2010.1海淀高三期末试卷分析(数学)
- 格式:ppt
- 大小:547.00 KB
- 文档页数:14
2010届北京市海淀区第一学期高三年级期末练习数学试卷(文科)1.225sin =( )A .1B .—1C .22D .—22 2.下面给出四个点中,位于⎩⎨⎧>+-<-+0101y x y x 所表示的平面区域内的点是( )A .(0,2)B .(—2,0)C .(0,—2)D .(2,0) 3.双曲线222=-x y 的渐近线方程是( )A .x y ±=B .x y 2±=C .x y 3±=D .x y 2±=4.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样, 系统抽样5.已知n m ,是两条不同直线,βα,是两个不同平面.下列命题中不.正确的是 ( )A .若n m n m //,,//则=βααB .若αα⊥⊥n m n m 则,,//C .若βαβα//,,则⊥⊥m mD .若βαβα⊥⊂⊥则,,m m6.如图,向量b a -等于( )A .2142e e --B .2124e e --C .213e e -D .2133e e +7.若直线l 与直线7,1==x y 分别交于点P ,Q ,且线段PQ 的中点坐标为(1,—1),则直线l 的斜率为 ( )A .31B .—31 C .—23 D .32 8.已知椭圆C :1422=+y x 的焦点为F 1,F 2,若点P 在椭圆上,且满足|PO|2=|PF 1|·|PF 2| (其中O 为坐标原点),则称点P 为“★点”.那么下列结论正确的是 ( )A .椭圆C 上的所有点都是“★点”B .椭圆C 上仅有有限个点是“★点” C .椭圆C 上的所有点都不是“★点”D .椭圆C 上有无穷多个点(但不是所有的点)是“★点”第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.抛物线x y 42=的准线方程是____________10.某程序的框图如图所示,则执行该程序,输出的S=11.一个几何体的三视图如图所示,则该几何体的表面积为__________________.12.在区间[—2,2]上,随机地取一个数x ,则2x 位于0到1之间的概率是____________.13.已知F 1为椭圆12:22=+y x C 的左焦点,直线1:-=x y l 椭圆C 交于A 、B 两点,那么|F 1A|的+|F 1B|值为_______.14.对于函数)(x f ,若存在区间M M x x f y y b a b a M =∈=<=}),(|{),(],,[使得,则称区间M 为函数)(x f 的一个“稳定区间”.请你写出一个具有“稳定区间”的函数__________;(只要写出一个即可) 给出下列4个函数:①xe xf =)(;②3)(x x f =,③x x f 2cos)(π= ④1ln )(+=x x f其中存在“稳定区间”的函数有_______(填上正确的序号) 15.(本小题共12分)已知集合}1521|{},052|{+<<+=<-+=a x a x P x x x S (I )求集合S ;(II )若P S ⊆,求实数a 的取值范围. 16.(本小题共13分)某校高三年级进行了一次数学测验,随机从甲乙两班各抽取6名同学,所得分数的茎叶图如下图所示:(I )根据茎叶图判断哪个班的平均分数较高,并说明理由;(II )现从甲班这6名同学中随机抽取两名同学,求他们的分数之和大于165分的概率.17.(本小题共14分)长方体ABCD —A 1B 1C 1D 1中AB=1,AA 1=AD=2.点E 为AB 中点. (I )求三棱锥A 1—ADE 的体积; (II )求证:A 1D ⊥平面ABC 1D 1;(III )求证:BD 1//平面A 1DE.18.(本小题共13分)函数).(1)(2R a x ax x f ∈++=. (I )若))1(,1()(f x f 在点处的切线斜率为21,求实数a 的值; (II )若1)(=x x f 在处取得极值,求函数)(x f 的单调区间. 19.(本小题共14分)已知圆C 经过点)2,0(),0,2(B A -,且圆心在直线x y =上,且,又直线l :1+=kx y 与圆C 相交于P 、Q 两点. (I )求圆C 的方程;(II )若⋅=—2,求实数k 的值;(III )过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN面积的最大值.20.(本小题共14分)已知函数.),(,0:}{.,)(*112N n a f a a a R m m x x f n n n ∈==∈+=+如下定义数列其中 (I )当m=1时,求432,,a a a 的值;(II )是否存在实数m ,使432,,a a a 构成公差不为0的等差数列?若存在,请求出实数m 的值,若不存在,请说明理由;(III )求证:当41>m 时,总能找到.2010,>∈k a N k 使得。
海淀区高三年级第一学期期末练习数 学(文)答案及评分参考 2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA, ...............................7分 π<<A 0 , 3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分,23b a =且B b A a sin sin = , ....................................10分s i n b B =, ∴1sin =B , ....................................11分π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且ACBD O =,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分 ⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A =且1,AA AC ⊂平面11ACC A ,.................................10分⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分 所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+;....................................10分当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+; 当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠=,所以120DOC ∠=. ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩, 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ ,代入(2)2t y x =-得到2222288(2)244t t ty t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠,所以有212212240836722112136MQt y t t k t x t t -+===----+, 22222280842811214NQt y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =,{}{}910,11,12,,19,20B x A x =∈>=不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+,使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m ,从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分说明:其它正确解法按相应步骤给分.。
北京海淀区2010届高三二模试卷分析(文数)2010年高三“二模”试题,因为和新课改接轨所以与往年相比变化很大,然而试题的难度特点和往年比没有大的变化,整份试题一般是形成一个坡度或两个坡度,最多在选择题和填空题中各设置一道较难的题。
而今年的特点是选择题中和填空题各有两道难度较大的题。
另外一个不同点是解答题20题前两问难度适当,特别是文科试卷使得较优秀的考生都能取得较好的成绩(我校的考生最高得分145)。
理科试卷要去的很优秀的成绩就不那么容易了。
于是,客观地说今年的“二模”数学试题理科比往年难度增加很多,文科试题基本上没有太大的变化。
从知识内容来讲,和往年相比变化较大,不仅仅新课改的内容增加了,代数、几何的分值由原来的各占一半到现在的代数大于几何的分值,六个解答题分别考察了三角函数(文科)、概率统计、立体几何导数与不等式、平面解析几何、、数列与函数六个部分的数学知识。
从题型看:今年的试题出现了更多的新题。
因此考试过后,理科考生对试题的评价普遍反映很难。
应该承认对绝大部分考生来说,“新”就是“难”,没有见过的就是难的,既然都见过,当然觉得比较容易。
我们认为今年的数学试题不仅出现了更多的新题型,而且许多题目从解题方法上是非常灵活的。
如理科的第3小题还考察了平面几何的知识(弦切角定理)、第4小题考察了数形结合法比较灵活,给优秀生提供了发挥能力的平台。
第8小题新颖考察出学生的运用图形解决问题的理解深度。
第14小题. 是考核学生阅读数学文章的能力,一旦学生们在读题时失去信心就很难得分了。
(实际上很多优秀生本题都失分了)况且这些题基本上都安排在试卷的前面,这将对考生的心里承受能力是一个严峻的考验。
综上种种原因,这样一套试卷对于优秀生能考出信心,对中等偏下的学生也有发挥的空间。
作为“二模”试卷应该说是一套难得的。
此外,我认为在今年的试题中也出现了一些优秀试题,值得我们在今后的数学教学中给予关注。
例如文科的15、17的第二问、18、20题和理科的第18、19、20题。
北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,A B ⊆,那么下列结论中可能不成立的是( )(A )AB A = (B )A B B =(C )()U A B ≠∅ð (D )()U B A =∅ð(2)抛物线22y x =的准线方程为( ) (A )18y =-(B )14y =- (C )12y =- (D )1y =- (3)将函数cos 2y x =的图象按向量(,1)4a π=平移后得到函数()f x 的图象,那么( )(A )()sin 21f x x =-+ (B )()sin 21f x x =+ (C )()sin 21f x x =-- (D )()sin 21f x x =- (4)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a c 3=,30B =?,那么角C 等于( )(A )120° (B )105° (C )90° (D )75° (5)位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为3R π(R 为地球半径),那么x 等于( )(A )30 (B ) 45 (C ) 60 (D )75 (6)已知定义域为R 的函数()f x ,对任意的R x Î都有1(1)()22f x f x +=-+恒成立,且1()12f =,则(62)f 等于 ( ) (A )1 (B ) 62 (C ) 64 (D )83(7)已知{},1,2,3,4,5αβÎ,那么使得sin cos 0αβ?的数对(),αβ共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个(8)如果对于空间任意()2n n ³条直线总存在一个平面α,使得这n 条直线与平面α所成的角均相等,那么这样的n ( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)22462limnnn ++++= .(10)如果()1,10,1x f x x ì£ïï=íï>ïî,, 那么()2f f 轾=臌 ;不等式()1212f x -?