高中数学第一章集合与函数1.2.5函数的定义域和值域练习湘教版必修1
- 格式:doc
- 大小:126.01 KB
- 文档页数:9
数学:第一章《集合与函数》单元测试(湘教版必修1)一、选择题(本大题共10个小题;每小题3分,共30分)在每小题给出的四个结论中,只有一项是符合题目要求的,把正确结论的代号填入本大题后的答题表内. 1.已知全集U R =,集合{|212}M x x =-≤-≤和{|21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A .3个B .2个C .1个D .无穷多个2.函数0)y x =≤的反函数是( )A .2(0)y x x =≥B .2(0)y x x =-≥C .2(0)y x x =≤D .2(0)y x x =-≤ 3.|x | < 2是|x | < 1的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件4.已知函数()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩ 若()()22f a f a ->,则实数a 的取值范围是( )A .()(),12,-∞-+∞B .()1,2-C .()2,1-D .()(),21,-∞-+∞5.函数)(x f 在区间(-2,3)上是增函数,则)5(+=x f y 的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)6.函数)(x f y =的定义域为[1,4],则函数)(x f y =的定义域是 ( )A .[1,2]B .[-2,2]C .]1,2][]2,1[--D .[1,16]7.已知复合命题“p 且q ”为假命题,则可以肯定的是( )A .p 为假命题B .q 为假命题C .p 、q 中至少有一个为假命D .p 、q 均为假命题 8.已知y n xm x y x y x a a a log ,11log ,)1(log ,0,0,122则且=-=+>>=+等于( )A .)(21n m + B .)(21n m - C .m + nD .m -n9.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于 ( )A .8B .2C .-4D .-810.已知B A Z x x N x B x N x A 则,},1|{},5|{∈>∈=≤∈=等于 ( )A .{1,2,3,4,5}B .{2,3,4}C .{2,3,4,5,}D .}51|{≤<∈x R x二、填空题(本大题共5个小题;每小题4分,共20分)把答案填在题中横线上.11.命题“若m > 0,则关于x 的方程x 2+ x -m = 0有实数根”的否命题是 . 12.函数29124)(x x x f -+-=的定义域为 .13.若函数=-⎪⎩⎪⎨⎧<=>+=)))9200(((,)0(0)0()0(1)(2f f f x x x x x f 则π . 14.已知函数)1(,12)(2++=x f x x f 则函数的值域为 .15.对于任意定义在R 上的函数)(x f ,若实数x 0满足00)(x x f =,则称x 0是函数f (x )的一个不动点.若二次函数1)(2+-=ax x x f 没有不动点,则实数a 的取值范围是 .三、解答题(本大题共5小题,共50分)解答应写出文字说明、演算步骤或证明过程. 16.(本小题满分8分) 试用定义判断函数),1(12)(+∞-=在区间x xx f 上的单调性. 17.(本小题满分10分) 比较2122255++xx 与的大小.18.(本小题满分10分)已知边长为1的正方形ABCD (如图),P 是对角线BD 上的点,连结AP 延长AP 交BC 或其延长线于Q ,设DP = x ,y 为△ADP 和△BPQ 的面积之和.写出y 关于x 的函数关系式.19.(本大题满分10分)已知二次函数x x f f bx ax x f ==+=)(,0)2()(2且方程满足有等根.(1)求f (x )的解析式;(2)求f (x )的值域;(3)是否存在实数m 、n(m<n),使f (x )的定义域和值域分别为[m ,n]和[4m ,4n].若存在,求出m 、n 的值;若不存在,请说明理由.20.(本大题满分12分)已知集合{})2(,,,,321≥=k a a a a A k 其中),,2,1(k i Z a i =∈,由A 中的元素构成两个相应的集合(){}A b a A b A a b a S ∈+∈∈=,,,,(){}A b a A b A a b a T ∈-∈∈=,,,,其中()b a ,是有序实数对,集合T S 和的元素个数分别为n m ,.若对于任意的A a A a ∉-∈,总有,则称集合A 具有性质P .(Ⅰ)检验集合{}3,2,1,0与{}3,2,1-是否具有性质P ,并对其中具有性质P 的集合写出 相应的集合T S 和; (Ⅱ)对任何具有性质P 的集合A ,证明:()21-≤k k n ;(Ⅲ)判断n m 和的大小关系,并证明你的结论.参考答案一、选择题1.B 2.B 3.B 4.C 5.B 6.D 7.C 8.B 9.C 10.C 1.B ;由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个.2.B ;【解1】因为0x ≤,所以0y ,由y =2x y =-,所以0)y x =≤的反函数为2(0)y x x =-≥.故选B .【解2】(排除法)因为0x ≤,所以排除A,C ;又因为0y =≥,所以排除D .故选B .4.C ;【解法1】函数()24f x x x =+在0x ≥时是增函数,函数()24f x x x =-在0x <时是增函数,并且当0x =时, 2244x x x x +=-,所以, ()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩在R 上是增函数.于是由()()22f a f a ->得22,a a ->即220a a +-<,解得21a -<<.故选C.【解法2】画出函数()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩的图象,可以看出,已知函数是R 上的增函数.于是由()()22f a f a ->得22,a a ->即220a a +-<,解得21a -<<.故选C. 【解法3】用特殊值排除.当0a =时,()()()()222448,00f a f f a f -==+===, 不等式()()22f a f a ->成立,从而排除A,D ;当1a =-时, ()()()()221145,1415f a f f a f -==+==-=--=-, 不等式()()22f a f a ->成立,从而排除B .故选C .二、填空题11.若m ≤0,则关于x 的方程x 2+ x -m = 0没有实数根;12.}32{; 13.12+π; 14.[)+∞,3; 15.13<<-a三、解答题16.解:设211x x <<…………2分则)1)(1()(2)()(211221---=-x x x x x f x f…………4分01010,1211221>->->-∴<<x x x x x x…………5分0)1)(1()(22112>---∴x x x x…………6分)()(,0)()(2121x f x f x f x f >>-∴即 …………7分 故函数f (x )在区间(1,+∞)上递减. …………8分17.