A. At 10 o’clock.B. At 9 o’clock.C. At 8 o’clock..12. What does Tony often love to eat?A. CDs.B. Cakes.C. Music.13. Where is Jackie Chan film?A. In the classroom.B. At home.C. In the cinema.14. What does Lingling download?A. Music.B. Films.C. Games.15. Who does Alice send emails to?A. Her friends in Beijing.B. Her friends in England.C. Her brothers in Shanghai.第四节.请听下面长对话,根据对话内容和所提问题,选择正确的答案。
密云县2011—2012学年度第一学期期末考试试卷初三数学学校 姓名 班级 考号考 生 须 知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题纸上准确填写学校名称、姓名、班级和考号.3.试题答案一律填涂或书写在答题纸的答题区域内,在试卷上答题无效. 4.除画图可以用铅笔外,其他试题用黑色或蓝色钢笔、或签字笔作答.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题目要求的. 1.如果532x =,那么x 的值是 A .152 B .215 C .103 D . 3102.如图,在Rt △ABC 中, ∠C =90︒,AB =5,AC =3,则sin B 的值是A .35 B .45 C .53 D .543.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A .12 B .13 C .19 D .494.已知点(1,)A m 与点B (3,)n 都在反比例函数xy 3=(0)x >的图象上,则m 与n 的关系是A .m n >B .m n <C .m n =D .不能确定 5.将抛物线23y x =向右平移2个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)y x =+ B .23(2)y x =- C .232y x =- D .232y x =+6.如图,在△ABC 中,DE ∥BC ,AD =2DB ,△ABC 的面积为36,则△ADE 的面积为A .81B .54C .24D .167.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数图象关于直线1x=-对称;③当2x=-时,函数y的值大于0;④当31x x=-=或时,函数y的值都等于0.其中正确结论的个数是A.1 B.2 C.3 D.48.如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿线段»OC CD--线段DO 的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是二、填空题(本题共16分,每小题4分)9.已知tan3α=,则锐角α是︒.10.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O,若⊙O的半径为4,则弦AB的长度等于__ .11.如图,⊙O的半径为2,1C是函数212y x=的图象,2C是函数212y x=-的图象,3C是函数y=3x 的图象,则阴影部分的面积是.12.如图,已知Rt△ABC中,AC=6,BC= 8,过直角顶点C作1CA⊥AB,垂足为1A,再过1A作11A C⊥BC,垂足为1C,过1C作12C A⊥AB,垂足为2A,再过2A作22A C⊥BC,垂足为2C,…,这样一直做下去,得到了一组线段1CA,11A C,12C A,…,则1CA= ,1n nn nC AA C+(其中n为正整数)= .三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o.14.已知:如图,∠1=∠2,AB •AC=AD •AE .求证:∠C =∠E .15.用配方法将二次函数223y x x =--化为k h x a y +-=2)(的形式(其中k h , 为常数),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.16.如图,⊙O 是△ABC 的外接圆,45A ∠=o ,BD 为⊙O 的直径, 且2BD =,连结CD .求BC 的长.17.已知:如图,在△ABC 中,DE ∥BC ,EF ∥AB . 试判断AD BFDB FC=成立吗?并说明理由.18.如图,在△ABC 中,∠B =90°,5cos 7A =,D 是AB 上的一点, 连结DC ,若∠BDC =60°,BD =23.试求AC 的长.四、解答题(本题共20分,每小题5分)19.在学校秋季田径运动会4×100米接力比赛时,用抽签的方法安排跑道,初三年级(1)、(2)、(3)三个班恰好分在一组.(1)请利用树状图列举出这三个班排在第一、第二道可能出现的所有结果; (2)求(1)、(2)班恰好依次..排在第一、第二道的概率.20.如图,小磊周末到公园放风筝,风筝飞到C 处时的线长为20米, 此时小磊正好站在A 处,牵引底端B 离地面1.5米.假设测得 60CBD ∠=o,求此时风筝离地面的大约高度(结果精确到1米, 参考数据:2 1.414≈,3 1.732≈).21.已知:如图,⊙O 的直径AB 与弦CD 相交于E,»»BCBD =, BF ⊥AB 与弦AD 的延长线相交于点F . (1)求证:CD ∥BF ;(2)连结BC ,若6AD =,7tan 3C =,求⊙O 的半径 及弦CD 的长.22.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23. 已知二次函数22(21)y x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)设与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且121x x y -=,结合函数的图象回答:当自变量m 的取值满足什么条件时,y ≤2.24. 已知:如图,AB 是⊙O 的直径,点E 是OA 上任意一点,过点E 作弦CD AB ⊥,点F 是»BC上任一点,连结AF 交CE 于H ,连结AC 、CF 、BD 、OD . (1)求证:ACH AFC △∽△;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并证明你的猜想; (3)试探究:当点E 位于何处时,△AEC 的面积与△BOD 的面积之比为1:2?并加以证明.25.在平面直角坐标系xoy 中,以点A (3,0)为圆心,5为半径的圆与x 轴相交于点B 、C (点B在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). (1)求以直线x =3为对称轴,且经过D 、C 两点的抛物线的解析式; (2)若E 为直线x =3上的任一点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平 行四边形?