的解集是 .(11)已知点1F 、2F 分别是双曲线的两个焦点, P 为该双曲线上一点,若12PF F ∆为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .(13)已知直线0=++m y x 与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,||||OA OB AB +?,那么实数m 的取值范围是 .(14)已知:对于给定的*q N Î及映射*:,N f AB B.若集合C A Í,且C 中所有元素对应的象之和大于或等于q ,则称C 为集合A 的好子集. ① 对于2q =,{},,A a b c =,映射:1,f x x A ,那么集合A 的所有好子集的个数为 ;② 对于给定的q ,{}1,2,3,4,5,6,A π=,映射:f A B ®的对应关系如下表:x12 3 4 5 6π()f x1 1 1 1 1yz若当且仅当C 中含有π和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组(),,q y z : . 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知函数22()sin )cos()cos 44f x x x x x ππ=++---. (Ⅰ)求函数)(x f 的最小正周期和单调递减区间;(Ⅱ)求函数)(x f 在25,1236ππ轾犏-犏臌上的最大值和最小值并指出此时相应的x 的值. (16)(本小题共12分)已知函数)(x g 是2()(0)f x x x =>的反函数,点),(00y x M 、),(00x y N 分别是)(x f 、)(x g 图象上的点,1l 、2l 分别是函数)(x f 、)(x g 的图象在N M ,两点处的切线,且1l ∥2l . (Ⅰ)求M 、N 两点的坐标;(Ⅱ)求经过原点O 及M 、N 的圆的方程. (17)(本小题共14分)已知正三棱柱111C B A ABC -中,点D 是棱AB的中点,11,BC AA ==.(Ⅰ)求证://1BC 平面DC A 1; (Ⅱ)求1C 到平面1A DC 的距离; (Ⅲ)求二面角1D AC A --的大小.(18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关. 若1≤T ,则销售利润为0元;若31≤<T ,则销售利润为100元;若3>T ,则销售利润为200元. 设每台该种电器的无故障使用时间1≤T ,31≤<T 及3>T 这三种情况发生的概率分别为321,,p p p ,又知21,p p 是方程015252=+-a x x 的两个根,且32p p =.(Ⅰ)求321,,p p p 的值;(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (Ⅲ)求销售两台这种家用电器的销售利润总和的平均值. (19)(本小题共14分)已知点()0,1A 、()0,1B -,P 是一个动点,且直线PA 、PB 的斜率之积为12-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,QMN ∆的面积记为S ,若对满足条件的任意直线l ,不等式tan S MQN λ≤恒成立,求λ的最小值. (20)(本小题共14分)如果正数数列{}n a 满足:对任意的正数M ,都存在正整数0n ,使得0n a M >,则称数列{}n a 是一个无界正数列.(Ⅰ)若()32s i n ()1,2,3,n a n n =+=, 1, 1,3,5,,1, 2,4,6,,2n n nb n n ⎧=⎪⎪=⎨+⎪=⎪⎩分别判断数列{}n a 、{}n b 是D C 1B 1A 1CBA否为无界正数列,并说明理由;(Ⅱ)若2n a n =+,是否存在正整数k ,使得对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立; (Ⅲ)若数列{}n a 是单调递增的无界正数列,求证:存在正整数m ,使得122312009mm m a a a a a a +-+++<. 海淀区高三年级第一学期期末练习 数学(理科)参考答案及评分标准 2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分) (9)1 (10)1,[0,1] (111(12)94(13)(2,[2,2)- (14) 4,(5,1,3) 三、解答题(本大题共6小题,共80分) (15)(本小题共12分)解:(Ⅰ)22()sin )cos()cos 44f x x x x x ππ=++-- 2sin(2)6x π=- ………………………………………………4分所以22T ππ==. ………………………………………………5分 由()3222262Z k x k k πππππ+???得所以函数)(x f 的最小正周期为π,单调递减区间为5[,]36k k ππππ++()k ∈Z .………………………………………………7分 (Ⅱ)由(Ⅰ)有()2sin(2)6f x x π=-.因为25,1236x ππ轾犏?犏臌, 所以112,639x πππ轾犏-?犏臌. 因为411sin()sin sin 339πππ-=<,所以当12x π=-时,函数)(x f取得最小值-3x π=时,函数)(x f 取得最大值2.………………………………………………12分(16)(本小题共12分) 解:(Ⅰ)因为2()(0)f x x x =>,所以()0)g x x =>.从而,2)(x x f ='()g x ¢=. ………………………………………………3分所以切线21,l l 的斜率分别为,2)(001x x f k ='=00221)(y y g k ='=.又2000(0)y x x =>,所以2012k x =. ………………………………………………4分 因为两切线21,l l 平行,所以21k k =. ………………………………………………5分从而20(2)1x =.因为00x >, 所以012x =. 