解:∵5>1时或即当11,1,212222-<>>+>+∴x x x x x , …………2分 2122255++>xx…………4分 当11,1,212222-===+=+x x x x x 或即时…………5分 2122255++=xx…………6分 当11,1,212222<<-<+<+x x x x 即时,…………7分 2122255++<x x…………9分212212222255,11;55,11++++=-==>-<>∴xxx xx x x x 时或当时或当;当.55,1121222++<<<-x x x 时…………10分 18.解:(1)x BP x DP -=∴=2,…………2分又△APD ∽△BPQ (]2,0,2∈-=∴x xxQB …………5分BP BQ PD AD y 22212221⋅+⋅=…………8分则:(]2,0,1)1(22∈-+=x xx y …………10分19.解:(1)0)2(,)(2=+=f bx ax x f.21,1,00)1(0)1(,)(02,02422-===--=∆∴=-+==+=+∴a b b x b ax x x f b a b a 即有等根即又即x x x f +-=∴221)( …………3分(2)2121)1(2121)(22≤+--=+-=x x x x f∴函数⎥⎦⎤ ⎝⎛∞-21,)(的值域为x f…………6分(3)设有实数m 、n(m<n)使f (x )定义域为[m ,n],值域为[4m ,4n] 当81214,21)(,1max ≤≤==n n x f x 即时 …………7分⎩⎨⎧==∴n n f mm f n m x f 4)(4)(,],[)(则上是增函数在 …………8分⎩⎨⎧=-==-=∴0606n n m m 或或,由于0,6,=-=∴<n m n m 取…………10分20.(Ⅰ)解:集合{}3,2,1,0不具有性质P ,{}3,2,1-具有性质P ,其相应的集合T S 和是()(){}()(){}3,2,1,2,1.3,3,1-=--=T S ; …………3分(Ⅱ)证明:首先由A 中的元素构成的有序实数对共有2k 个,因为()T a a A i i ∈∈,,0),,2,1(k i =,又因为当A a A a ∉-∈时,,所以当()()T a a T a a i j j i ∉∈,,时,),,2,1(k i =.于是集合T 中的元素的个数最多为()()121212-=-=k k k k n ,即()21-≤k k n .…………6分(Ⅲ)解:n m =,证明如下:①对于()S b a ∈,,根据定义()T b b a A b a A b A a ∈+∈+∈∈,,,从而,则 如果()()d c b a ,,与是S 中的不同元素,那么d b c a ==与中至少有一个不成立,于是d c b a +=+与d b =中至少有一个不成立,故()b b a ,+与()d d c ,+也是T 中的不同元素.可见S 中的元素个数不多于T 中的元素个数,即n m ≤; …………9分②对于()T b a ∈,,根据定义()S b b a A b a A b A a ∈-∈-∈∈,,,从而,则 如果()()d c b a ,,与是T 中的不同元素,那么d b c a ==与中至少有一个不成立,于是d c b a -=-与d b =中至少有一个不成立,故()b b a ,-与()d d c ,-也是S 中的不同元素.可见T 中的元素个数不多于S 中的元素个数,即m n ≤. …………11分由①、②可知n m =. …………12分。
1.2.2表示函数的方法[学习目标] 1.把握函数的三种表示方法:解析法、图象法、列表法.2.会依据不同的需要选择恰当方法表示函数.[学问链接]1.在平面上,两个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可.2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a).3.函数y=x2-2x-3=(x+1)(x-3),所以函数与x轴的交点坐标为(-1,0),(3,0).[预习导引]1.表示函数的方法(1)把一个函数的对应法则和定义域交待清楚的方法,就是表示函数的方法;(2)表示函数的三种主要方法分别是:解析法、图象法和列表法.2.解析法(1)解析式:把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式,也叫作解析表达式或函数关系式.(2)解析法就是用解析式来表示函数的方法.3.图象法函数图象的作图过程通常有列表、描点、连线三个步骤.要点一待定系数法求函数解析式例1(1)已知反比例函数f(x)满足f(3)=-6,求f(x)的解析式;(2)一次函数y=f(x),f(1)=1,f(-1)=-3,求f(3).解(1)设反比例函数f(x)=kx(k≠0),由f(3)=k3=-6,解得k=-18,故f(x)=-18x.(2)设一次函数f(x)=ax+b(a≠0),∵f(1)=1,f(-1)=-3,∴⎩⎪⎨⎪⎧a+b=1,-a+b=-3,解得⎩⎪⎨⎪⎧a=2,b=-1,∴f(x)=2x-1.∴f(3)=2×3-1=5.规律方法待定系数法求函数解析式的步骤如下:(1)设出所求函数含有待定系数的解析式.如一次函数解析式设为f(x)=ax+b(a≠0),反比例函数解析式设为f(x)=kx(k≠0),二次函数解析式设为f(x)=ax2+bx+c(a≠0).(2)把已知条件代入解析式,列出含待定系数的方程或方程组.(3)解方程或方程组,得到待定系数的值.(4)将所求待定系数的值代回原式.跟踪演练1已知二次函数f(x)满足f(0)=1,f(1)=2,f(2)=5,求该二次函数的解析式.解设二次函数的解析式为f(x)=ax2+bx+c(a≠0),由题意得⎩⎪⎨⎪⎧c=1,a+b+c=2,4a+2b+c=5,解得⎩⎪⎨⎪⎧a=1,b=0,c=1,故f(x)=x2+1.要点二换元法(或配凑法)求函数解析式例2求下列函数的解析式:(1)已知f⎝⎛⎭⎫1+xx=1+x2x2+1x,求f(x);(2)已知f(x+1)=x+2x,求f(x).解(1)方法一(换元法)令t=1+xx=1x+1,有x=1t-1.则t≠1.把x=1t-1代入f⎝⎛⎭⎫1+xx=1+x2x2+1x,得f (t )=1+⎝⎛⎭⎫1t -12⎝⎛⎭⎫1t -12+11t -1=(t -1)2+1+(t -1)=t 2-t +1. ∴所求函数的解析式为 f (x )=x 2-x +1,(x ≠1)方法二 (配凑法)∵f ⎝⎛⎭⎫1+x x =1+x 2+2x -2x x 2+1x=⎝⎛⎭⎫1+x x 2-1+x -x x =⎝⎛⎭⎫1+x x 2-1+xx +1, ∴f (x )=x 2-x +1. 又∵1+x x =1x+1≠1,∴所求函数的解析式为f (x )=x 2-x +1(x ≠1). (2)方法一 (换元法)令x +1=t (t ≥1), 则x =(t -1)2,∴f (t )=(t -1)2+2(t -1)2=t 2-1. ∴f (x )=x 2-1(x ≥1).方法二 (配凑法)∵x +2x =(x +1)2-1, ∴f (x +1)=(x +1)2-1.又∵x +1≥1,∴f (x )=x 2-1(x ≥1).规律方法 1.换元法的应用:当不知函数类型求函数解析式时,一般可接受换元法.所谓换元法,即将“x +1”换成另一个字母“t ”,然后从中解出x 与t 的关系,再代入原式中求出关于“t ”的函数关系式,即为所求函数解析式,但要留意换元前后自变量取值范围的变化状况.2.