若存在,求出点F 的坐标;若不存在,说明理由.13.密云县2011-2012学年度第一学期期末考试初三数学试卷参考答案及评分标准阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分标准参考给分.二、填空题(本题共4道小题,每小题4分,共16分)9.60; 10. 11.53π; 12.244,55. 三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o .解:tan 452cos30sin 60+-o o o=12+ 3分=1+--------------------------------------------------------------------------- 4分=1+).--------------------------------------------------------------- 5分 14.证明:在△ABE 和△ADC 中,∵ AB •AC=AD •AE∴ AB AD =AEAC----------------------------------------------------------------2分又∵ ∠1=∠2, -------------------------------------------------------------------3分 ∴ △ABE ∽△ADC (两对应边成比例,夹角相等的两三角形相似)--4分 ∴ ∠C =∠E . ---------------------------------------------------------------------- 5分(说明:不填写理由扣1分.) 15.解:223y x x =--2(1)4x =--. ------------------------------------------------------------------- 2分 顶点坐标为(1,4-). --------------------------------------------------------------- 3分 对称轴方程为 1x =. --------------------------------------------------------------- 4分 图象(略).------------------------------------------------------------------------------ 5分16.解:在⊙O 中,∵45A ∠=o, 45D ∠=o.----------------------------------------------1分 ∵BD 为⊙O 的直径, 90BCD ∠=o. ---------------------------------------------2分 ∴ △BCD 是等腰直角三角形.∴sin 45BC BD =⋅o.---------------------------4分∵2BD =, ∴2222BC =⨯=---------------------------------------------5分 17.答:AD BFDB FC=成立.----------------------------------------------------------------------- 2分 理由:在△ABC 中,∵ DE ∥BC ,∴ EC AE DB AD =.--------------------------------------------------------3分∵ EF ∥AB ,∴EC AE FC BF =.--------------------------------------------------------- 4分∴ FCBF DB AD =.------------------------------------------------------------------------- 5分18.解:在△ABC 中,∠B =90°,5cos 7A =,∴57AB AC =. 设 5,7AB x AC x ==.-------------------------------------------------------------- 1分 由勾股定理 得26BC x =.----------------------------------------------------------2分 在Rt △DBC 中,∵∠BDC =60°,42BD =∴tan 6042346BC BD =⋅==o------------------------------------------3分 ∴ 2646x =.解得 2x =.-------------------------------------------------------4分 ∴ 714AC x ==.--------------------------------------------------------------------------5分四、解答题(本题共20分,每小题5分) 19.解:(1)树状图列举所有可能出现的结果:(2) ∵ 所有可能出现的结果有6个, 且每个结果发生的可能性相等,其中(1)、(2)班恰好依次..排在第一、第二道的结果只有1个, ∴ (12P 、班恰好依次排在第一、第二道)=61.------------------------------------------ 5分20.解:依题意得,90CDB BAE ABD AED ∠=∠=∠=∠=︒,∴四边形ABDE 是矩形 ,∴ 1.5.DE AB == --------------------------------- 1分 在Rt BDC △中,sin ,CDCBD BC∠=---------------------------------------------- 2分 又∵ 20BC = ,60CBD ∠=o,∴ 3sin 6020103CD BC =⋅︒== . ----------------------------------------- 3分 ∴103 1.517.3 1.519CE CD DE =+=≈+≈ . ------------------------------ 4分 答:此时风筝离地面的高度大约19米 . -------------------------------------------------- 5分21.(1)证明:∵直径AB 平分»CD, ∴AB ⊥CD . --------------------------------------------1分∵BF ⊥AB ,∴CD ∥BF . --------------------------------------------2分 (2)连结BD .∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,tan BDA AD=. 在⊙O 中,∵ A C ∠=∠. ∴7tan tan BD A C AD ===. 又6AD =,∴ 7767BD AD === --------------------------- 3分 在Rt △ADB 中, 由勾股定理 得8AB =.∴⊙O 的半径为 142AB =. ----------------------------------------------------- 4分 在Rt △ADB 中,∵DE AB ⊥,∴AB DE AD BD ⋅=⋅.