实验三、集电极调幅与大信号检波
- 格式:doc
- 大小:3.53 MB
- 文档页数:8
实验三十三、幅度调制与解调实验一、实验目的1、加深理解幅度调制与检波原理。
2、掌握用集成模拟乘法器构成调幅与检波电路的方法。
3、了解二极管包络检波的主要指标、检波效率及波形失真。
二、实验原理和电路说明1、调幅与检波原理简述:调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅呈调制信号的规律变化:而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,抑制载波和一个边带的单边带调制信号。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管和晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
2、集成四象限模拟乘法器MCl496简介:本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。
它有两个输入端Vx、Vy和一个输出端V o。
一个理想乘法器的输出为V o=KVxVy,而实际输出存在着各种误差,其输出的关系为:V o=K(Vx+Vxos)(Vy+Vyos) + Vzox。
为了得到好的精度,必须消除Vxos、Vyos与Vzox三项失调电压。
集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8个有源晶体管。
本实验箱MCl496的内部原理图和管脚功能如图3-1所示:MCl496各引脚功能如下:(1)、SIG+信号输入正端(2)、GADJ增益调节端(3)、GADJ增益调节端(4)、SIG-信号输入负端(5)、BIAS偏置端(6)、OUT+正电流输出端(7)、空脚(8)、CAR+载波信号输入正端(9)、空脚(10)、CAR-载波信号输入负端(11)、空脚(12)、OUT-负电流输出端(13)、空脚(14)、V-负电源3、实际线路分析U501是幅度调制乘法器,音频信号和载波分别从J50l和J502输入到乘法器的两个输入端,K501和K503可分别将两路输入对地短路,以便对乘法器进行输入失调凋零。
调幅与检波实验报告调幅与检波实验报告引言:调幅与检波是无线电通信中常见的技术,它们在广播、电视等领域中发挥着重要作用。
本实验旨在探究调幅与检波的原理和应用,并通过实际操作来加深对这两种技术的理解。
一、调幅的原理与实验步骤调幅是一种将音频信号转换成无线电信号的技术。
它通过改变无线电信号的幅度来携带音频信息。
在实验中,我们使用了一个信号发生器和一个调幅解调器进行调幅实验。
首先,我们将信号发生器的输出连接到调幅解调器的输入端,调幅解调器的输出连接到示波器。
然后,我们设置信号发生器的频率和幅度,调整调幅解调器的解调频率,观察示波器上的波形变化。
实验结果表明,当调幅解调器的解调频率与信号发生器的频率相同时,示波器上显示出较为清晰的音频波形。
而当解调频率与信号发生器的频率不匹配时,示波器上的波形变得模糊不清。
这说明调幅解调器能够正确还原信号发生器中的音频信号。
二、检波的原理与实验步骤检波是一种将调幅信号还原成音频信号的技术。
在实际的无线电通信中,接收到的信号是经过调幅的,我们需要通过检波技术将其还原成原始的音频信号。
本实验中,我们使用了一个调幅信号发生器和一个检波器进行检波实验。
实验中,我们将调幅信号发生器的输出连接到检波器的输入端,检波器的输出连接到扬声器。
然后,我们调整调幅信号发生器的频率和幅度,观察扬声器中的音频输出。
实验结果显示,当调幅信号发生器的频率和幅度适当时,扬声器中可以听到清晰的音频声音。
这表明检波器能够有效地将调幅信号还原成原始的音频信号。
三、调幅与检波的应用调幅与检波技术在广播、电视等领域中得到广泛应用。
在广播中,调幅技术使得音频信号能够通过无线电波传播,使得人们可以在不同地方收听同一电台的节目。
而检波技术则使得收音机能够将接收到的调幅信号还原成音频信号,供人们收听。
在电视领域,调幅与检波技术同样发挥着重要作用。
调幅技术使得视频信号能够通过无线电波传输,使得人们可以在不同地方收看同一电视节目。
