3.4实际问题与一元一次方程1(配套问题)
- 格式:ppt
- 大小:552.50 KB
- 文档页数:14
人教版七年级上册数学第三章一元一次方程应用题--配套问题1.某车间每天能制作甲种零件400只,或者制作乙种零件200只,1只甲种零件需要和3只乙种零件配成一套.现要在49天内制作最多的成套产品,则甲乙两种零件各应制作多少天.2.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要两个螺母与之配套,如何安排生产才能让螺栓和螺母正好配套?设若x名工人生产螺栓,其余工人生产螺母,根据题意所列方程为__.3.某车间有技术工人56人,平均每天每人可加工甲种部件18个或乙种部件15个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?4.制作一张桌子要用一个桌面和4条桌腿,31m木材可制作20个桌面,或者制作400条桌腿,现有312m木材,应怎样计划用料才能制作尽可能多的桌子?5.某车间有150名工人,每人每天加工螺栓15个或螺母20个,要使每天加工的螺栓和螺母刚好配套(一个螺栓套两个螺母),应如何分配加工螺栓.螺母的工人?6.某工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?7.某车间有27个工人,生产甲、乙两种零件,已知每人每天平均能生产甲种零件22个或乙种零件16个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每2个甲种零件和1个乙种零件配成一套)8.用白铁皮做罐头盒,每张铁片可制盒身16 个或制盒底43 个,一个盒身与两个盒底配成一套罐头盒,现有150 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?9.一家眼镜厂,有28个工人加工镜架和镜片,每人每天可加工镜架68副或镜片102副.为了使每天加工的镜架和镜片成套,应如何分配工种人数?10.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人,应怎样分配人力,才能使生产的杯身和杯盖正好配套?11.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,恰好每天生产的螺栓和螺母按1:2配套,求多少人生产螺栓,多少生产螺母?12.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放10辆自行车,则还剩6辆自行车需要最后再摆;如果每人摆放12辆自行车,则有一名同学少摆放6辆自行车。
3.4 实际问题与一元一次方程——配套问题一、单选题1.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每天可以生产400个口罩面或500个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下列所列方程正确的是()A.B.C.D.2.某校手工社团30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翼,一个飞机模型要一个机身配两个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翼?设分配x名学生做机身,则可列方程为()A.B.C.D.3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排名工人生产螺母,则下列方程正确的是()A.B.C.D.4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有个人,则可列方程是()A.B.C.D.5.用100张白铁皮做罐头盒,每张白铁皮可做盒身15个,或者做盒底45个,一个盒身与两个盒底配成一套罐头盒.设用张白铁皮做盒身,则可列方程为().A.B.C.D.6.某车间56名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓24个或螺母36个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为( )A.24x=36(56﹣x)B.2×24x=36(56﹣x)C.24×36x=36(56﹣x)D.24x=2×36(56﹣x)7.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个部件和两个部件组成.在规定时间内,每人可以组装好10个部件或20个部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1508.服装厂要为某校生产一批某型号校服,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产校服,要使上衣和裤子刚好配套,则共能生产校服( )A.210套B.220套C.230套D.240套二、填空题9.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排________名工人生产螺钉.10.一张方桌由一个桌面、四条桌腿组成,如果1m3木料可以做方桌的桌面40个或做桌腿240条,现有6m3木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿恰好配套?设用x立方米木料做桌面,由题意列方程,得__________.11.某车间有20名工人,生产一种特殊的螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x名工人生产螺栓,其余的工人生产螺母,且每天生产的螺母恰好是螺栓的2倍.则可列方程为_____.12.某眼镜厂车间有28名工人,每人每天可生产镜架40个或者镜片60片,已知一个镜架配两片镜片,为使每天生产的镜架和镜片刚好配套,应安排生产镜架和镜片的工人各多少名?若安排名工人生产镜片,则可列方程:______.13.现用110立方米木料制作桌子和椅子,已知1张桌子配6把椅子,1立方米木料可做5把椅子或1张桌子.设用x立方米的木料做桌子,则依题意可列方程为_______________.14.某车间每天能制作甲种零件350只,或制作乙种零件150只,甲乙两种零件各一只配成一套产品,现要在30天内制作最多的成套产品,则制作甲零件需要的天数是______.15.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有______人.16.某糕点厂要制作一批盒装蛋糕,每盒中装2块大蛋糕和4块小蛋糕,制作1块大蛋糕要用0.05kg面粉,1块小蛋糕要用0.02kg面粉.现共有面粉450kg,用_________kg面粉制作大蛋糕,才能生产最多的盒装蛋糕.三、解答题17.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现在有30立方米木材,应怎样计划用料才能制作尽可能多的桌子?18.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?19.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装200个苹果或者300个梨,每个果篮中放3个苹果和2个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?20.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?参考答案:1.C2.C3.B4.C5.B6.B7.A8.D9.1010.11.12.60x=2×40(28-x)13.14.9天15.10.16.250 ;17.用25立方米制作桌面,用5立方米制作桌腿18.46人生产甲种零件,48人生产乙种零件,每天生产552套20.(1)男生21人,女生24人(2)不配套;男生要支援女生3人。