∴6273782DE ⨯==. ∵直径AB 平分»CD,∴237.CD DE ==-------------------------------------- 5分22. 解:解法一:如图所示建立平面直角坐标系. --------------------------- 1分此时,抛物线与x 轴的交点为C (100,0)-,D (100,0).设这条抛物线的解析式为(100)(100)y a x x =-+.---------------------- 2分 ∵ 抛物线经过点B (50,150), 可得 150(50100)(50100)a =-+ . 解得 501-=a . ------------------------- 3分∴ )100)(100(501+--=x x y . 即 抛物线的解析式为 2120050y x =-+.--------------------------- 4分顶点坐标是(0,200)∴ 拱门的最大高度为200米. -------------------------------------- 5分解法二:如图所示建立平面直角坐标系. -------------------------------- 1分设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点).,100(),150,50(h D h B -+-可得 22100,15050.h a h a ⎧-=⎪⎨-+=⎪⎩ 解得,.200501⎪⎩⎪⎨⎧=-=h a .----------------------- 4分∴ 拱门的最大高度为200米.-------------------------------------- 5分五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23.解:(1)由题意有22[(21)]4()1m m m ∆=----=>0.∴ 不论m 取何值时,该二次函数图象总与x 轴有两个交点.----------2分(2)令0y =,解关于x 的一元二次方程22(21)0x m x m m --+-=,得 x m =或1x m =-.∵ 1x >2x ,∴1x m =,21x m =-.∴mm m x x y 111112=--=-=. 画出my 1=与2y =的图象.如图, 由图象可得,当m ≥21或m <0时,y ≤2.----------------------------------7分24.(1)证明:∵ 弦CD ⊥直径AB 于点E , ∴ »»AD AC =.∴ ∠ACD =∠AFC . 又 ∵ ∠CAH =∠FAC ,∴ △ACH ∽△AFC (两角对应相等的两个三角形相似).--------------1分 (2)猜想:AH ·AF =AE ·AB .证明:连结FB .∵ AB 为直径,∴ ∠AFB =90°. 又∵ AB ⊥CD 于点E ,∴ ∠AEH =90°.∴AEH AFB ∠=∠. ∵ ∠EAH =∠FAB , ∴ △AHE ∽△ABF . ∴ AFAB AE AH =.∴ AH ·AF =AE ·AB .------------------------------------------------- -----3分 (3)答:当点E 位于OA 的中点(或12AE OA =)时,△AEC 的面积与△BOD 的面积之比为1:2 .证明:设 △AEC 的面积为1S ,△BOD 的面积为2S .∵ 弦CD ⊥直径AB 于点E , ∴ 1S =CE AE ⋅21,2S =DE BO ⋅21.∵E 位于OA 的中点,∴2OA AE =.又AB 是⊙O 的直径,∴ 2OB OA AE ==.∴12121222AE CES CE S DE AE DE ⨯⋅==⨯⋅. 又 由垂径定理知 CE =ED ,∴ 1212S S =.∴ 当点E 位于OA 的中点时,△AEC 的面积与△BOD 的面积之比为1:2 . -------------------------------------------------7分25. 解:(1)如图,∵ 圆以点A (3,0)为圆心,5为半径, ∴ 根据圆的对称性可知 B (-2,0),C (8,0).连结AD .在Rt △AOD 中,∠AOD =90°,OA =3,AD =5, ∴ OD =4.∴ 点D 的坐标为(0,-4).设抛物线的解析式为24y ax bx =+-,又 ∵抛物线经过点C (8,0),且对称轴为3x =,13.201201密云初三数学试卷 Page 11 of 11 11 ∴ 3264840.b a a b ⎧-=⎪⎨⎪+-=⎩, 解得 1,43.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴所求的抛物线的解析式为 423412--=x x y .---------------------------------2分 (2)存在符合条件的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.分两种情况.Ⅰ:当BC 为平行四边形的一边时,必有 EF ∥BC ,且EF =BC =10.∴ 由抛物线的对称性可知,存在平行四边形1BCEF 和平行四边形2CBEF .如(图1).∵E 点在抛物线的对称轴上,∴设点E 为(3,e ),且e >0.则F 1(-7,t ),F 2(13,t ).将点F 1、F 2分别代入抛物线的解析式,解得 754t =. ∴F 点的坐标为)475,7(1-F 或)475,13(2F . Ⅱ:当BC 为平行四边形的对角线时,必有AE =AF ,如(图2).∵ 点F 在抛物线上,∴ 点F 必为抛物线的顶点. 由22131254(3)4244y x x x =--=--, 知抛物线的顶点坐标是(3,254-). ∴此时F 点的坐标为)425,3(3-F . ∴ 在抛物线上存在点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.满足条件的点F 的坐标分别为:)475,7(1-F ,)475,13(2F ,)425,3(3-F . ---------------------------------------------------- 8分。
平谷区 2011—— 2012 学年度第一学期期末统练初三语文2012年1月考25 道小题。
1. 本试卷分为第Ⅰ卷和第Ⅱ卷,共六道大题,生本试卷满分 100 分,考试时间 120 分钟。
2.须考生必须用黑色钢笔或签字笔作答。
3.知题号一二三四五六总分(一)(二)(三)分数第Ⅰ卷(共 60 分)一、选择题。
下列各题均有四个选项,其中只有一个..是符合题意的。
请将所选答案的字母序号填入表格内。
( 共 14 分,每小题 2 分)题号 1 2 3 4 5 6 7答案1.下面加点字读音都正确的是A.霉菌( jǔn)剔除(tì)..B.星宿( xiù)消耗( háo...C.阔绰( chuò)呜咽(yè)..D. 活泼( bō)粟米( sù)..2.下列词语书写都正确的是A. 推辞惘然眼花缭乱B. 疑惑妥帖中流底柱C. 作揖蔚蓝无原无故D. 掂记闲暇好意难却3.下列词语中加点字字义不同的是轩然大波( xu ān).谆谆教诲( zhūn).深恶痛疾( w ù).妄自菲薄( bó).A .相宜因地制宜..B .谋生栩栩如生..C.日益相得益彰..D.简陋言简意赅..4.下列加点成语或俗语使用有误的是..A.当我们遇到挫折的时候,不应该无精打采,应该振作起来勇敢面对困难。