课程名称:高频电子线路实验项目:集电极调幅与大信号检波实验地点:多学科楼四层专业班级:信息1学号:2010学生姓名:指导教师:2013年1月5日一、实验目的1、进一步加深对集电极调幅和二极管大信号检波工作原理的理解;2、掌握动态调幅特性的测试方法;3、掌握利用示波器测量调幅系数m a的方法;4、观察检波器电路参数对输出信号失真的影响。
二、实验原理与线路1、原理(1) 集电极调幅的工作原理集电极调幅是利用低频调制电压去控制晶体管的集电极电压,通过集电极电压的变化,使集电极高频电流的基波分量随调制电压的规律变化,从而实现调幅。
实际上,它是一个集电极电源受调制信号控制的谐振功率放大器,属高电平调幅。
调幅管处于丙类工作状态。
集电极调幅的基本原理电路如图5—1所示:图5-1 集电极调幅原理电路图中,设基极激励信号电压(即载波电压)为:t V 000cos ωυ=则加在基射极间的瞬时电压为t V V BE B 00cos ωυ+-=调制信号电压υΩ 加在集电极电路中,与集电极直流电压V CC 串联,因此,集电极有效电源电压为()t m V t V V V V a CC CC CC C Ω+=+=+=ΩΩcos 1cos 0ωυ式中,V CC 为集电极固定电源电压; CC a V V m Ω=为调幅指数。
由式可见,集电极的有效电源电压VC 随调制信号压变化而变化。
由图5—2所示,图中,由于-V BB 与υb 不变,故m ax B v 为常数,又R P 不变,因此动态特性曲线的斜率也不变。
若电源电压变化,则动态线随V CC 值的不同,沿υc 平行移动。
由图可以看出,在欠压区内,当V CC 由V CC1变至V CC2(临界)时,集电极电流脉冲的振幅与通角变化很小,因此分解出的I cm1的变化也很小,因而回路上的输出电压υc 的变化也很小。
这就是说在欠压区内不能产生有效的调幅作用。
当动态特性曲线进入过压区后,V CC等于V CC3、V CC4等,集电极电流脉冲的振幅下降,出现凹陷,甚至可能使脉冲分裂为两半。
实训四 调幅与检波1 实训目的(1) 在以上实训的基础上,加强EWB 的熟练应用,掌握一些仿真的技巧。
(2) 进一步熟悉调幅电路、检波电路的工作原理。
(3) 观察调幅电路、检波电路的输出波形。
2 实训内容及步骤(1) 普通调幅电路。
① 利用EWB 绘制出如图A.9所示的普通调幅实训电路。
图A.9普通调幅实训电路② 按图A.9设置0U 、1U 、2U 以及电路中各元件的参数,打开仿真开关,从示波器上观察调幅波的波形以及调制信号1U 的关系,如图A.10所示。
图A.10 普通调幅电路的输入、输出波形③ 改变直流电压0U 值为4V ,观察过调幅现象(见图A.11)。
做好记录并说明原因。
图A.11 过调幅时的输入、输出波形分析:由上面两幅图的对比发现,改变0U 值使其变小后,输入的波形没有发生变化,但是输出波形的周期变长了 (2) 双边带调制电路。
① 利用EWB 绘制出双边带调制仿真电路,接上载波信号源1U 、调制信号2U 以及示波器,如图A.12所示。
② 按图A.12所示设置1U 、2U 的参数,打开仿真开关,从示波器上可以观察到双边带调制信号,说明双边带信号的特点。
输入调制信号波形及输出双边带信号波形如图A.13所示。
图A.14是其扩展方式的波形。
图A.14 双边带调制实训电路图A.13 调制信号与双边带信号的波形图A.14 扩展后的调制信号与双边带信号波形(3)二极管包络检波器。
①利用EWB绘制出如图A.15所示的二极管包络检波器的仿真实训电路。
图A.15 二极管包络检波器仿真实训电路U及各元件的参数,其中调幅信号源的调幅度M设为0.8.打开仿真开关,②按图A.15设置sU的关系,如图A.16所示。
从示波器上观察检波器输出波形以及输入调幅波信号s图A.16 检波器输出波形与输入调幅波的关系③将1p R跳到最大(100%),从示波器上可以观察到检波器的输出波形将出现惰性失真,如图A.17所示。
试分析其原因。
一、实验目的1. 理解集电极调幅的基本原理和过程;2. 掌握集电极调幅电路的组成和特性;3. 学习使用示波器等仪器进行信号测量和分析;4. 通过实验验证集电极调幅电路的工作性能。
二、实验原理集电极调幅是一种高频调制方式,其基本原理是利用低频调制信号去控制晶体管的集电极电压,从而改变集电极高频电流的基波分量,实现信号的调制。
在集电极调幅电路中,晶体管处于丙类工作状态,其集电极电流的基波分量随调制信号的规律变化,从而实现调幅。
