传感器与检测技术 第二版知识点总结
- 格式:doc
- 大小:97.00 KB
- 文档页数:6
传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述1.1 什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
1.2 传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。
1.3 传感器一般由哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。
另外还需要信号调理与转换电路,辅助电源。
1.4 传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。
①按传感器的输入量(即被测参数)进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。
1.6 改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。
第2章传感器的基本特性2.1 什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。
静态特性所描述的传感器的输入-输出关系中不含时间变量。
衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。
2.3 利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。
传感器与检测技术重点知识点总结
1. 传感器的基本概念及分类
传感器是一种能够将被检测物理量转换为可被检测设备处理的电信号输出的器件。
根据被检测物理量的不同,传感器可分为光学传感器、声学传感器、温度传感器、压力传感器、流量传感器等。
2. 传感器的检测原理
传感器的检测原理通常分为以下几种:电学检测、磁学检测、光学检测、化学检测、声学检测、机械检测等。
3. 传感器的基本参数
传感器的基本参数包括:灵敏度、线性度、分辨率、重复性、稳定性、响应时间等。
4. 传感器的生产工艺
传感器的生产工艺主要包括晶体生长、半导体制备、陶瓷材料制备、薄膜技术、微加工技术等。
5. 传感器的应用领域
传感器广泛应用于工业控制、仪器仪表、环境监测、医疗设备、航空航天等领域。
6. 传感器与物联网技术的结合
传感器与物联网技术的结合,将传感器与互联网技术相结合,实现远程监测、智能控制与预警等功能,具有广泛的应用前景。
7. 检测技术的应用
除了传感器技术,还有其他的检测技术,如光谱分析、物质检测、图像识别等,在环境监测、工业检测与医疗诊断等领域有着重要的应用。
1、传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
2、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。
3、要实现不失真测量,检测系统的幅频特性应为常数4、传感器静态特性是指传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。
5,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨率、灵敏度、漂移、稳定性、温度稳定性、各种抗干扰稳定性等。
(请写出反映传感器的五种性能指标,及写出三种解释传感器指标?精度、分辨率、灵敏度、线性度、迟滞。
反映传感器准确度的指标是精度,反映传感器灵敏度的指标是灵敏度,反映传感器稳定性的指标是迟滞)6,传感器对随时间变化的输入量的响应特性叫传感器动态性。
7,动态特性中对一阶传感器主要技术指标有时间常数。
动态特性中对二阶传感器主要技术指标有固有频率、阻尼比。
8,从时域(延迟时间,上升时间,响应时间,超调量)和频域(幅频特性,相频特性)两个方面分别采用瞬态响应法和频率响应法来分析动态特性。
9,幅频特性是指传递函数的幅值随被测频率的变化规律,相频特性是指传递函数的相角随被测频率的变化规律。
传感器中超调量是指超过稳态值的最大值A(过冲)与稳态值之比的百分数。
电阻式传感器10,金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
11,半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
12,金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。
13,金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器与检测技术2202第一章:概述传感器的定义:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
第一节:机电一体化常用传感器一传感器的组成1敏感元件:一直感受被测物力量并以确定关系输出另一物理量元件2转换元件:将敏感元件输出的非电量转换成电路参数3基本转换电路:将电信号转换成便于输出,处理的电量传感器的组成原理:被测量------敏感元件---转换元件---基本转换电路----电量二传感器的分类1按被测量对象分类①内部信息传感器:主要检测系统内部的位置,速度,力,力矩,温度以及异常变化②外部信息传感器:主要检测系统外部环境,它与人体五种器官相对应的接触式和非接触式2按工作机理分类①物性型传感器:利用某种物质的某种性质随被测参数的变换而变化的激励制成的如光电式传感器,压电式传感器等②结构型传感器:利用物理学中厂的定律和运动定律等构成的,其被测参数变化引起传感器的结构变换,从而使输出电量变化,电感式传感器,电容式传感器,关山是传感器都是这种类型。