....初三语文期中试卷10-1B. 看了这场表演, 我对他的敬佩之情油然而生!....C. 中考现阶段复习更应劳逸结合正所谓“磨刀不误砍柴工”。
.......D. 在王平同学作文因用词不当丢丑以后,我决心吃一堑,长一智,下苦功夫遣词造.......句,一定不要犯他那样的错。
5.下列句子的标点符号使用有误..的是A. 在长江上游,翟塘峡像一道闸门,峡口险阻;巫峡像一条迂回曲折的画廊,每一曲,每一折,都像一幅绝好的风景画,神奇而秀美;西陵峡水势险恶,处处是急流,处处是险滩。
12.顺义区2011——2012学年度第一学期期末九年级教学质量检测数学试卷一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.21-的绝对值是 A .2- B .2 C .21 D .21- 2.若一个多边形的内角和等于︒540,则这个多边形的边数是 A .4 B .5 C .6 D .73.在△ABC 中,∠C =90°,AB =5,BC =4,则sin B 的值是A .53 B .54 C .43 D .354.若两个相似三角形的相似比为1∶2,则它们面积的比为A .2∶1B .1∶2C .1∶4D .1∶5 5.如图,在⊙O 中,弦AB 的长为10,圆周角45ACB ∠=︒,则这个圆的直径AD 为A .25B .210C .215D .220 6.对于函数xm y 4-=,当0<x 时, y 的值随x 值的增大而减小,则m 的取值范围是A .4>mB .4<mC .4->mD .4-<m7.某中学在建党九十周年时,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是 A .12 B .13C .14D .16D CBA 8.如图,将抛物线221x y -=平移后经过原点O 和点)0,6(A ,平移后的抛物线的顶点为点B ,对称轴与抛物线221x y -=相交于点C ,则图中直线BC 与两条抛物线围成的阴影部分的面积为 A .221 B .12 C .227 D .15二、填空题(共4道小题,每小题4分,共16分) 9.分解因式:=++x x x 4423 . 10.抛物线322+-=x x y 的顶点坐标是 . 11.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,若9=MN ,则=BC .12.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为 .三、解答题(共5道小题,每小题5分,共25分) 13.计算:)21(30tan )2(60sin 21--︒---︒-.14.已知02=-b a ,求代数式2(2)2()()()a a b a b a b a b -++-++的值.15.已知:如图,△ABC 中,D 是AB 的中点,且B ACD ∠=∠,若 AB=10,求AC 的长.16.抛物线c bx x y ++-=2过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x 轴的交点坐标.17.甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.N M E D CBA9.顺义初三 第 3 页 共 11 页四、解答题(共3道小题,每小题5分,共15分) 18.已知:如图,在Rt ABC △中,︒=∠90ACB ,点D 是斜边AB 上的一点,且CD=AC=3,AB=4,求B cos ,ADC ∠sin 及DCA ∠21cos的值.19.如图,AB 为⊙O 的弦,C 、D 分别是OA 、OB 延长线上的点,且CD ∥AB ,CD 交⊙O于点E 、F ,若3=OA ,2=AC .(1)求OD 的长; (2)若55sin =C ,求弦EF 的长.20.已知:反比例函数xm y 2-=(2≠m 且m 为正整数)的图象分布在第二、四象限,与一次函数b x y +-=2(b 为常数)的图象相交于点),1(n P .试确定反比例函数和一次函数的解析式.五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°, ∠A =60°,AC=6,试求BC 、CD 的长.22.已知:如图,AB 是⊙O 的弦,2=OB ,︒=∠30B ,点C 是弦AB 上一动点(不与点A 、B 重合),连结CO 并延长交⊙O 于点D ,连结AD . (1)求弦AB 的长;(2)当︒=∠20D 时,求BOD ∠的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似?FEDCBA OD OCBABADF EACB DP N M B B B A A A C C C (E )六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.如图,AB 是⊙O 的直径,AC 是弦,∠ACD =21∠AOC ,AD ⊥CD 于点D .(1)求证:CD 是⊙O 的切线;(2)若AB=10,AD =2,求AC 的长.24.在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或B C 相交于点E .点M 在线段AP 上,点N 在线段BP 上,且PM=PN ,3tan =∠EMP .(1)如图①,当点E 与点C 重合时,求MP 的长;(2)设x AP =,△ENB 的面积为y ,求y 与x 的函数关系式,并求出当x 取何值时,y 有最大值,最大值是多少?图① 备用图 备用图25.已知:如图,在平面直角坐标系xOy 中,边长为32的等边ABC △随着顶点A 在抛物线x x y 322-=上运动而运动,且始终有BC ∥x 轴.(1)当顶点A 运动至与原点重合时,顶点C 是否在该抛物线上?(2)ABC △在运动过程中有可能被x 轴分成两部分,当上下两部分的面积之比为1∶8(即8:1:=下部分上部分S S )时,求顶点A 的坐标;(3)ABC △在运动过程中,当顶点B 落在坐标轴上时,直接写出顶点C 的坐标.DOCBA9.顺义初三 第 5 页 共 11 页9.顺义区2011——2012学年度第一学期期末九年级教学质量检测数学学科参考答案及评分细则二、填空题(共4道小题,每小题4分,共16分)9.2)2(+x x ; 10.(1,2); 11.12; 12.(1,3)或(5,1). 三、解答题(共5道小题,每小题5分,共25分) 13.解:)21(30tan )2(60sin 21--︒---︒-2133)21(232+---⨯= …………………………………………………4分 2133213+-+= 1332+=……………………………………………………………………5分 14.解:2(2)2()()()a a b a b a b a b -++-++222222222b ab a b a ab a +++-+-= …………………………………3分 224b a -= ……………………………………………………………………4分 ∵02=-b a ,∴ 原式)2)(2(b a b a -+==0.…………………………………………………5分 15.