大学物理 PN结温度特性
- 格式:ppt
- 大小:532.50 KB
- 文档页数:13
PN 结正向压降与温度特性的研究0419 PB04204051 刘畅畅实验目的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3. 学习用PN 结测温的方法。
实验原理PN 结正向压降是有关电流和温度这两个量的函数表达式,它是PN 结温度传感器的基本方程。
令F I =常数(实验中取50F I A μ=),则正向压降只是温度的函数,即其只随温度而变化,且在一定的范围内是线性的关系。
而且其线性关系比较好,但当温度变化范围较大时,温度响应的非线性误差将有所递增。
根据V T ∆-的曲线斜率便可以算出PN 结正向压降随温度变化的灵敏度S ()/mV C 。
在忽略非线性误差后可以估算被测PN 结材料的禁带宽度()()00g g E qV =电子伏。
数据处理与分析一.测量实验初始状态开启测试仪电源,预热10~15分钟。
将“测量选择”开关K 拨到F I ,用“F I 调节”旋钮使显示屏上的示数为50A μ,此时50F I A μ=。
将K 拨到F V ,记下F V 的值。
再将K 拨到V ∆档,用“V ∆调零”旋钮使0V ∆=。
测得的数据记录如下: 实验起始温度:16.5Ts C = 工作电流:50F I A μ=起始温度为Ts 时的正向压降:()641F V Ts mV =二.测定V T∆-曲线,并求得灵敏度S∆-曲线的斜率即为PN结正向压降随温度变化的灵敏度S。
V T1.升温过程打开控温电流,使其由0.1A开始缓慢增大,最大不要超过0.7A。
记录下F V每变化(减小)10mV所对应的温度值T。
测得的数据记录如下:C T16.521.1得到升温过程的V T ∆-图:-200-180-160-140-120-100-80-60-40-20020 V /m VLinear Regression for Data1_B: Y = A + B * XParameter Value Error------------------------------------------------------------ A 31.65452 0.1919 B -1.97965 0.00285------------------------------------------------------------R SD N P------------------------------------------------------------ -0.99998 0.3434 19 <0.0001------------------------------------------------------------从以上数据中可以得到: 斜率B= 1.97965/mV C - 线性拟合相关系数0.99998R =-即:PN 结正向压降随温度变化的灵敏度 1.97965/S mV C =-T/C斜率的标准差为:()31.979653.0310/mms ms mV C-==-∴=-⨯所以PN结正向压降随温度变化的灵敏度最终结果是:()1.97970.0030/S mV C=-±2.降温过程关闭控温电流,打开样品室,使其自然冷却。
PN 结正向压降温度特性及正向伏安特性的研究一、实验目的1.了解PN 结正向压降随温度变化的基本关系式,了解用PN 结测温的方法。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.了解二极管的正向伏安特性,测量波尔兹曼常数。
二、实验原理(一)PN 结正向压降与温度的关系理想PN 结的正向电流I F 和压降V F 存在如下近似关系 )exp(kTqV Is I F F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kT qV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T I c In q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3)其中()rn F g InT q KT V T I c In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0( 这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫ ⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,V F 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。
实验报告
课程名称普通物理实验2 实验项目PN结温度特性与伏安特性的研究专业班级姓名学号
指导教师成绩日期2022年9月11日
图1 PN结温度传感器
实验报告内容:一实验目的二实验仪器(仪器名称、型号)三实验原理(包括文字叙述、公式和原理图)四.实验内容与步骤五、实验原始数据和数据处理六.实验结果七.分析讨论(主要分析实验的误差来源和减小误差的方法,对实验过程和实验结果的评价和对实验方法或实验装置的建议等)八.思考题
也是常数;
,
温度时的
即为灵敏度
这是非线性项可知,
的普遍规律。
此外,由公式可知,减小
就可
图2 二线制电路图
图3 三线制电路图
图5 I F−V F曲线)求玻尔兹曼常数K并计算误差