三、实验仪器与设备1. 晶体管实验板;2. 晶体管(如2SC1815);3. 信号发生器;4. 示波器;5. 交流电源;6. 负载电阻;7. 连接线。
四、实验步骤1. 搭建集电极调幅实验电路,如图所示。
2. 将晶体管固定在实验板上,确保管脚正确连接。
3. 将信号发生器输出端连接到晶体管的基极,输入端连接到示波器,用于观察输入信号波形。
4. 将示波器的地线连接到实验板的地线。
5. 打开交流电源,调节信号发生器的输出电压,使其在晶体管的截止和饱和之间变化。
6. 观察示波器上的输入信号波形,分析输入信号的变化对集电极调幅电路的影响。
7. 改变信号发生器的输出频率,观察不同频率下集电极调幅电路的性能。
8. 改变负载电阻的阻值,观察负载电阻对集电极调幅电路的影响。
9. 记录实验数据,包括输入信号波形、输出信号波形、调制系数等。
五、实验结果与分析1. 输入信号波形:在实验过程中,观察到输入信号波形为正弦波,频率与信号发生器输出频率一致。
2. 输出信号波形:在实验过程中,观察到输出信号波形为调幅波,其幅度随输入信号的变化而变化。
3. 调制系数:通过计算输入信号与输出信号的峰值比,得出调制系数M。
4. 频率影响:改变信号发生器的输出频率,观察到在不同频率下,集电极调幅电路的性能基本稳定。
5. 负载电阻影响:改变负载电阻的阻值,观察到负载电阻对集电极调幅电路的影响较小。
六、实验结论1. 集电极调幅电路能够将输入的低频调制信号调制到高频信号上,实现信号的调制。
集电极调幅静态调制特性的测试
集电极调幅(Collector Modulation)是一种调制方式,它是通过改变信号源与NPN晶体管的集电极电路之间的直流偏置电压,从而实现对信号源的调制。
在进行集电极调制特性测试时,可以采用示波器等测试设备,按照以下步骤进行:
1.设置测试电路:将NPN晶体管的基极与电容相连,将信号源通过电容与NPN晶体管的集电极相连,并在中间加入电阻,同时连接电源。
此时,调整电源电压使晶体管处于静态工作状态。
2.观察输入输出波形:将输入信号源频率设置在100kHz左右,并逐渐增大输入信号幅度,观察输出波形的变化情况。
由于集电极调制是通过改变集电极电路的直流偏置电压来实现信号调制的,因此在测试时可以观察输出波形的幅度随输入信号幅度变化的情况。
3.计算调制指数:将输入信号源的幅度逐渐增大,记录下输出信号的最大幅度,并计算调制指数。
调制指数是指输出信号增益与输入信号的比值,反映了信号源信号对集电极电路的调制效果。
一般来说,调制指数越大,表示集电极调制效果越好。
需要注意的是,在测试过程中,需要采用适当的保护措施,注意电压大小和电流大小,避免损坏测试设备。
同时,在进行测试前,建议对测试电路进行认真的设计和仿真,确保测试结果的正确性和可靠性。
集电极调幅实验报告集电极调幅实验报告引言:无线电通信作为现代社会中不可或缺的一部分,其调制技术的研究和应用一直备受关注。
集电极调幅(Collector Modulation)作为一种常见的调制技术,具有简单可靠、成本低廉等优势,在广播、电视等领域中得到广泛应用。
本文将介绍我们进行的集电极调幅实验,包括实验目的、实验步骤、实验结果及分析。
实验目的:本次实验的目的是通过搭建集电极调幅电路,探究集电极调幅技术的原理与特点,并验证其在无线电通信中的应用效果。
通过实验,我们希望能够深入了解集电极调幅技术的工作原理,掌握其调制和解调过程,以及了解其在实际应用中的优缺点。
实验步骤:1. 实验准备:准备所需的电子元件和仪器设备,包括集电极调幅电路所需的电容、电感、晶体管等元件,以及示波器、信号发生器等仪器设备。
2. 搭建电路:按照实验指导书提供的电路图,将电子元件按照正确的连接方式搭建成集电极调幅电路。
3. 调试电路:通过调整电路中的元件数值和连接方式,使得电路能够正常工作,并能够实现对输入信号的调制和解调。
4. 实验测量:使用信号发生器产生一定频率和幅度的调制信号,并将其输入到集电极调幅电路中。
通过示波器观察和测量电路中的各个信号波形。
5. 数据记录和分析:记录实验中的各项数据,包括输入信号的频率、幅度,输出信号的调制深度等,并对实验结果进行分析和总结。
实验结果与分析:经过实验,我们成功搭建了集电极调幅电路,并通过信号发生器输入不同频率和幅度的调制信号进行测试。
通过示波器观察和测量,我们得到了电路中的各个信号波形,并进行了分析和解读。
在实验中,我们发现集电极调幅电路能够将输入信号进行调制,即将低频调制信号叠加到高频载波信号上。