3按照被测物理量分类表明了传感器的用途,便于使用者选择。
4 按照工作机理5按照传感器能量源分类①无源型(能量转换型):不需要外加电源,而是将被测相关两转换成电量输出如压电式磁电感应式,电热式,光电式等传感器②有源型(能量控制型):需要外加电源这类传感器有电阻式,电容式,电感式,霍尔式等,电阻式有光敏电阻,热敏电阻,湿敏电阻等形式6 按照输出信号的性质分类①开关型(二值型):接触型(微动开关,行程开关,接触开关)非接触型(光电开关,接触开关)模拟型:电阻型(电位器,电阻应变片)电压电流型(热电偶,光电电池)传感器电感,电容型(电感,电容式位置传感器)数字型:计数型代码型三传感器的特性及主要性能指标传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性1.静态特性:当传感器的输入量为常数或随时间作缓慢变化时,传感器的输出与输入之间的关系2.动态特性:传感器的输出量对于随时间变化的输入量的响应特性3.传感器的性能指标(P5牢记)传感器的性能要求①高精度,低成本②高灵敏度③工作可靠④稳定性好⑤抗干扰能力强⑥动态特性好⑦结构简单,小巧第二节传感检测技术的地位和作用第三节重点:传感器及检测系统基本特性的评价值白哦与选择则原则一、测量范围及量程①测量范围:传感器在允许误差限内,其被测量值的范围②量程:传感器在测量范围内的最高值与最低值之差③过载能力:在不导致引起传感器规定性能直白哦永久改变的条件下传感器允许超过其测量范围的能力④过载能力通常用超值除以量程二灵敏度①灵敏度:传感器的输出量的变化量与引起变化的输入量的变化量之比②总灵敏度:k=k1*k2.....kn③灵敏度误差:rs= k0/k0④灵敏度表示传感器或者传感器检测系统对被测物理量变化的反应能力。
传感器知识点一、电阻式传感器1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。
2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 ● 应变电阻式传感器1) 应变:在外部作用力下发生形变的现象。
2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化a. 组成:弹性元件+电阻应变片b. 主要测量对象:力、力矩、压力、加速度、重量。
c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等点的输出。
3) 电阻值:ALR ρ=(电阻率、长度、截面积)。
4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变)5) 应力与力和受力面积的关系:(面积)(力)(应力)A F =σ应注意的问题:a. R3=R4;b. R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值;c. 补偿片的材料一样,个参数相同;d. 工作环境一样;二、电感式传感器1) 电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L 或互感系数M的变化。
2) 种类:变磁阻式、变压器式、电涡流式。
3) 主要测量物理量:位移、振动、压力、流量、比重。
● 变磁阻电感式传感器1) 原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。
2) 自感系数公式:)(2002气隙厚度(截面积)(磁导率)δμA L N=。
3) 种类:变气隙厚度、变气隙面积4) 变磁阻电感式传感器的灵敏度取决于工作使得当前厚度。
5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。
P56 6)应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化)● 差动变压器电感式传感器1) 原理:把非电量的变化转化为互感量的变化。
2) 种类:变隙式、变面积式、螺线管式。
3) 测量电路:差动整流电路、相敏捡波电路。
● 电涡流电感式传感器1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动势,电动势将在导体表面形成闭合的电流回路。
《传感器与检测技术(胡向东,第2版)》习题解答传感器与检测技术习题解答王涛第1章概述什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常敏感元件和转换元件组成。
传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量输入转换成电量输出。
传感器一般哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。
另外还需要信号调理与转换电路,辅助电源。
被测量敏感元件传感元件信号调节转换电路辅助电源传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。
①按传感器的输入量进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
②按传感器的工作原理进行分类根据传感器的工作原理,可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。