配凑法的应用:对于配凑法,通过观看与分析,将右端的式子“x +2x ”变成含有“x +1”的表达式.这种解法对变形力量、观看力量有较高的要求.跟踪演练2 已知函数f (x +1)=x 2-2x ,则f (x )=________. 答案 x 2-4x +3解析 方法一 (换元法)令x +1=t ,则x =t -1, 可得f (t )=(t -1)2-2(t -1)=t 2-4t +3, 即f (x )=x 2-4x +3.方法二 (配凑法)由于x 2-2x=(x 2+2x +1)-(4x +4)+3 =(x +1)2-4(x +1)+3,所以f (x +1)=(x +1)2-4(x +1)+3, 即f (x )=x 2-4x +3. 要点三 作函数的图象例3 作出下列函数的图象: (1)y =x +1(x ∈Z ); (2)y =x 2-2x (x ∈[0,3)).解 (1)这个函数的图象由一些点组成,这些点都在直线y =x +1上,如图(1)所示.(2)由于0≤x <3,所以这个函数的图象是抛物线y =x 2-2x 介于0≤x <3之间的一部分,如图(2)所示. 规律方法 1.作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表画出图象.2.函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要留意关键点,如图象与坐标轴的交点、区间端点,二次函数的顶点等等,特殊要分清区间端点是实心点还是空心点. 跟踪演练3 画出下列函数的图象: (1)y =x +1(x ≤0);(2)y =x 2-2x (x >1或x <-1).解 (1)y =x +1(x ≤0)表示一条射线,图象如图(1).(2)y =x 2-2x =(x -1)2-1(x >1或x <-1)是抛物线y =x 2-2x 去掉-1≤x ≤1之间的部分后剩余的曲线. 图象如图(2).1.已知函数f (x )由下表给出,则f (3)等于( )A.1C .3D .不存在答案 C解析 由表可知f (3)=3.2.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x答案 C解析 设y =k x ,由1=k2得,k =2.因此,y 关于x 的函数关系式为y =2x .3.若f (x +2)=2x +3,f (3)的值是( ) A .9 B .7 C .5 D .3 答案 C解析 令x +2=3,则x =1,∴f (3)=2×1+3=5.4.假如二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( ) A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1答案 D解析 由二次函数的图象开口向上且关于直线x =1对称,可排解A 、B ;又图象过点(0,0),可排解C ;D 项符合题意.5.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),那么f ⎣⎡⎦⎤1f (3)的值等于________.答案 2解析 由函数f (x )图象,知f (1)=2,f (3)=1, ∴f ⎣⎡⎦⎤1f (3)=f (1)=2.1.函数三种表示法的优缺点2.描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线. 3.求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法等.一、基础达标1.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )等于( ) A .3x +2 B .3x -2 C .2x +3D .2x -3答案 B解析 设f (x )=kx +b (k ≠0),∵2f(2)-3f (1)=5,2f (0)-f (-1)=1,∴⎩⎪⎨⎪⎧ k -b =5,k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 2.小明骑车上学,开头时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上大事吻合得最好的图象是( )答案 C解析 距学校的距离应渐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C. 3.已知f (x -1)=x 2,则f (x )的解析式为( ) A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -1答案 A解析 令x -1=t ,则x =t +1,∴f (t )=f (x -1) =(t +1)2=t 2+2t +1,∴f (x )=x 2+2x +1.4.等腰三角形的周长为20,底边长y 是一腰长x 的函数,则( ) A .y =10-x (0<x ≤10)B .y =10-x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)答案 D解析 ∵2x +y =20,∴y =20-2x , 解不等式组⎩⎪⎨⎪⎧20-2x >0,x +x >y =20-2x ,x >0,得5<x <10.5.已知函数f (x ),g (x )分别由下表给出(1)f [g (1)]=________;(2)若g [f (x )]=2答案 (1)1 (2)1解析 由表知g (1)=3, ∴f [g (1)]=f (3)=1;由表知g (2)=2,又g [f (x )]=2,得f (x )=2, 再由表知x =1.6.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________. 答案 5解析 ∵f (2x +1)=3x -2=32(2x +1)-72,∴f (x )=32x -72,∵f (a )=4,即32a -72=4,∴a =5. 7.画出二次函数f (x )=-x 2+2x +3的图象,并依据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.解 f (x )=-(x -1)2+4的图象,如图所示:(1)f (0)=3,f (1)=4,f (3)=0,∴f (1)>f (0)>f (3).(2)由图象可以看出, 当x 1<x 2<1时,函数f (x )的函数值随着x 的增大而增大,∴f (x 1)<f (x 2).(3)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4]. 二、力量提升8. 假如f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 答案 B解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x1-x , 则有f (t )=1t1-1t =1t -1,故选B.9.函数y =x 2-4x +6,x ∈[1,5)的值域是________. 答案 [2,11)解析 画出函数的图象,如下图所示,观看图象可得图象上全部点的纵坐标的取值范围是 [f (2),f (5)),即函数的值域是[2,11).10.若2f (x )+f ⎝⎛⎭⎫1x =2x +12(x ≠0),则f (2)=________. 