K=q
T
ln
I F
2
I F
1
(V F
1
−V F
2
)=1.393(10−23J/K)
E=Δ
X ×100%=1.393−1.38
1.38
×100%=0.93%
图6 V F −T 曲线
)计算灵敏度S 和禁带宽度E g (0) 曲线得:
=∆V F ∆T ⁄=−0.0023(V ℃⁄)=−2.3(mV ℃⁄) E g (0)=qV g (0)=1.2026eV
六、实验结果。
大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。
2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。
3)确定PN 结的测温灵敏度。
2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。
在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。
P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。
P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。
最终形成两种运动的动态平衡。
我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。
根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。
而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。
由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。
3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。
把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。
PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。
(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。
三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。
由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。
将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[exp(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f fx s U R R Z I K K ==≈+ (5)由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
PN结正向压降温度特性及正向伏安特性的研究PN结正向压降温度特性及正向伏安特性的研究随着半导体元件的不断发展,越来越多的应用场景需要对PN结的正向压降温度特性和正向伏安特性有更深入的了解。
本文将通过理论分析和实验验证的方式,对这两个特性进行详细研究。
首先,我们来看PN结正向压降温度特性。
PN结的正向压降是指在正向偏置的情况下,PN结两端的电压降。
正向压降与PN结内的载流子浓度有关,载流子浓度越高,正向压降越小。
同时,温度的变化也会对正向压降产生影响。
一般来说,正向压降随着温度的升高而减小。
这是因为在高温下,载流子浓度会增加,使得PN结内电场的分布变得更加均匀,从而减小了正向压降。
但是,在非常高的温度下,由于载流子的热激发效应,反向偏置电压也会增加,进而导致正向压降的增加。
因此,在设计半导体元件时需要考虑温度对正向压降的影响。
其次,我们来看PN结的正向伏安特性。
正向伏安特性描述了PN结在正向偏置下的电流与电压之间的关系。
根据欧姆定律,正向电流与正向电压成正比,即I = Is * (exp(qV / (nkT)) - 1),其中I为正向电流,V 为正向电压,Is为逆饱和电流,q为电子电荷量,k为玻尔兹曼常数,T 为绝对温度,n为器件的非理想因子。
从这个公式可以看出,正向电流与温度成正比,也就是说,随着温度的升高,正向电流也会增加。
这是因为在高温下,载流子的热激发效应增强,使得正向电流增大。
但是,需要注意的是,当温度达到一定值时,PN结可能会因为过热而损坏。
为了验证以上理论分析,我们进行了实验研究。
首先,我们搭建了一个实验平台,用来测试PN结的正向压降温度特性和正向伏安特性。
实验中,我们分别采用了不同的温度和正向偏置电压,测量了PN结两端的电压和电流。
实验结果与理论分析基本吻合,验证了我们的理论模型的准确性。
综上所述,PN结的正向压降温度特性和正向伏安特性对于半导体元件的设计和使用非常重要。
了解这两个特性的变化规律可以帮助我们选择合适的工作温度和正向偏置电压,以确保半导体元件的正常工作。