改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。
第2章传感器的基本特性什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。
静态特性所描述的传感器的输入-输出关系中不含时间变量。
衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。
利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。
设压力为0MPa时输出为0mV,压力为时输出最大且为。
压力/MPa 输出值/mV 第一循环第二循环第三循环正行程反行程正行程反行程正行程反行程解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段。
传感器知识点一、电阻式传感器1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。
2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 ● 应变电阻式传感器1) 应变:在外部作用力下发生形变的现象。
2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化a. 组成:弹性元件+电阻应变片b. 主要测量对象:力、力矩、压力、加速度、重量。
c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等点的输出。
3) 电阻值:ALR ρ=(电阻率、长度、截面积)。
4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变)5) 应力与力和受力面积的关系:(面积)(力)(应力)A F =σ6) 应变片的种类: 种类 金属电阻应变片(应变为主)半导体电阻应变片(压阻为主)灵敏度 μ21+)(ρερ/∆优点散热好允许通过较大电流● 电阻应变的温度补偿:电桥补偿应注意的问题:a. R3=R4;b. R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值;c. 补偿片的材料一样,个参数相同;d. 工作环境一样;● 测量电路:直流电桥、交流电桥直流电桥 交流电桥 平衡条件 R1R4=R2R3输出电压44.1'1..UK U R R U O ε=∆=● 典型应用种类 被测量 电阻式力传感器 荷重或力 电阻式压力传感器 流动介质 ~液体重量传感器 容器内液体的重量~加速度传感器 加速度 ~差压传感器气动测量二、电感式传感器1) 电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L 或互感系数M的变化。
2) 种类:变磁阻式、变压器式、电涡流式。
3) 主要测量物理量:位移、振动、压力、流量、比重。
● 变磁阻电感式传感器1) 原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。
2) 自感系数公式:)(2002气隙厚度(截面积)(磁导率)δμA L N=。
3) 种类:变气隙厚度、变气隙面积4) 变磁阻电感式传感器的灵敏度取决于工作使得当前厚度。
5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。
P56 6)应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化)● 差动变压器电感式传感器1) 原理:把非电量的变化转化为互感量的变化。
2) 种类:变隙式、变面积式、螺线管式。
3) 测量电路:差动整流电路、相敏捡波电路。
● 电涡流电感式传感器1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动势,电动势将在导体表面形成闭合的电流回路。
)(),,,,(离、励磁电流的频率、距电阻率、磁导率、尺寸x f r F Z μρ=等效阻抗2) 趋肤效应:电涡流只集中在导体表面的现象。
3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化。
4) 测量电路:调频式测量电路、调幅式测量电路。
5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。
6)应用:种类 位移测量 振幅测量 转速测量 无损探伤 原理 距离的变化英气阻抗的变化测量几十微米到级毫米的距离变化距离变化电涡流大小变化,形成周期的脉冲距离不变遇到伤痕电导率、磁导率变化三、电容式传感器1) 原理:将非电量的变化转化为电容量的变化。
2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、易受外界环境的影响。
3) 测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。
● 结构分类:平板和圆筒电容式传感器1) 公式:dA C r εε0=2) 平板式电容器可分为三类:变极板覆盖面积的变面积型,变介质介电常数的变介质型、变极板间距离的变极距型。
3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双T 型交流电路、脉冲宽度调制电路。
4) 典型应用: 种类/传感器~压力~~位移~~加速度~ ~厚度~原理作用力膜片位移 振动导致位移,极板距变化,电容量变化。