答案 52解析 令x =2得2f (2)+f ⎝⎛⎭⎫12=92, 令x =12得2f ⎝⎛⎭⎫12+f (2)=32, 消去f ⎝⎛⎭⎫12得f (2)=52. 11.已知二次函数f (x )满足f (0)=0,且对任意x ∈R 总有f (x +1)=f (x )+x +1,求f (x ). 解 设f (x )=ax 2+bx +c (a ≠0),∵f (0)=c =0, ∴f (x +1)=a (x +1)2+b (x +1) =ax 2+(2a +b )x +a +b ,f (x )+x +1=ax 2+bx +x +1 =ax 2+(b +1)x +1.∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1, ∴⎩⎨⎧a =12,b =12.∴f (x )=12x 2+12x .三、探究与创新12.求下列函数的解析式:(1)已知f ⎝⎛⎭⎫x -1x =x 2+1x2+1,求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式. 解 (1)f ⎝⎛⎭⎫x -1x =⎝⎛⎭⎫x -1x 2+2+1=⎝⎛⎭⎫x -1x 2+3. ∴f (x )=x 2+3.(2)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得: f (x )=13x 2-2x .13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解 由于对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x , 有f (0)=f (x )-x (2x -x +1), 即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。
必修1 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称记号意义性质示意图交集A B I{|,x x A ∈且}x B ∈(1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆IBA并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集U A ð{|,}x x U x A ∈∉且(1)()U A A =∅I ð(2)()U A A U =U ð(3)()()()U U U A B A B =I U 痧? (4)()()()U U U A B A B =U I 痧?【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义 (2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性 (3)利用函数图象(在某个区间图 象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存 在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是 函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象判定方法yxo函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图: 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第一章 集合与函数概念第一讲 集合★热点考点题型探析考点一:集合的定义及其关系 题型1:集合元素的基本特征[例1](20XX 年江西理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素 [解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
1.本章主要内容有集合的初步知识;基于集合和对应观点的函数概念,函数的表示和基本性质;二次函数的图象和性质.2.集合是最基本的数学概念,元素和集合的关系(属于或不属于),集合的关系及运算(包含、相等、交、并、补),这些都是今后经常要使用的数学概念,要能熟练地运用集合语言描述数学事实.3.集合的表示方法有列举法、描述法和图象法,其中图象法又有维恩图表示和对特定数集(区间)在数轴上表示的方法.4.以x为自变量的函数y=f(x)就是从它的定义域到值域的一个映射.设b=f(a),那么(a,b)就是函数图象上的一个点,所有这样的点组成的集合就是函数y=f(x)的图象.显然,任作垂直于x轴的直线,它和任一函数的图象最多只能有一个公共点.5.函数的定义域有两种确定方式,即由解析式确定或由函数对应法则的实际含义所确定.一般说,如给出了一个解析式而未说明它的实际含义,那么这一函数的定义域就是使解析式有意义的自变量的取值范围.6.函数的单调递增和单调递减的概念、直观形象和基本判别方法;函数的最大(小)值和最大(小)值点的概念和直观形象;奇函数和偶函数的概念、直观形象和基本判别方法.7.二次函数的图象特征、增减性、对称性、顶点和在一个区间的最大、最小值.8.分段函数概念的引入是因为解决实际问题的需要,与分段函数有关的问题,必然要分段讨论,这里再次提醒,分段函数是一个函数而不是两个或更多个函数.题型一 集合的运算集合的运算是指集合间的交、并、补这三种常见的运算,在运算过程中往往由于运算能力差或考虑不全面而出现错误,不等式解集之间的包含关系通常用数轴法,而用列举法表示的集合运算常用Venn 图法,运算时特别注意对∅的讨论,不要遗漏. 例1 已知集合A ={x |0≤x ≤2},B ={x |a ≤x ≤a +3}. (1)若(∁R A )∪B =R ,求a 的取值范围. (2)是否存在a 使(∁R A )∪B =R 且A ∩B =∅?解 (1)A ={x |0≤x ≤2}, ∴∁R A ={x |x <0,或x >2}. ∵(∁R A )∪B =R .∴⎩⎪⎨⎪⎧a ≤0,a +3≥2,∴-1≤a ≤0, 即a 的取值范围是[-1,0]. (2)由(1)知(∁R A )∪B =R 时, -1≤a ≤0,而a +3∈[2,3],∴A ⊆B ,这与A ∩B =∅矛盾.即这样的a 不存在.跟踪演练1 (1)已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________. (2)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B 等于( ) A .(-∞,2] B .[1,2] C .[-2,2]D .[-2,1]答案 (1){6,8} (2)D解析 (1)先计算∁U A ,再计算(∁U A )∩B . ∵U ={2,3,6,8},A ={2,3},∴∁U A ={6,8}.∴(∁U A )∩B ={6,8}∩{2,6,8}={6,8}.(2)先化简集合A ,再借助数轴进行集合的交集运算. A ={x ∈R ||x |≤2}={x ∈R |-2≤x ≤2},∴A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}. 题型二 函数的概念与性质研究函数往往从定义域、值域、单调性、奇偶性、对称性入手,分析函数的图象及其变化趋势,从近几年的高考形式来看,对函数性质的考查体现了“小”、“巧”、“活”的特征,做题时应注重上述性质知识间的融合.