解:∵B ACD ∠=∠,A A ∠=∠,∴△ACD ∽△ABC . ……………………………………………………………2分 ∴ACADAB AC =. …………………………………………………………………3分 ∵D 是AB 的中点,AB=10,∴521==AB AD . ……………………………………………………………4分 ∴ACAC 510=. ∴502=AC . ∴25=AC (舍负). ………………………………………………………5分16.解:∵抛物线c bx x y ++-=2过点(0,-3)和(2,1),∴ ⎩⎨⎧=++--=.124,3c b c …………………………………………………………2分解得 ⎩⎨⎧-==.3,4c b抛物线的解析式为342-+-=x x y .…………………………………………3分 令0=y ,得 0342=-+-x x ,即 0342=+-x x . ∴ 11=x ,32=x .∴抛物线与x 轴的交点坐标为(1,0)、(3,0). ……………………………5分17.解:方法一:画树状图如下:其中一人 甲 乙 丙另一人 乙 丙 甲 丙 甲 乙 ………………3分 结果 (甲乙)(甲丙)(乙甲)(乙丙)(丙甲)(丙乙)所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种,所以P (甲乙)=3162=. …………………………………………………………5分 方法二: 列表法如下: 甲 乙 丙甲 乙甲 丙甲乙 甲乙 丙乙丙 甲丙 乙丙所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种, 所以P (甲乙)=3162=.…………………………………………………………5分 四、解答题(共3道小题,每小题5分,共15分) 18.解:在Rt △ABC 中,∵︒=∠90ACB ,AC=3,AB=4,∴722=-=AC AB BC . ……………………………………………1分∴47sin cos ===AB BC A B .……………………………………………2分 ∵CD=AC ,∴A ADC ∠=∠.9.顺义初三 第 7 页 共 11 页EDBCAGFEDCBA O∴47sin sin ==∠A ADC .……………3分过点C 作AD CE ⊥于E ,∴DCA ACE ∠=∠21,︒=∠+∠90A ACE .∴47sin cos 21cos ==∠=∠A ACE DCA . ……………………………5分 19.解:(1)∵3=OA ,2=AC ,∴5=OC . ………………………………………………………………1分 ∵CD ∥AB ,∴ODOBOC OA =.∵3==OA OB . ∴5=⋅=OAOCOB OD . …………………………………………………2分 (2)过点O 作OG ⊥CD 于G ,连结OE .∴3==OA OE .∵55sin =C , ∴55=OC OG . ∴5=OG .………………………………………………………………3分 在Rt △OEG 中,有 25922=-=-=OG OE EG . ……………4分 ∵EF OG ⊥,EF 是弦,∴42==EG EF . ………………………………………………………5分20.解:由已知,得 02<-m ,∴2<m . ………………………………………………………………………2分 ∵m 为正整数, ∴1=m .∴反比例函数的解析式为xy 1-=. …………………………………………3分 ∵点),1(n P 在反比例函数的图象上,∴1-=n . ………………………………………………………………………4分 把)1,1(-P 代入一次函数b x y +-=2中,得 b +⨯-=-121. ∴1=b .∴一次函数的解析式为12+-=x y . ………………………………………5分五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.解:过点B 作BM ⊥FD 于点M .在Rt △ABC 中,∵∠ACB =90°,∠A =60°,AC=6, ∴ACBCA =tan ,∠ABC =90°-∠A =30°. ∴3660tan 6tan =︒⨯=⋅=A AC BC . …………………………………2分 ∵AB ∥CF ,∴∠BCM =∠ABC =30°. ∴33213630sin =⨯=︒⋅=BC BM , 9233630cos =⨯=︒⋅=BC CM .…3分 在△EFD 中,∠F =90°, ∠E =45°, ∴∠EDF =45°.∴33==BM DM . ………………………………………………………4分 ∴339-=-=DM CM CD . ……………………………………………5分22.解:(1)过点O 作AB OE ⊥于点E ,在Rt △OEB 中,2=OB ,︒=∠30B ,∴323230cos =⨯=︒⋅=OB BE . ………1分 ∴322==BE AB . …………………………2分(2)连结OA ,∵OD OB OA ==, ∴︒=∠=∠30B OAB ,︒=∠=∠20D OAD . ∴︒=︒+︒=∠+∠=∠502030OAD OAB BAD .∴︒=∠=∠1002BAD BOD . …………………………………………4分 (3)∵∠BCO=∠DAB +∠D ,∴∠BCO >∠DAB ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA=∠BCO=90°. 此时,∠BOC=60°,∠BOD=120°,∴∠DAC=60°. ∴△DAC ∽△BOC .∵∠BCO =90°,即OC ⊥AB ,∴AC =21AB =3. ∴当3=AC 时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似 . ………………………………………………………………6分ED OC B A9.顺义初三 第 9 页 共 11 页E D O C B A六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.(1)证明:∵OC OA =,∴OAC OCA ∠=∠.∵︒=∠+∠+∠180OAC OCA AOC , ∴︒=∠+∠1802OCA AOC .∴︒=∠+∠9021OCA AOC . ∵∠ACD =21∠AOC ,∴︒=∠+∠90OCA ACD . 即︒=∠90DCO . 又∵OC 是半径,∴CD 是⊙O 的切线. ……………………………………………………3分(2)解:过点A 作OC AE ⊥,垂足为E . ∵AD ⊥CD ,︒=∠90DCO ,∴AD ∥CO ,AE ∥DC . ∴四边形DCEA 是矩形. ∴2==AD CE . …………………………4分 ∵AB 是直径,且AB=10, ∴5==OC OA . ∴325=-=-=CE OC OE .∴在Rt △AEO 中,4352222=-=-=OE OA AE . …………………5分 ∴在Rt △ACE 中,52422222=+=+=AE CE AC . ……………6分24.解:(1)∵在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,∴5040302222=+=+=AC BC AB . …………………………1分由面积公式可得 AC BC EP AB ⋅=⋅.