所以N M ,两点的坐标分别为)21,41(),41,21(. ………………………………………7分 (Ⅱ)设过O 、M 、N 三点的圆的方程为:220x y Dx Ey F ++++=.因为圆过原点,所以0F =.因为M 、N 关于直线y x =对称,所以圆心在直线y x =上. 所以D E =.又因为11(,)24M 在圆上, 所以512D E ==-. 所以过O 、M 、N 三点的圆的方程为:225501212x y x y +--=. ………………12分 (17)(本小题共14分)(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG .在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形, ∴DG ∥1BC . ………………………………………2分∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC .………………………………………4分解法一:(Ⅱ)连结1DC ,设1C 到平面1A DC 的距离为h .∵四边形11ACC A 是平行四边形,∴1118C A CD V -=. ………………………………………6分在等边三角形ABC 中,D 为AB 的中点, ∵AD 是1A D 在平面ABC 内的射影,∴1CD A D ^. ………………………………………8分∴111313C A DC A DCV h S -∆==. ………………………………………9分 (Ⅲ)过点D 作DE AC ⊥交AC 于E ,过点D 作1DF A C ⊥交1A C 于F ,连结EF .∵平面ABC ⊥平面11ACC A ,DE ⊂平面ABC ,平面ABC平面11ACC A AC =,∴DE ⊥平面11ACC A .∴EF 是DF 在平面11ACC A 内的射影.∴DFE Ð是二面角1D AC A --的平面角. ………………………………………12分 在直角三角形ADC中,AD DC DE AC ×==同理可求:118A D DC DF AC ×==.∴DFE ?………………………………………14分解法二:过点A 作AO BC ⊥交BC 于O ,过点O 作F ED C 1B 1A 1CBAOE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,BC AA ==,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,A ⎛ ⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,1(4D ,112C ⎛⎫- ⎪⎝⎭. ………………………………………6分 (Ⅱ)设平面1A DC 的法向量为(),,n x y z =,则取x =1A DC 的一个法向量为()3,1,3n =-. ………………………………………8分∴1C 到平面1A DC 的距离为:13913CC n n⋅=………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面1ACA 的一个法向量为()13,0,1n =-. …………………………12分设二面角1D AC A --的大小为θ,则1cos cos ,n n θ=<>=∴θ=. ………………………………………14分 (18)(本小题共14分)解:(Ⅰ)由已知得1321=++p p p .21,p p 是方程015252=+-a x x 的两个根, ∴511=p ,5232==p p . ………………………………………3分 (Ⅱ)ξ的可能取值为0,100,200,300,400. ………………………………………4分()400=ξP =2545252=⨯. ………………………………………9分随机变量ξ的分布列为:ξ 0 100 200 300 400P251 254 258 258 254………………………………………11分 (Ⅲ)销售利润总和的平均值为E ξ=2544002583002582002541002510⨯+⨯+⨯+⨯+⨯=240. ∴销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出E ξ,没有说明平均值为240元,扣1分. (19)(本小题共14分)解:(Ⅰ)设动点P 的坐标为(),x y ,则直线,PA PB 的斜率分别是11,y y x x-+. 由条件得1112y y x x-+?-. 即()22102x y x +=?. 所以动点P 的轨迹C 的方程为()22102x y x +=?. ………………………………………5分 注:无0x ¹扣1分. (Ⅱ)设点,M N 的坐标分别是()()1122,,,x y x y .当直线l 垂直于x 轴时,21212111,,2x x y y y ==-=-=. 所以()()()1122112,,2,2,QM x y QN x y x y =-=-=--. 所以()22111722QM QNx y ?--=. ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为()1y k x =+,由221,2(1)x y y k x ìïï+=ïíïï=+ïî得()2222124220k x k x k +++-=. 所以 2122, 21422212221k k x x k k x x +-=+-=+. ………………………………………9分 所以()()()12121212122224QM QNx x y y x x x x y y ?--+=-+++.因为()()11221,1y k x y k x =+=+, 所以()()()()2221212217131712422212QM QNk x x k x x k k ?++-+++=-<+.综上所述⋅的最大值是217. ………………………………………11分 因为tan S MQN λ≤恒成立,即1sin ||||sin 2cos MQN QM QN MQN MQNλ⋅≤恒成立. 由于()2171302212QM QNk ?->+. 所以cos 0MQN >.