例2 已知函数f (x )=mx 2+23x +n 是奇函数,且f (2)=53.(1)求实数m 和n 的值;(2)求函数f (x )在区间[-2,-1]上的最值. 解 (1)∵f (x )是奇函数, ∴f (-x )=-f (x ),∴mx 2+2-3x +n =-mx 2+23x +n =mx 2+2-3x -n . 比较得n =-n ,n =0. 又f (2)=53,∴4m +26=53,解得m =2. 因此,实数m 和n 的值分别是2和0. (2)由(1)知f (x )=2x 2+23x =2x 3+23x .任取x ∈[-2,-1],且h <0, 则f (x +h )-f (x )=23(x +h +1x +h -x -1x )=2h 3·x (x +h )-1x (x +h ). ∵h <0,x ∈[-2,-1], ∴x (x +h )>1,即x (x +h )-1>0,∴f (x +h )-f (x )<0,∴函数f (x )在[-2,-1]上为增函数, 因此f (x )max =f (-1)=-43,f (x )min =f (-2)=-53.跟踪演练2 (1)函数y =21-1-x 的定义域为( )A .(-∞,1)B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. 答案 (1)B (2)-x (x +1)2解析 (1)要使函数有意义,则⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0,即x ≤1且x ≠0.(2)设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1). 又因为f (x +1)=2f (x ), 所以f (x )=f (x +1)2=-x (x +1)2.题型三 函数图象及其应用函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于图象正确的画出.函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点. 例3 对于函数f (x )=x 2-2|x |.(1)判断其奇偶性,并指出图象的对称性; (2)画此函数的图象,并指出单调区间和最小值.解 (1)函数的定义域为R ,关于原点对称,f (-x )=(-x )2-2|-x |=x 2-2|x |. 则f (-x )=f (x ),∴f (x )是偶函数.图象关于y 轴对称.(2)f (x )=x 2-2|x |=⎩⎪⎨⎪⎧x 2-2x =(x -1)2-1,x ≥0,x 2+2x =(x +1)2-1,x <0.画出图象如图所示,根据图象知,函数f (x )的最小值是-1. 单调增区间是[-1,0],[1,+∞); 减区间是(-∞,-1],[0,1].跟踪演练3 对于任意x ∈R ,函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者,则f (x )的最小值是________. 答案 2解析 首先应理解题意,“函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者”是指对某个区间而言,函数f (x )表示-x +3,32x +12,x 2-4x +3中最大的一个.如图,分别画出三个函数的图象,得到三个交点A (0,3),B (1,2),C (5,8).从图象观察可得函数f (x )的表达式:f (x )=⎩⎪⎨⎪⎧x 2-4x +3, x ≤0,-x +3, 0<x ≤1,32x +12, 1<x ≤5,x 2-4x +3, x >5.f (x )的图象是图中的实线部分,图象的最低点是点B (1,2),所以f (x )的最小值是2. 题型四 分类讨论思想分类讨论思想的实质是:把整体问题化为部分来解决,化成部分后,从而增加题设条件,在解决含有字母参数的问题时,常用到分类讨论思想,分类讨论要弄清对哪个字母进行分类讨论,分类的标准是什么,分类时要做到不重不漏.本章中涉及到分类讨论的知识点为:集合运算中对∅的讨论,二次函数在闭区间上的最值问题、函数性质中求参数的取值范围问题等. 例4 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1),函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2),最小值为f (1)=1;当t >1时,函数图象如图(3),函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.综上所述f (x )min=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.跟踪演练4 已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解 ∵A ∪B =A ,∴B ⊆A .(1)当B ≠∅时,由x 2-3x +2=0,得x =1或2.当x =1时,a =2;当x =2时,a =1.(2)当B=∅时,即当a=0时,B=∅,符合题意.故实数a组成的集合C={0,1,2}.1.函数单调性的判定方法(1)定义法.(2)直接法:运用已知的结论,直接判断函数的单调性,如一次函数,二次函数,反比例函数;还可以根据f(x),g(x)的单调性判断-f(x),1f(x),f(x)+g(x)的单调性等.(3)图象法:根据函数的图象判断函数的单调性.2.二次函数在闭区间上的最值对于二次函数f(x)=a(x-h)2+k(a>0)在区间[m,n]上的最值问题,有以下结论:(1)若h∈[m,n],则y min=f(h)=k,y max=max{f(m),f(n)};(2)若h∉[m,n],则y min=min{f(m),f(n)},y max=max{f(m),f(n)}(a<0时可仿此讨论).3. 函数奇偶性与单调性的差异函数的奇偶性是相对于函数的定义域来说的,这一点与研究函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对函数定义域内的每一个x值,都有f(-x)=-f(x)或[f(-x)=f(x)],才能说f(x)是奇函数(或偶函数).。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
分段函数[学习目标].能说出分段函数的定义.能根据题意用分段函数表示函数关系.会画出分段函数的图象.能求分段函数的函数值或由函数值求自变量的值.[知识链接]作函数的图象通常分三步,即列表、描点、连线.[预习导引].如果自变量在定义域的不同取值范围内时,函数由不同的解析式给出,这种函数叫作分段函数..分段函数就是在函数定义域内,对于自变量的不同取值范围,有着不同的对应法则的函数..分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集..作分段函数图象时,应分别作出每一段的图象.要点一分段函数求值例已知函数()=()求(-),(-),[(-)]的值;()若()=,求实数的值.解()由-∈(-∞,-],-∈(-),-∈(-∞,-],知(-)=-+=-,(-)=(-)+×(-)=-.∵=-+=-,而-<-<,∴[(-)]==+×=-=-.()当≤-时,+=,即=>-,不合题意,舍去.当-<<时,+=,即+-=.所以(-)(+)=,得=,或=-.∵∈(-),-∉(-),∴=符合题意.当≥时,-=,即=符合题意.综上可得,当()=时,=,或=.规律方法.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值..已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解.跟踪演练已知函数()=则()等于()...答案解析()==.要点二分段函数的图象及应用例已知()=()画出()的图象;()求()的定义域和值域.解()利用描点法,作出()的图象,如图所示.()由条件知,函数()的定义域为.由图象知,当-≤≤时,()=的值域为[],当>或<-时,()=,所以()的值域为[].。