∴24504030=⨯=⋅=AB AC BC EP . ……………………………………2分 ∵PE ⊥AB ,3tan =∠EMP ,∴8tan =∠=EMPEPMP . ………………………………………………3分 (2)分两种情况考虑:①当点E 在线段AC 上时,如图②,在Rt △AEP 和Rt △ABC 中,∵︒=∠=∠90ACB APE ,A A ∠=∠,∴△APE ∽△ACB .∴AC AP BC EP =,即 4030xEP =, ∴x EP 43=.∵3tan =∠EMP ,图②P N MECAB∴PN x EMP EP MP ==∠=41tan .∴x x x PN AP AB BN 45504150-=--=--=.∴x x x x EP BN y 475321543)4550(21212+-=⋅-=⋅=.………………4分 当点E 与点C 重合时,32244022=-=AP .∴自变量x 的取值范围是:320<<x . …………………………………5分 ②当点E 在线段BC 上时,如图③, 在Rt △BPE 和Rt △BCA 中,∵︒=∠=∠90BCA BPE ,B B ∠=∠, ∴△BPE ∽△BCA .∴BC BP AC EP =,即 305040x EP -=, ∴)50(34x EP -=.∵3tan =∠EMP ,∴PN x EMP EP MP =-=∠=)50(94tan . ∴)50(95)50(9450x x x PN AP AB BN -=---=--=.∴2)50(2710)50(34)50(952121x x x EP BN y -=-⨯-⨯=⋅=. y 与x 的函数关系式为⎪⎪⎩⎪⎪⎨⎧<≤-<<+-=)5032()50(2710)320(475321522x x x x x y ……………6分当点E 在线段AC 上时,2375)20(3215475321522+--=+-=x x x y , 此时,当20=x 时,y 有最大值为2375.而当点E 在线段BC 上时,y 的最大值为点E 与点C 重合时,显然没有2375大.∴当20=x 时,y 有最大值,最大值为2375.……………………………7分图③P NM EC A B9.顺义初三 第 11 页 共 11 页25.解:(1)当顶点A 运动至与原点重合时,设BC 与y 轴交于点D ,如图所示.∵BC ∥x 轴,BC=AC=32, ∴3=CD ,3=AD .∴C 点的坐标为)3,3(-. ……………1分 ∵当3=x 时,3332)3(2-=⨯-=y .∴当顶点A 运动至与原点重合时,顶点C 在抛物线上.……………2分(2)过点A 作BC AD ⊥于点D ,设点A 的坐标为(x ,x x 322-).∵8:1:=下部分上部分S S , ∴)32(32x x AD -=.∵等边ABC △的边长为32,∴360sin =︒⋅=AC AD . ∴3)32(32=-x x . ∴01322=--x x .解方程,得 =x 23±.∴顶点A 的坐标为)1,23(+或)1,23(-.…………………………5分(3)当顶点B 落在坐标轴上时,顶点C 的坐标为)0,632(-、)0,632(+、)6,32(-. …………………………………………………………… 8分。
海淀区高三年级第一学期期末练习数 学(文科)参考答案及评分标准 2012.01一.选择题:本大题共8小题,每小题5分,共40分.二.填空题:本大题共6小题,每小题5分,共30分.(9)32 (10)54(11)7 (12)乙,乙 (13)1y x =+或1y x =-- (14)8;3π注:(13)题正确答出一种情况给3分,全对给5分;(12)、(14)题第一空3分;第二空2分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)解:(Ⅰ)因为2A B =,所以2cos cos 212sin A B B ==-. ………………………………………2分 因为sin3B =,所以11cos 1233A =-?. ………………………………………3分 (Ⅱ)由题意可知,(0,)2B πÎ.所以cos 3B =. ………………………………………5分 所以 sin sin 22sin cos 3A B B B ===. ………………………………………7分因为sin sin b aB A=,2b =, =.所以3a =. ………………………………………10分 由1cos 3A =可知,(0,)2A πÎ.过点C 作CD AB ^于D .所以110cos cos 23333c a B b A=???. ………………………………………13分(16)(本小题满分13分)解:基本事件空间包含的基本事件有“甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙, 丙乙甲”. ………………………………………2分 (Ⅰ)设“甲、乙两支队伍恰好排在前两位”为事件A ,事件A 包含的基本事件 有“甲乙丙,乙甲丙”,则 ………………………………………4分()2163P A ==. 所以 甲、乙两支队伍恰好排在前两位的概率为13. ………………………………………7分(Ⅱ)设“甲、乙两支队伍出场顺序相邻”为事件B ,事件B 包含的基本事件 有“甲乙丙,乙甲丙,丙甲乙,丙乙甲”,则………………………………………10分()4263P B ==. 所以甲、乙两支队伍出场顺序相邻的概率为23. ………………………………………13分(17)(本小题满分14分)(Ⅰ)证明:因为 底面ABCD 是菱形所以 AC BD ⊥. ………………………………………1分 因为 AC PD ⊥,PD BD D = ,所以 AC ⊥平面PBD . ………………………………………3分 (Ⅱ)证明:由(Ⅰ)可知AC BD ⊥.因为 平面PAC ^平面ABCD ,平面PAC 平面ABCD AC =,BD Ì平面ABCD ,所以 BD ⊥平面PAC . ………………………………………5分 因为 PO Ì平面PAC ,所以 BD PO ⊥. ………………………………………7分 因为 底面ABCD 是菱形,所以 BO DO =.所以 PB PD =. ………………………………………8分 (Ⅲ)解:不存在. 下面用反证法说明. ………………………………………9分 假设存在点M (异于点C )使得BM ∥平面PAD . 在菱形ABCD 中,BC ∥AD , 因为 AD Ì平面PAD ,BC Ë平面PAD , 所以 BC ∥平面PAD .………………………………………11分 因为 BM Ì平面PBC ,BC Ì平面PBC ,BC BM B = ,所以 平面PBC ∥平面PAD .………………………………………13分而平面PBC 与平面PAD 相交,矛盾. ………………………………………14分(18)(本小题满分13分)解:(Ⅰ)由2()e ()x f x x ax a =+-可得2'()e [(2)]x f x x a x =++. ………………………………………2分 当1a =时,(1)e f = ,'(1)4e f =. ………………………………………4分 所以 曲线()y f x =在点(1,(1))f 处的切线方程为()e 4e 1y x -=-,即4e 3e y x =-. ………………………………………6分 (Ⅱ)令2'()e [(2)]0xf x x a x =++=,解得(2)x a =-+或0x =. ………………………………………8分 当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,'()0f x ≥,所以()f x 是[0,)+∞上的增函数.