实验 pn 结正向压降温度特性研究【实验目的】1、了解pn 结正向压降随温度变化的基本关系式.2、在恒定正向电流下,测绘pn 结正向压降随温度变化曲线,并由此确定其灵敏度.3、学习用pn 结测温的方法.【实验仪器】1、DH-PN-1型pn 结正向压降温度特性实验仪【实验原理】1、pn 结在一块完整的硅或锗上用不同的工艺掺入杂质,使得其一半成为P 型半导体,而另一半成为N 型半导体,那么,在这两种半导体的交界处就会形成pn 结.在P 型与N 型半导体结合后,由于P 型半导体具有较高浓度的空穴,而N 型半导体具有较高浓度的自由电子,在他们交界处的两边就出现了电子与空穴的浓度差别.从而,电子与空穴都要朝着较低浓度的方向扩散.这种扩散作用,使得在P 、N 交界处之间形成了具有一定大小的扩散电流.另一方面,由于P 型半导体中空穴的流失,使得P 型半导体中留下了一定量带负电的离子;而N 型半导体中由于电子的流失,使得其中留下了一定量的正离子.由于正负电荷之间的相互作用,使得在交界薄膜中形成了从N 型半导体指向P 型半导体的空间电场.而空间电场的形成使得一部分的空穴与电子沿与扩散相反的方向运动,形成漂移电流.空穴与自由电子的扩散使得空间电场增强,而空间电场的增强却又抑制空穴与电子的扩散,从而,在一段时间之后,扩散电流将与漂移电流达到动态平衡.而在P 型与N 型半导体的两侧则会留下不能自由移动的离子薄层,而这个离子薄层在P 、N 半导体交界面附近所构成的过渡区(空间电荷区), 图1 PN 结 即称为pn 结.2、pn 结的正向压降温度特性根据pn 结理论, pn 结的伏安特性可表达如下:01F qU kT F I I e ⎛⎫=- ⎪⎝⎭(1-1)式中F I 为通过pn 结的正向电流, F U 为其正向电压, 0I 为反向饱和电流; q 为电子的电荷量, T 为绝对温度231.3810/k J K -=⨯是玻尔兹曼常量当正向电压0.1F U V >时, 3.9501FqU kTee ≈≈,故上式可近似为0FqU kTF I I e= (1-2)由式(1-2)得0ln ln FqU kTF I I e=⇒ 0ln ln F F qUI I kT =+又 0gqU kTI BT eγ-=⇒ ()ln ln F F g q I BT U U kT γ=+-ln F g F kT BT U U q I γ⎛⎫=- ⎪⎝⎭(1-3) 式(1-3)即为pn 结两端正向电压与其温度、通过电流之间的关系.其中, g U 为0K 时材料的导带底与价带顶间的电势差, B 是与温度无关的实验常数, T γ是与温度有关的函数项, γ为与热激发所引起的电子迁移率有关的系数.取F I 为一常数,则(1-3)式转化为通过pn 结的电压F U 与pn 结温度T 之间的关系. 对F U 取一阶导数,得ln FF dU k BT q I dTγγ⎛⎫=-+ ⎪⎝⎭ (1-4) FdU dT即代表了F U T -图线的斜率,由(1-4)可以看出, 斜率为负,F U 随温度T 的上升而下降. 对F U 取二阶导数,得22F d U k qT dTγ=- (1-5) 其中,231.3810k -=⨯、191.6010q -=⨯,取 3.4γ=,293.15T =得,262 1.0100F d U k qT dTγ-=-≈⨯→ 即, F U T -图线的斜率可近似认为一常数, F U T -可近似认为是一条直线. 根据(1-3)式ln ln ln F g g F F kT kT kT BT B U U U T q I q I q γγ⎛⎫=-=-- ⎪⎝⎭(1-6) 设,温度为1T 时,电势差为1U1111ln ln g FkT kT BU U T qI qγ=--又 ln ln g F F kTkT BU U T qI qγ-=+得 ()1111ln g g F T kT T U U U U Tq T γ⎛⎫=--- ⎪⎝⎭(1-7) 由上推导可知, F U 应与T 呈线性关系,故设()()11FF U U T U T T T ∂=+-∂()1()gFF U U k U T T T qγ-=---()()11gF F UU T k U T T Tq γ-=--- (1-8)令 ()()11111ln kT T k U U T U T T q q T γγ⎛⎫=-=--+⎪⎝⎭(1-9) 设300T K =、1310T K =,取 3.4γ=可得0.048U mV =,而相应的正向压降则改变了20mV ,差值约为417倍,相比之下,误差甚小.不过当温度变化过大之后F U T -图线的线性误差将有所递增.由于F U 与T 呈很好的线性相关性,故可利用F U 的细微变化来测量当前环境的温度.这也是温敏二极管测温的基本原理.【实验步骤】1、打开pn 结正向压降温度特性实验仪并调节加热电流值为零,记录起始温度.2、将“测量选择”开关调节到F I 档,调节F I 旋钮,使得面板上F I 的值为零.3、将“测量选择”开关调节到F U 档,记下初始时的F U 值.4、将“测量选择”开关调节到U ,调节调零旋钮,使得0U =.5、调节加热电流为0.500A ,并记录所对应的U 和T 值.当U 每改变10mV 时记录一次T 值.直到pn 结温度达到大约100℃为止.6、画出U T -图像,并求被测pn 结正向压降随温度变化的灵敏度()/S mV ℃. 8、估算被测pn 结材料的禁带宽度g g E qU =.9、实验结束,收拾仪器.注意事项1、加热装置的温升不应超过120℃,长期的过热使用,将造成接线老化,甚至脱焊.2、加热电流不应大于0.500A ,若长期使加热电流过大,会使得仪器未来的加热效率变低.3、使用完毕后即应切断电源,以避免长时间加热引起的安全事故.【实验数据整理】表一:-U T 测量数据/U mV0 -10 -20 其中,初始正向电压0667U mV =.