1.1 集合1.1.1 集合的含义和表示第1课时集合的概念[学习目标] 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.4.会判断集合是有限集还是无限集.[知识链接]1.在初中,我们学习数的分类时,学过自然数的集合,正数的集合,负数的集合,有理数的集合.2.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3.解不等式2x-1>3得x>2,即所有大于2的实数集在一起称为这个不等式的解集.4.一元二次方程x2-3x+2=0的解是x=1,x=2.[预习导引]1.集合的概念在数学语言中,把一些对象放在一起考虑时,就说这些事物组成了一个集合,给这些对象的总的名称,就是这个集合的名字.这些对象中的每一个,都叫作这个集合的一个元素.我们约定,同一集合中的元素是互不相同的.2.元素与集合的关系3.常用数集及符号表示4.集合⎩⎨⎧有限集:元素个数有限的集合无限集:元素无限多的集合空集:没有元素的集合,记作∅.要点一 集合的基本概念例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; (2)不超过20的非负数;(3)直角坐标平面内第一象限的一些点; (4)3的近似值的全体.解 (1)“高个子”没有明确的标准,因此不能构成集合.(2)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以“3的近似值的全体”不能构成集合.规律方法 判断一组对象能否构成集合的关键在于看是否有明确的判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.跟踪演练1 下列所给的对象能构成集合的是________. (1)所有正三角形;(2)第一册课本上的所有难题; (3)比较接近1的正整数全体; (4)某校高一年级的16岁以下的学生. 答案 (1)(4) 解析要点二 元素与集合的关系例2 所给下列关系正确的个数是( ) ①-12∈R ;②2∉Q ;③0∈N +;④|-3|∉N +.A .1B .2C .3D .4 答案 B解析 -12是实数,2是无理数,∴①②正确.N +表示正整数集,∴③和④不正确.规律方法 1.由集合中元素的确定性可知,对任意的元素a 与集合A ,在“a ∈A ”与“a ∉A ”这两种情况中必有一种且只有一种成立.2.符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系. 3.“∈”和“∉”具有方向性,左边是元素,右边是集合.跟踪演练2 设不等式3-2x <0的解集为M ,下列关系中正确的是( )。
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
必修1第一章集合与函数基础知识点整理 第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉; 由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况:⑴方程有等根且不是 △=0,得94a =-,此时的解为12x =,合.,而另一解不是x 代入得a =1x =⑶方程有一解为:将x =a =1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.A BBA AB A BA .B .C .D . 第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0};∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,. 【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ). 解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的B (读作“B (读作“解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C ð.解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴ ()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C AB =,()()()U U U C A C B C A B =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9AB =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}AB =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值. 解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-. (i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B =由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U AC B .第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f(x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞,∴ f .又 ∵,∴ f3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12bx x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a -∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减.【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244acb a -;当0a <时,函数取最大值244acba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数2y x =+.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 22y =+,函数的最小值为2.点评:形如y ax b =+±的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.t ,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-.