通过调整电路中的元件数值和连接方式,我们可以改变调制信号的幅度和频率,从而实现对输出信号的调制深度的控制。
此外,我们还观察到,集电极调幅电路在调制过程中,输出信号的频谱发生了变化。
通过频谱分析,我们可以发现调制信号的频谱分布在载波频率的两侧,形成了上下边带。
实训项目01:调幅与检波 实训目的:1.multisim10软件常用菜单的使用。
2.搭接实训电路及测量仪器设备。
3. 进一步熟悉调幅电路、检波电路的工作原理。
4.观察调幅电路、检波电路的输出波形。
实训内容及步骤: (1)普通调幅电路。
1.利用multisim10软件绘制图的普通调幅电路如下图:②按图1设置U0、U1、U2以及电路中各元件的参数,从示波器上观察调 幅波的波形以及与调制信号U1的关系,观察图如下:③改变直流电压U0值为4V ,观察的波形如下图:观察得出此波形出现过条幅现象。
(2)二极管包络检波器1.利用multisim10软件绘制图二极管包络检波器电路如下:2.按图2设置各参数。
输入的调制信号的调制度设置为0.5,载波频率为10kHz,调制信号频率设置为800Hz,从示波器上观察检波输出波形以及与高频调幅波U1的关系.观察如下:3.改变载波频率观察输出如下(500Hz) ( 100kHz)观察得出载波频率频率变小,波形输出波形变化为标准的正弦波此时等幅频率变化均匀。
增大载波频率时输出输入出现了不等福现象,频率也增大了。
4.改变调制信号频率观察输出如下(80Hz) ( 1kHz) 观察得出调制信号频率减小时输入输出波形的频率大,增大调制信号频率时输出输入波形的频率减小。
5.改变电容的大小,观察输出如下:(100nF) (500nF) 增大电容输出波形的频率减小,振幅不变。
减小电容大小输入波形不变输出波形的频率减小。
(3)双边带调制及同步检波1.利用multisim10软件绘制双边带调制及同步检波2.从示波器上观察同步检波器输入的双边带信号及输出信号图如下:3.改变同步检波器参考信号的相位,观察输出波形的变化如下:\参考信号的改变会改变输入、输出波形的幅度,而频率不发生变化。
总结:通过这个项目我了解到了调幅与检波的过程以及对一些概念的了解。
调制:调制是在发送端将调制信号从低频段变换到高频段,便于天线发射,实现不同信号源,不同系统的分频复用,并改善性能。
实验三集电极调幅与大信号检波一、实验目的1、进一步加深对集电极调幅和二极管大信号检波工作原理的理解;2、掌握动态调幅特性的测试方法;3、掌握利用示波器测量调幅系数m a的方法;4、观察检波器电路参数对输出信号失真的影响。
二、实验内容1、调试集电极调幅电路特性,观察各点输出波形。
2、改变输入信号大小,观察电流波形。
3、观察检波器的输出波形。
三、实验仪器1、20MHz双踪模拟示波器一台2、BT-3频率特性测试仪(选项)一台四、实验原理1、原理(1) 集电极调幅的工作原理集电极调幅是利用低频调制电压去控制晶体管的集电极电压,通过集电极电压的变化,使集电极高频电流的基波分量随调制电压的规律变化,从而实现调幅。
实际上,它是一个集电极电源受调制信号控V Bmax制的谐振功率放大器,属高电平调幅。
调幅管处于丙类工作状态。
集电极调幅的基本原理电路如图5—1所示:图5-1 集电极调幅原理电路图中,设基极激励信号电压(即载波电压)为:t V 000cos ωυ=则加在基射极间的瞬时电压为t V V BE B 00cos ωυ+-=调制信号电压υΩ 加在集电极电路中,与集电极直流电压V CC 串联,因此,集电极有效电源电压为 ()t m V t V V V V a CC CC CC C Ω+=+=+=ΩΩcos 1cos 0ωυ式中,V CC 为集电极固定电源电压; CC a V V m Ω=为调幅指数。
由式可见,集电极的有效电源电压VC 随调制信号压变化而变化。
由图5—2所示,i c i cωt 0 V c4 V c3 V c2 V c1Vc0 欠压临界过压图5-2 同集电极电压相对应的集电极电流脉冲的变化情形图中,由于-V BB与υb不变,故v为常数,又R P不变,因此动Bm ax态特性曲线的斜率也不变。
若电源电压变化,则动态线随V CC值的不同,沿υc平行移动。
由图可以看出,在欠压区内,当V CC由V CC1变至V CC2(临界)时,集电极电流脉冲的振幅与通角变化很小,因此分解出的I cm1的变化也很小,因而回路上的输出电压υc的变化也很小。