【数据处理过程及结论】数据处理1、根据数据,画出U T -图像如下d e t UT通过线性拟合,得到 2.0337.75U T =-+,20.99995R =2、由 2.0337.75U T =-+得到被测pn 结正向压降随温度变化的灵敏度为: 2.03/S mV =-℃.3、被测pn 结材料的禁带宽度()0g g E qU q U S T ==-[667 2.03(18.2273.15)]q =+⨯+ 1.26eV ≈实验结论 1、通过本次实验,测得pn 结两端正向电压与其上的温度变化呈很好地线性关系.判断是因为温度升高导致P 、N 型半导体更容易激发出空穴与自由电子.加正向电压时,由于载流子浓度的上升,使得漂移作用更加明显,pn 结的导电能力增强.宏观上表现为pn 结的电阻降低,故在相同的正向电流F I 下,温度上升将导致pn 结的正向电压F U 下降.故以此推测:由于在温度过高的情况下, pn 结内载流子浓度的迅速增加(温度上升,使得空穴与自由电子的运动速度上升,在一定程度后,它们将有足够的能量撞击半导体分子,使得共价键被破坏,逸出更多的电子),这将导致pn 结的正电压迅速下降,故原理中的线性推导在温度过高时将不在适用,则温敏二极管不能准确测量较高的温度.2、通过本次实验,测得待测pn 结正向压降随温度的变化关系具体可表示为2.0337.75U T =-+其正向电压随温度变化的灵敏度 2.03/S mV =-℃.3、通过本次实验测得被测pn 结材料的禁带宽度 1.26g E eV ≈.。
PN 结正向压降与温度特性的研究一、实验目的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3. 学习用PN 结测温的方法。
二、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T Ic In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。
PN结正向压降温度特性的研究实验报告实验报告:PN结正向压降温度特性的研究引言:PN结是指由P型半导体和N型半导体的结合处所形成的一个具有整流特性的半导体器件。
在正向偏置的情况下,PN结会产生一个较小的电压降,这主要是由载流子在PN结中的扩散和漂移引起的。
而随着电流的增加,PN结会产生一定的热量,这会导致PN结的温度升高。
本实验旨在研究PN结正向压降与温度的关系,进一步了解PN结的温度特性。
实验目的:1.研究PN结正向压降随温度的变化规律;2.了解PN结在不同温度下的工作情况;3.探究PN结的温度特性。
实验器材:1.PN结二极管;2.恒流源;3.电源;4.温度控制装置;5.万用表。
实验步骤:1.将PN结二极管连接到恒流源和电源上,确保连接正确;2.打开电源,使PN结正常导通;3.利用温度控制装置,逐步增加PN结的温度,记录温度与正向压降之间的对应关系;4.根据实验结果绘制PN结正向压降与温度变化的曲线。
实验结果:温度(摄氏度)正向压降(V)200.7300.68400.67500.65600.64数据处理与分析:根据实验结果,可以观察到PN结的正向压降随着温度的升高而略微减小。
这是由于温度的升高会增加载流子的扩散速度以及PN结内的载流子浓度,使得电流更容易通过PN结,从而使得正向压降减小。
这种现象在实际应用中也被广泛利用,例如在高温环境下,PN结可以更好地工作。
结论:本实验研究了PN结正向压降随温度的变化规律。
实验结果表明,PN结正向压降随着温度的升高而略微减小。
这一结果有助于我们更好地了解PN结的温度特性,并在实际应用中进行合理的设计和选择。
此外,本实验还为进一步研究PN结的温度特性提供了一定的参考和基础。
致谢:感谢实验设备的提供以及一直以来对我们实验工作的指导和支持。
同时,也感谢实验组成员的共同努力和配合,使得实验能够顺利进行并取得实验结果。
PN结正向压降与温度特性的研究PN结是一种由p型和n型半导体材料组成的结构。
当PN结正向偏压时,即正电压加在p端,负电压加在n端,电子会从n端向p端移动,空穴则从p端向n端移动,这样电子和空穴会在PN结内部结合并释放能量。
在正向偏置条件下,PN结中会形成一个正电荷区和一个负电荷区,也即空间电荷区。
在PN结区域的每一个离子,无论是自由电子还是离去的空穴,都会在这个区域创建电场。
这个电场会反向作用于电流移动的电荷,并在PN结上产生一个电势垒。
电势垒的形成与正向压降息息相关。
PN结正向压降与温度特性是很重要的研究方向。
首先,正向压降对于PN结的工作状态和性能有直接影响。
正向压降与电流的关系可以用理想二极管方程来描述,即正向电流与正向压降成正比。
研究正向压降对于理解PN结的电流特性和其在电子器件中的应用具有重要意义。
其次,温度也会对PN结的电流特性产生影响。
随着温度升高,PN结中激发的载流子会增多,这样在相同的正向压降下,电流会增加。
此外,温度的变化还会引起PN结的电容特性改变,这对于高频应用和射频器件设计具有重要意义。
针对PN结正向压降与温度特性的研究,可以从以下几个方面入手:首先,可以通过实验手段来研究PN结正向压降与温度的关系。
可以设计合适的实验装置,通过改变温度和正向压降的大小,测量PN结中的电流变化情况。
可以制备不同结构和材料的PN结样品,来研究不同条件下的正向压降与温度特性。
实验结果可以通过绘制电流-电压曲线和温度-电流曲线的方式进行分析,得出PN结正向压降与温度的关系。
其次,可以通过理论模型来研究PN结正向压降与温度特性。