所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系. ¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x=-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有 3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|f x x x x x f x -=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩.两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致, ∴ 0x <时,22()2(1)224f x x x x =-++=--.点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-, 所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.∵ 22(33)(32)f a a f a a +-<-, ∴ 223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求) 1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减. 2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )MNAMNNMMNA.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( ) A .a ≥5 B .a ≥3 C .a ≤3 D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U 11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y = D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上) 13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB 二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3).所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。
必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。
1.2.5 函数的定义域和值域[学习目标] 1.理解函数的定义域和值域.2.会求一些常见函数的定义域和值域.[知识链接]1.已知函数解析式求定义域时应注意从哪些方面使表达式有意义? 答案 应注意以下几点: (1)分式的分母不为零; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0.2.求出函数定义域后应写成什么形式? 答案 定义域应写成集合或区间的形式. [预习导引] 1.函数的定义域(1)实际问题中的函数,它的自变量的值不但要使函数表达式有意义,还受到实际问题的限制,要符合实际情形.(2)函数的定义域就是使函数的表达式有意义的自变量的变化范围. 2.函数的值域(1)函数的值域是指函数值的集合.(2)常数函数y =c 的值域是{c },一次函数y =ax +b 的值域是R ,反比例函数y =kx的值域是{y |y ∈R ,y ≠0}.要点一 求函数的定义域 例1 求下列函数的定义域: (1)y =x +1+12-x ;(2)y =x -1x +1. 解 (1)由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠2.所以函数y =x +1+12-x的定义域是 {x |x ≥-1,且x ≠2}.(2)要使函数有意义,则⎩⎪⎨⎪⎧x -1≥0,x +1>0,解得⎩⎪⎨⎪⎧x ≥1,x >-1,即x ≥1.所以函数y =x -1x +1的定义域为[1,+∞). 规律方法 求定义域的实质就是求使函数表达式有意义的自变量x 的取值范围.常有以下几种情况:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f (x )是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合; (4)如果f (x )是由几个部分构成的,那么函数的定义域是使各部分都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);(5)如果f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.跟踪演练1 求下列函数的定义域: (1)f (x )=1-x 21+x ;(2)f (x )=x -1·x +1. 解 (1)依题意有1+x ≠0, ∴x ≠-1,即定义域为{x |x ≠-1}. (2)依题意有⎩⎪⎨⎪⎧x -1≥0,x +1≥0,∴x ≥1,即定义域为{x |x ≥1}. 要点二 求函数的值域 例2 求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =xx +1;(4)y =1-x 21+x 2;(5)y =5+4x -x 2.解 (1)将x =1,2,3,4,5分别代入y =2x +1中计算得: 函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1, 即所求函数的值域为[1,+∞). (3)∵1x +1≠0, ∴y =xx +1=1-1x +1≠1. ∴所求函数的值域是{y |y ∈R ,且y ≠1}. (4)∵y =1-x 21+x 2=-1+21+x 2,∴函数的定义域为R ,∵x 2+1≥1.∴0<21+x 2≤2,∴y ∈(-1,1].∴所求函数的值域为(-1,1]. (5)∵y =5+4x -x 2=-x -2+9,且0≤-(x -2)2+9≤9. ∴所求函数的值域为[0,3].规律方法 求函数的值域问题首先必须明确两点:一是对于定义域A 上的函数y =f (x ),其值域就是集合C ={y |y =f (x ),x ∈A };二是函数的定义域,对应法则是确定函数值域的依据. 跟踪演练2 求下列函数的值域: (1)y =1x 2+2;(2)y =2x -5x +1; (3)y =-x 2+2x +1;(4)y =1-x 1+x .解 (1)∵x 2+2≥2, ∴0<1x 2+2≤12, ∴函数y =1x 2+2的值域是(0,12]. (2)∵y =2x -5x +1=-7x +1+2,∴y ≠2,∴y =2x -5x +1的值域是{y |y ∈R ,且y ≠2}.(3)y =-x 2+2x +1=2-x -2,∵0≤2-(x -1)2≤2, ∴0≤2-x -2≤2,∴y =-x 2+2x +1的值域是[0,2]. (4)由y =1-x 1+x 得,x =1-yy +1,∴y ≠-1.∴函数y =1-x1+x的值域是{y |y ∈R ,且y ≠-1}.1.