2020届陕西省富平县蓝光中学趣味数学-数学中的染色问题(共25张PPT)品质课件PPT
- 格式:pptx
- 大小:1.76 MB
- 文档页数:26
什么是染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。
染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。
这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。
染色问题基本解法:三面涂色和顶点有关 8个顶点。
两面染色和棱长有关。
即新棱长(棱长-2)×12一面染色和表面积有关。
同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*60面染色和体积有关。
用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一首先,拿到一道题先认真观察,看这个题的突破点。
什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。
找到这个区域问题就容易解决了。
这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。
完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。
这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。
区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。