运动时,定极板与动极板的距离变化02d at C C =∆ 带材厚度的变化导致上下极板的距离变化导致电容量的变化, 并联C=C1+C2四、压电式传感器(有源)1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生电荷聚集的现象。
机械能转化为电能2) 逆压电效应:在片状压电材料的两段加交电,压电片发生机械振动。
说明压电效应可逆。
3) 特点:结构简单、体积小、重量轻、工作频带宽、灵敏度高、信噪比高、工作可靠、测量范围广。
4) 测量物理量:加速度、位移、压力、温度。
5) 压电材料:石英晶体、压电陶瓷、压电高分子材料。
6) 压电陶瓷具有压电效应,需要有外界电场和压力的共同作用。
7) 压电高分子材料属于有机分子半结晶和结晶聚合物。
8) 压电式传感器可以输出电压信号和电荷信号,因此前置放大器有两种:电荷/电压放大器。
9) 压电参数:压电系数,弹性系数,介电系数,机电耦合系数,电阻,居里点 10) 压电元件的连接串联 并联 电压 相加 相等 电荷 相等 相加 电容减小相加11) 应用:压电式加速度传感器,压电式交通检测。
五、磁敏式传感器1) 原理:对磁场参数(磁感应强度B 磁通ф)敏感、通过磁电作用将非电量转化为电信号。
2) 磁通作用分类:电磁感应、霍尔效应3) 磁敏式传感器分类:电感应式传感器、霍尔式传感器。
电感应式传感器(有源)1) 原理:利用导体和磁场发生相对运动而在导体两端输出感应电动势。
2) 特点:电路简单、性能稳定、输出阻抗小、具有一定的响应频率(10~1k ) 3) 测量物理量:转速、振动、位移、扭矩4) 公式:ωNBS E NBLv E -=-=和式中B 、L 、S 、N 为确定量。
5) 电感应式传感器种类:恒磁通式 动圈式 、变磁通式 变磁阻式动铁式 变气隙式(典型应用 转速计)✧ 测量齿轮的凸凹导致气隙大小发生变化导致磁阻的变化,每转过一个齿磁阻变化一次,变化频率=被测转速*齿数。
(不宜测高速) ✧ 齿凸相对气隙最小,磁通最大。
6) 磁电感应式传感器的应用~振动速度~ ~扭矩~ 电磁流量计 种类恒磁通 变磁通哼磁通 原理 磁路气隙中的线圈切割磁感线产生正比于振动速度的感应电动势测量一定导电率的流体物质的流量(不能测量有机溶剂,有大气泡的液体,石油)● 霍尔传感器1) 霍尔效应:载流导体垂直处于电流磁场中在其两端产生电位差 2) 测量物理量:微位移、转速、加速度、振动、压力、流量、液位 3) ab 激励电流,cd 霍尔电极。
4) 霍尔元件的基本特性:线性特性(模拟量)、开关特性(开关量)。
5) 霍尔元件的误差:零位误差 不等位电动势:加电阻(对称、不对称)寄生直流电动势:尽量欧姆接触温度误差6) 霍尔传感器的应用: 微位移的测量 转速的测量 压力的测量 原理Z ±方向移动B !=0,霍尔电势变化每个永磁体通过探头时,产生相应的脉冲n N tnNr t 2πω==和7) 可用作无损探伤六、热电式传感器1) 热电偶是将温度变化转化为电动势的变化;热电阻和热敏电阻是将温度的变化转化为电阻的变化。
● 热电偶(有源)1) 100~1300摄氏度,不同导体的自由电子的扩散速度不同。
2) 热电势来源于:一、接触电动势;二、单一导体的温差电动势3)),()(),(00t t E t E t t E A AB AB 温差电动势的表达:接触电动势的表达:热电势的表达:4) 热电偶的基本定律: 定律中间导体定律 中间温度定律均质导体定律标准电极定律描述在热电偶测温回路内接入第三导体,只要其两端温度相同,总电势不变。
),(),(00T T E T T E AB ABC = )(),(),(0,0t t E t t E t t E c AB c AB AB +=如果热电偶的两个热点极材料相同,那么无论温度是否相同,电势为5) 热电偶的冷端温度补偿:方法补偿导线法 冷端恒温法 冷端温度校正法自动补偿法描述中间温度定律,补偿导线热电性质一致电热恒温器和冷点槽)0(),()0,(,00t E t t E t E +=电桥补偿6) 测量电路:测量两点温差:应确保冷端温度相同。
),(),(0201t t E t t E E AB AB T -=(反极性串联)测量多点:同极性串联(一个断开就会停止)或并联(一个烧坏很难看出,不会停止) ● 热电阻1) Ω10=R 0和Ω100=R 0 零温度下的电阻值:Pt 10和Pt 100 2) 热电阻的测量电路:两线制、三线制、四线制两线制三线制四线制在热电阻两端各一根导线 一根电源,另外两根分别与电桥的相邻两臂串联分别接在电流回路,电压回路● 热敏电阻1) 利用半导体的电阻值随温度显著变化。
2) 不要使用大电流。
3) 应用:温度控制,管道流量测量。
七、光电式传感器1) 原理:利用光电器将光电号转化为电信号。
2) 测量物理量:温度、压力、位移、速度、加速度 3) 种类:a. 光电效应传感器光照射到物体表面上使物体发射电子或电导率发生变化或产生电动势。
b. 红外热释电探测器对光谱中长波敏感的器件 c. 固体图像传感器4) 外光电效应:电子溢出物体表面的现象。
光电管、光电倍增管5)内光电效应:光电子只在物体内运动,而不溢出的现象。
基于光电伏特效应:光电池、光敏二极管、光敏晶体管基于光电导效应:光敏电阻6)光电耦合器:将发光元件和光敏元件合并使用。
以光为媒介。
a.应用:电路隔离、电平转换、噪声抑制、整形滤波b.发光元件和光敏元件在光谱上要最佳匹配。
7)光栅:右移,莫尔条纹上移;左移,莫尔条纹下移。
8)计量光栅:可以用作开光量。
9)细分原理:目的提高分辨率。
10)11)[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]12)。