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1,或x ≤0} D .{x |0≤x ≤1}答案 D解析 ⎩⎪⎨⎪⎧1-x ≥0,x ≥0⇒0≤x ≤1.2.函数y =x -1x在[1,2]上的最大值为( )A .0 B.32C .2D .3答案 B解析 y =x -1x在[1,2]上是递增函数,∴y max =2-12=32.3.函数y =2-3x的值域是( )A .(-∞,-2)∪(2,+∞)B .(-∞,2)∪(2,+∞)C .(-∞,2)D .(2,+∞)答案 B解析 当x ≠0时,3x ≠0,2-3x≠2,故值域是(-∞,2)∪(2,+∞),选B.4.函数f (x )=(2x -4)0的定义域是( )A .RB .(2,+∞)C .{x |x ≠2}D .{x |x ≠4}答案 C解析 依题意知2x -4≠0,x ≠2,所以定义域是{x |x ≠2},选C. 5.函数y =x +1x的定义域为________________. 答案 {x |x ≥-1,且x ≠0}解析 要使函数y =x +1x 有意义须⎩⎪⎨⎪⎧x +1≥0,x ≠0,即⎩⎪⎨⎪⎧x ≥-1,x ≠0,∴定义域为{x |x ≥-1,且x ≠0}.1.求函数值域,应理解两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域是指集合B ={y |y =f (x ),x ∈A };二是函数的定义域,对应法则及函数的性质是确定值域的依据.目前常用的方法有:图象法、配方法、分离常数法、换元法等. 2.求函数的定义域一般有三类问题:(1)若已知函数解析式比较复杂,求定义域时通常根据各种条件列不等式组求解. (2)由y =f (x )的定义域,求复合函数f [g (x )]的定义域问题,实际上是已知中间变量u =g (x )的值域,求自变量x 的取值范围问题.(3)若是实际问题除应考虑解析式本身有意义外,还应使实际问题有意义.一、基础达标1.函数f (x )=1-x 2+x 2-1的定义域为( ) A .{1} B .{-1} C .{(-1,1)} D .{-1,1}答案 D解析 由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1.2.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞)C .(-∞,0]D .(-∞,-1]答案 B解析 ∵x +1≥0,∴y =x +1≥0. 3.函数y =2x3x -4的值域是( )A .(-∞,43)∪(43,+∞)B .(-∞,23)∪(23,+∞)C .RD .(-∞,23)∪(43,+∞)答案 B解析 ∵y =2x3x -4=23x -+833x -4=23+833x -4,∴y ≠23.4.已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系式为y =10-2x ,此函数的定义域为( ) A .RB .{x |x >0}C .{x |0<x <5}D .{x |52<x <5}答案 D解析 △ABC 的底边长显然大于0,即y =10-2x >0, ∴x <5,又两边之和大于第三边,∴2x >10-2x , ∴x >52,∴此函数的定义域为{x |52<x <5}.5.y =x +4x +2的定义域为________________. 答案 {x |x ≥-4,且x ≠-2}解析 依题意知⎩⎪⎨⎪⎧x +4≥0,x ≠-2,∴x ≥-4且x ≠-2.6.若f (x )=x +53x +1,则其值域为________.答案 {y |y ∈R ,且y ≠13}解析 f (x )=13x ++1433x +1=13+14x +≠13. 7.若函数y =k x(k >0)在[2,4]上的最小值为5,则k 的值为________. 答案 20解析 因为k >0,所以函数y =k x 在[2,4]上是递减函数,所以当x =4时,y =k4最小,由题意知,k4=5,k =20.二、能力提升8.函数y =12+3x 2的值域是( )A .(0,12]B .(0,12)C .(0,+∞)D .(-∞,12]答案 A解析 ∵x 2≥0,∴3x 2≥0,2+3x 2≥2,0<12+3x 2≤12.∴值域为(0,12],选A.9.已知函数f (x )的定义域为[a ,b ],则y =f (x +a )的定义域为( ) A .[2a ,a +b ] B .[0,b -a ] C .[a ,b ]D .无法确定答案 B解析 由a ≤x +a ≤b 得0≤x ≤b -a , ∴f (x +a )的定义域为[0,b -a ].10.已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为________. 答案 [0,1]解析 依题意,当x ∈R 时,mx 2-6mx +m +8≥0恒成立.当m =0时,x ∈R ;当m ≠0时,⎩⎪⎨⎪⎧m >0,Δ≤0,即⎩⎪⎨⎪⎧m >0,-6m 2-4m m +解之得0<m ≤1,故0≤m ≤1. 11.求下列函数的值域: (1)y =2--x 2+4x ;(2)y =x 2+2x 2-3;(3)y =x 2-3x +16+x -x 2(x ∈{0,1,2,3}). 解 (1)∵y =2-4-x -2,而0≤4-x -2≤2,∴0≤y ≤2,故所求的值域为[0,2].(2)由y =x 2+2x 2-3,得x 2=3y +2y -1,而x 2≥0,∴3y +2y -1≥0,等价于(y -1)(3y +2)≥0,且y -1≠0,解得y >1或y ≤-23.故所求的值域为(-∞,-23]∪(1,+∞).(3)∵x =0时,y =4;x =1时,y =2;x =2时,y =14-2;x =3时,y =10.故所求的值域为{4,2,14-2,10}. 三、探究与创新12.用长为30的铁丝弯成下部为矩形,上部为等边三角形的框架.若等边三角形的边长为x ,求此框架面积y 与x 的函数解析式,并写出其定义域.解 由于等边三角形的边长为x ,由勾股定理可求得其高为32x ,于是其面积y 1=12·x ·32x =34x 2. 又下部矩形的一边长为x ,另一边长为30-3x 2=15-32x ,所以其面积y 2=(15-32x )x .于是框架面积y =y 1+y 2=34x 2+(15-32x )x =3-64x 2+15x . 依题意知⎩⎪⎨⎪⎧x >0,15-32x >0,所以0<x <10.即该函数的定义域是(0,10). 13.若f (x )=2-x +3x +1的定义域为A ,g (x )=x -a -a -x (a <1)的定义域为B ,当B ⊆A 时,求实数a 的取值范围.解 由2-x +3x +1≥0,得x -1x +1≥0, ∴⎩⎪⎨⎪⎧ x -1≥0,x +1>0,或⎩⎪⎨⎪⎧x -1≤0,x +1<0.∴⎩⎪⎨⎪⎧x ≥1,x >-1,或⎩⎪⎨⎪⎧x ≤1,x <-1.∴f (x )的定义域A ={x |x ≥1,或x <-1} ∵a <1,∴a +1>2a . 由(x -a -1)(2a -x )≥0,得 [x -(a +1)](x -2a )≤0, ∴2a ≤x ≤a +1.即g (x )的定义域为B ={x |2a ≤x ≤a +1}. 又∵B ⊆A ,∴a +1<-1或2a ≥1. ∴a <-2或a ≥12.又∵a <1.∴a <-2或12≤a <1.即实数a 的取值范围是(-∞,-2)∪[12,1).。