所以()f x 的最小值为(0)f =a -; ………………………………………10分 当(2)0a -+>,即2a <-时, ()'(),f x f x 随x 的变化情况如下表MBCDOAP由上表可知函数()f x 的最小值为2((2))e a f a +-+=. ……………………………………13分 (19)(本小题满分13分)解:(Ⅰ)由题意可知:1c =,12c a =,所以2a =. 所以 2223b a c =-=.所以 椭圆C 的标准方程为22143x y +=,左顶点P 的坐标是(2,0)-. ……………………………………4分(Ⅱ)根据题意可设直线AB 的方程为1x my =+,1122(,),(,)A x y B x y .由221,431x y x my ìïï+=ïíïï=+ïî可得:22(34)690m y my ++-=. 所以 223636(34)0m m ∆=++>,122634m y y m +=-+,122934y y m =-+. ……………………………………7分所以 PAB ∆的面积12111322S PF y y =-=创……………………………………9分=………………………………………10分 因为PAB ∆的面积为3613, 213=. 令t =22(1)3113t t t = +. 解得116t =(舍),22t =. 所以m =所以直线AB 的方程为10x -=或10x --=.……………………………………13分 (20)(本小题满分14分)解:(Ⅰ)集合B 不是“好集”. 理由是:假设集合B 是“好集”. 因为1B - ,B ∈1,所以112B --=- . 这与2B - 矛盾.………………………………………2分有理数集Q 是“好集”. 因为0ÎQ ,1ÎQ , 对任意的,x y ÎQ ,有x y - Q ,且0≠x 时,1xÎQ . 所以有理数集Q 是“好集”. ………………………………………4分 (Ⅱ)因为集合A 是“好集”,所以 A ∈0.若,x y A Î,则A y ∈-0,即A y ∈-.所以A y x ∈--)(,即A y x ∈+. ………………………………………7分 (Ⅲ)命题q p ,均为真命题. 理由如下: ………………………………………9分 对任意一个“好集”A ,任取,x y A Î, 若y x ,中有0或1时,显然A xy ∈. 下设y x ,均不为0,1. 由定义可知:A xx x ∈--1,11,1. 所以111A x x - -,即1(1)A x x Î-. 所以 (1)x x A - .由(Ⅱ)可得:(1)x x x A -+ ,即2x A Î. 同理可得2y A Î. 若0x y +=或1x y +=,则显然2()x y A + . 若0x y + 且1x y + ,则2()x y A + .所以 A y x y x xy ∈--+=222)(2. 所以A xy∈21. 由(Ⅱ)可得:A xyxy xy ∈+=21211.所以 A xy ∈.综上可知,A xy ∈,即命题p 为真命题. 若,x y A Î,且0x ¹,则1A xÎ. 所以 1y y A x x=孜,即命题q 为真命题. ……………………………………14分。
高一年级期末考试试卷 数学 试题考试时间:2012年1月 一、选择题(每小题5分,共50分。
) 1. 如果{1}A x x =>-,那么( )A. 0A ⊆B. {0}A ∈C. A ∅∈D. {0}A ⊆ 2. 下列说法正确的是( )A. 第一象限角是锐角B. 钝角是第二象限角C. 终边相同的角一定相等D. 不相等的角,它们的终边必不相同 3.设函数(1)()(1)x f x x x ≥=-<⎪⎩,则((1))f f =( )A.0B. 1C. 2D. 34. 函数x y a =与log (01)a y x a a =->≠且在同一坐标系中的图象可能是( )5. 已知函数()sin()(,0)4f x x x R πωω=+∈>的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( ) A. 向左平移4π个单位长度 B. 向右平移4π个单位长度 C. 向左平移8π个单位长度 D. 向右平移8π个单位长度 6. 已知扇形的圆心角为2弧度,面积为4,则该扇形的弧长为( ) A. 4B. C. 2D. 7. 已知向量(4,6),(3,5)OA OB ==,且,//OC OA AC OB ⊥ ,则向量OC = ( ) A. 32(,)77- B. 24(,)721- C. 32(,)77- D. 24(,)721-8. 已知向量1(cos 1,sin ),(2,3sin )2a b ααα=+= ,则2a b -= ( )A. B. 2 C. 4 D. 与α有关9. 方程lg 3x x +=的解所在的区间为( )A.(0, 2)B.(1, 2)C.(2, 3)D.(3, 4)10. 已知ABC ∆和点M 满足0MA MB MC ++= ,若存在实数m 使得AB AC mAM +=成立,则m=( ) A. 2 B. 3 C. 4 D. 5二、填空题(每小题5分,共25分。
2012年1月北京市各区县期末考试填空选择最后一题汇编(海淀)8. 已知O 为圆锥顶点, OA 、OB 为圆锥的母线, C 为OB 中点, 一只小蚂 蚁从点C 开始沿圆锥侧面爬行到点A , 另一只小蚂蚁绕着圆锥侧面爬 行到点B ,它们所爬行的最短路线的痕迹如右图所示. 若沿OA 剪开,则得到的圆锥侧面展开图为 ( )A B C D 12.用两个全等的含30︒角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的 半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A 后B的顺序交替摆放A 、B 两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片 8张,则这个图案中阴影部分的面积之和为 ; 若摆放这个图案共用两种 卡片(2n +1)张( n 为正整数), 则这个图案中阴影部分的面积之和为 . (结果 保留π )…… A 种 B 种 图 2, (西城)8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆 心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段 DA 与y 轴交于点E ,则△ABE 面积的最大值是 A .2 B . 83C .222+D .222-12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m ,n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .(昌平)8.如图,在边长为1的正方形ABCD 中,P 是射线BC 上的一个动点,过P 作DP 的垂线交射线AB 于点E .设BP = x ,AE = y ,则下列图象中,能表示y 与x 的函数关系的图象大致是1-1-1221OyxxyO122-1-11xyO122-1-11xyO122-1-11E PDCB A ABC DO B(A )C OAB CCBAOOA B(A )CO AB (A )COAB (A )C C(A )B AOB A12.