实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。
现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
第三章一元一次方程3.4实际问题与一元一次方程第课时1一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1 个螺钉配2 个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?1学生讨论后,独立尝试列方程.在本问题中“1 个螺钉配 2 个螺母”中包含的等量关系较 隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然 后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改 以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问 题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排 x 名工人生产螺钉,(22-x )名工人生产螺母.依题意得:2 000(22-x )=2×1 200x .解方程,得:5(22-x )=6x ,110-5x =6x ,x =10.22-x =12.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.另解:设应安排 x 名工人生产螺母,(22-x )名工人生产螺钉.依题意得:2×1 200(22-x )=2 000x .解方程,得:x =12.22-x =10.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.例 2 整理一批图书,由一个人做要 40 h 完成.现计划由一部分人先做 4 h ,然后增加 2 人与他们一起做 8 h ,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工 作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人 1 小时的工作量).(2)若设先由 x 人做 4 小时,完成的工作量是________.再增加 2 人和前一部分人一起 做 8 小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系. 解:设安排 x 人先做 4 h . 8 x +2 4x 依题意得: + 40=1. 40 2解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4。
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法。
【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力。
【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题。
一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮。
②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮。
③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______。
【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考。
教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x)。
依次我们可列得方程为3×16x=2×\[10×(85—x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母。
3.4实际问题与一元一次方程(一)——配套问题一、学习目标会利用方程思想解决“配套”实际问题二、导学指导与检测导学导学检测及课堂展示从前面的讨论中已经可以看出,方程是分析和解决问题的一种很有用的数学工具.本节我们重点讨论如何用一元一次方程解决实际问题.例1:某中学80名共青团员到水利工地参加义务劳动,若每人每天平均挖土5立方米或运土3立方米,他们应该有多少人挖土,多少人运土,才能将挖出的土及时运走?分析:这个问题中所含的等量关系有两个,请找出来,并思考它们的作用是什么?等量关系1:______________________________________等量关系2:配套关系:挖出的土的数量:运出的土的数量=_______:________阅读教材100页例2:某车间有22名工人,每人每天可生产1200个螺丝钉或2000个螺母。
一个螺丝钉需要配两个螺母,为使每天生产的螺丝钉和螺母刚好配套,应安排生产螺丝钉和生产螺母的工人各多少名?分析:如果设x名工人生产螺母,则生产螺钉的人数是_______人;共生产的螺母数量是__________个;共生产的螺钉数量是_________个.每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套.(配套标准:螺钉数量:螺母数量=_____:_______)则可列方程为:_______________________归纳总结:在现实生活和生产中常见配套问题,解决这类题目的基本的等量关系就是生产(或加工)的各种零配件的总数比 = 一套组合件各种零配件的数量比(即配套标准).例3:某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?分析:这个问题中所含的等量关系有两个,请找出来,并思考它们的作用是什么?等量关系1:______________________________________这类问题中配套的物品之间具有一定的数量关系,这可以作为列方程的依据.1.一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现有12立方米木材,应该怎样计划木料才能使制作的桌面和桌腿恰好配套?2.课本第101页第1题;106页习题3.4第3题;3.新观察(大本):P82,第1-4题;P92(共5题)今日之事今日毕 日积月累成大器。