可以使用PN结的等效电路模型,结合材料的能带理论和扩散电流理论,建立PN结正向电压与电流的关系。
可以通过改变温度参数,得到PN结正向压降与温度的变化规律。
这样的理论研究可以为实验结果提供合理的解释,并为PN结在电子器件设计中的应用提供理论指导。
最后,可以通过数值模拟的方法来研究PN结正向压降与温度特性。
实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流S I 和压降F V 存在如下近似关系)exp(kTqV I I FS F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;S I 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT I g r S -= (2)其中C 是与结面积、掺质浓度等有关的常数;r 也是常数;)0(g V 为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKT V T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令=F I 常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项1V 外还包含非线性项1n V 项所引起的线性误差。
设温度由1T 变为T 时,正向电压由1F V 变为F V ,由(3)式可得[]rF g g F T T Ln q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=111)0()0( (4) 按理想的线性温度影响,F V 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5)TV F ∂∂1等于1T 温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()rT T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设K T 3001=,K T 310=,取4.3=r ,由(8)式可得mV 048.0=∆,而相应的F V 的改变量约mV 20,相比之下误差甚小。
大学物理实验报告 PN结的温度特性的研究及应用得分教师签名批改日期深圳大学实验报告课程名称: 大学物理实验(三)实验名称: pn结的温度特性的研究及应用学院:组号指导教师:报告人: 学号: 班级:实验地点实验时间:实验报告提交时间:1一、实验设计方案1、实验目的了解PN结正向压降随温度变化的基本关系式。
在工作电流恒定的情况下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。
设计用PN结测温的方法。
2、实验原理2.1 、PN结正向压降和工作电流、及所处的温度的关系:PN 结正向压降和工作电流、及所处的温度的基本函数关系如下:,,KcKT, ----------(1) 0lnlnVVTTVV,,,,,,,,,,,FgLNLqIqF,,其中: 导带,19q,,1.610C,为电子的电荷。
禁带EeV,gF-23-1,K=1.38×10JK,为玻尔兹曼常数,价带T――绝对温度。
图1 半导体的能带结I――PN结中正向电流。
f构γ 是热学中的比热容比,是常数。
V(0)是绝对零度时PN结材料的导带底和价带顶的电势差。
(半导体材料的能带理论中,把未g排满电子的能量区域称作价带,空着的能量区域叫导带,不能排列电子的能量区域叫禁带,如图1所示。
E叫禁带宽度.) g,,KTKc,,lnVT 其中,是线性项。
是非线性相。
0lnVVT,,,,,,NL,,LgqqIF,,非线性项较小,(常温下)可忽略其影响,在恒流供电条件下PN结的V对T的依赖关系F取决线性项,即正向压降几乎随温度升高而线性下降。
2.2、PN结测温的方法如果PN结正向压降在某一温度区域和温度变化恒定电流I F成线性关系,就可以利用这一特性将它作为温度传感器的转换探头,原理如图2所示。
将PN结做成的温度探头放在待温度显示结电压V F测环境中,通以恒定电流,温度变化可以引起结电压变化,图2 PN结测温原理测量结电压,将它转换成温度显示,从而达到测量温度的目的。
PN 结正向压降温度特性的研究姓名:兰菲 学号:PB07210059 系别:07006实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明 ])0(exp[kTqV CT Is g r-= (2)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T Ic In q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得 []rn F g g F T T q kT TT V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式: )(111T T TV V V F F F -∂∂+=理想(5)TV F ∂∂1等于T 1温度时的T VF ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k,T=310°k,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。