如图,点A 1,A 2 ,A 3 ,…,点B 1,B 2 ,B 3 ,…,分别在射线OM ,ON 上.OA 1=1,A 1B 1=2O A 1, A 1 A 2=2O A 1,A 2A 3=3OA 1,A 3 A 4=4OA 1,….A 1B 1∥A 2B 2∥A 3B 3∥A 4B 4∥….则A 2B 2= ,A nB n = (n 为正整数).(朝阳)8. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于 点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示 y 关于x 的函数关系的图象大致是A. B. C. D.12. 古希腊著名的毕达哥拉斯学派把1,3,6,10 ,… 这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定11a =,23a =,36a =,410a =,…;11b =,24b =,39b =,416b =,…;1112y a b =+,2222y a b =+,3332y a b =+,4442y a b =+,…,那么,按此规定,=6y ,n y = (用含n 的式子表示,n 为正整数).(大兴)10.如图,AB 为半圆的直径,点P 为AB 上一动点.动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t .分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )B 4NMO A 1A 2A 3A 4B 3B 2B 1y5O x y5Ox Q BAC Py5O x y5Ox14916图②图①10631Q PNMOCBA1110987654321(东城)7. 如图,直径AB 为6的半圆O ,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积为A .6πB .5πC .4πD .3π8. 已知二次函数2y ax bx c =++的图象如图所示,那么一次函数24y bx b ac =+-与反比例函数2c b y x-=在同一坐标系内的图象大致为12.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,直角∠MON 的顶点O 在AB 上, OM 、ON 分别交CA 、CB 于点P 、Q ,∠MON 绕点O 任意旋转.当12O A O B=时,OP OQ的值为 ;当1O A O Bn =时,OPOQ的值为 .(用含n 的式子表示)(房山)12. 如图,圆圈内分别标有0,1,2,3,…,11这12个数字,电子跳骚每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳骚从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是8、根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论: ①x <0 时,错误!未找到引用源。
②△OPQ 的面积为定值. ③x >0时,y 随x 的增大而增大.MQ=2PM . ⑤∠POQ 可以等于90°.其中正确结论是( )A 、①②④B 、②④⑤C 、③④⑤D 、②③⑤(丰台) 8.如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿A →B 的方向,以每秒1cm 的速度运动,同时动点N 自点A 出发沿A →D →C 的方向以每秒2cm 的速度运动,当点N 到达点C 时,两点同时停止运动,设运动时间为x (秒),△AMN 的面积为y (cm 2),则下列图象中能反映y 与x 之间的函数关系的是14.我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形” .已知:在Rt △ABC 中,∠C =90°,AC =6,BC =3.(1)如图1,四边形CDEF 是△ABC 的内接正方形,则正方形CDEF 的边长a 1是 ;(2)如图2,四边形DGHI 是(1)中△EDA 的内接正方形,则第2个正方形DGHI 的边长a 2= ;继续在图2中的△HGA 中按上述方法作第3个内接正方形;…以此类推,则第n 个内接正方形的边长a n = .(n 为正整数)x y 123–1123–1O xy 123–1123–1Oxy 123–1123–1O xy 123–1123–1O N MABCD GI H F ABCDE F ABCDE 图1 图2(门头沟)8. 如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的 坐标为(4,0),∠AOC = 60°,垂直于x 轴的直线l 从y 轴出发, 沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与 菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方), 若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4), 则能大致反映S 与t 的函数关系的图象是( )(密云)8.如图,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿线段 OC CD--线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y与t 的函数关系最恰当的是12.如图,已知R t △A B C 中,A C =6,B C = 8,过直角顶点C 作1C A ⊥AB ,垂足为1A ,再过1A 作11A C ⊥B C ,垂足为1C ,过1C 作12C A ⊥AB ,垂足为2A ,再过2A 作22A C ⊥B C ,垂足为2C ,…,这样一直做下去,得到了一组线段1C A ,11A C ,12C A ,…,则1C A = ,1n n n nC A A C +(其中n 为正整数)= .tsO242343AtsO242343B tsO242343C tsO242343DxyABC O MN l(平谷)13.如图,在直角三角形ABC 中,∠ACB =90°,CA =4,点P 是 半圆弧AC 的中点,联结BP ,线段BP 把图形 APCB (指半圆和三角形ABC 组成的图形)分成两部分, 则这两部分面积之差的绝对值是________.(宣武)8. 如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 的弦AB 的长为23,则a 的值是 B A .22B .22+C .23D .23+(延庆)8.如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿线段OC-弧CD -线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是12.如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P 是其中的一个顶点,以点P 为直角顶点作格点 直角三角形(即顶点均在格点上的三角形),请你写出所有可能 的直角三角形斜边的长___________________.FABO Pxyy=xPCBAO。