所以2QM QN λ⋅≤恒成立. ………………………………………13分 所以λ的最小值为174. ………………………………………14分 注:没有判断MQN Ð为锐角,扣1分. (20)(本小题共14分)解:(Ⅰ){}n a 不是无界正数列.理由如下:取M = 5,显然32sin()5n a n =+≤,不存在正整数0n 满足05n a >;{}n b 是无界正数列.理由如下:对任意的正数M ,取0n 为大于2M 的一个偶数,有0012122n n M b M ++=>>,所以{}n b 是无界正数列. ………………………………………4分(Ⅱ)存在满足题意的正整数k .理由如下: 当3n ³时, 因为12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即取3k =,对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立. ……………………9分 注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列{}n a 是单调递增的正数列,所以12231n n a a a n a a a +⎛⎫-+++ ⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即12123111n n n a a a a n a a a a +++++<-+. 因为{}n a 是无界正数列,取12M a =,由定义知存在正整数1n ,使1112n a a +>. 所以1112123112n n a a a n a a a ++++<-.由定义可知{}n a 是无穷数列,考察数列11n a +,12n a +,13n a +,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数2n ,使得()112112122123112n n n n n n a a a n n a a a ++++++++<--.重复上述操作,直到确定相应的正整数4018n .则401840181212140184017231111222n n a a a n n n n n a a a +⎛⎫⎛⎫⎛⎫+++<-+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即存在正整数4018m n =,使得122312009mm m a a a a a a +-+++<成立. ………………………………………14分。
2023-2024学年北京市海淀区高三上学期期末练习数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则()A. B. C. D.2.如图,在复平面内,复数,对应的点分别为,,则复数的虚部为()A. B. C. D.3.已知直线,直线,且,则()A.1B.C.4D.4.已知抛物线的焦点为F,点M在C上,,O为坐标原点,则()A. B.4 C.5 D.5.在正四棱锥中,,二面角的大小为,则该四棱锥的体积为()A.4B.2C.D.6.已知圆,直线与圆C交于A,B两点.若为直角三角形,则()A. B. C. D.7.若关于x的方程且有实数解,则a的值可以为()A.10B.eC.2D.8.已知直线,的斜率分别为,,倾斜角分别为,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知是公比为的等比数列,为其前n项和.若对任意的,恒成立,则()A.是递增数列B.是递减数列C.是递增数列D.是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF是正六边形,棱AG,BH,CI,DJ,EK,FL均垂直于底面ABCDEF,上顶由三个全等的菱形PGHI,PIJK,PKLG构成.设,,则上顶的面积为()参考数据:,A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,x的系数为__________.12.已知双曲线的一条渐近线为,则该双曲线的离心率为__________.13.已知点A,B,C在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则__________;点C到直线AB的距离为__________.14.已知无穷等差数列的各项均为正数,公差为d,则能使得为某一个等差数列的前n项和的一组,d的值为__________,__________.15.已知函数给出下列四个结论:①任意,函数的最大值与最小值的差为2;②存在,使得对任意,;③当时,对任意非零实数x,;④当时,存在,,使得对任意,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
海淀区高三年级第二学期期末练习数 学 (理科) 2010.5审核:陈亮 校对:张浩一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}0A x x =≥,{0,1,2}B =,则A .AB ⊂≠B .B A ⊂≠C .A B B =D .A B =∅2.函数()sin(2)3f x x π=+图象的对称轴方程可以为A .12x π=B .512x π=C .3x π=D .6x π=3.如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ∠=︒,则DBE ∠的大小为A . 20︒B . 40︒C . 60︒D . 70︒ 4.函数()2ln f x x x =--在定义域内零点的个数为A .0B .1C .2D .35.已知不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为A .1B .3-C .1或3-D .06.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能 使n α⊥成立的是A .αβ⊥,m β⊂B .//αβ,m β⊥C .αβ⊥,//n βD .//m α,n m ⊥7.按照如图的程序框图执行,若输出结果为15,则M 处条件为 A .16k ≥ B .8k < C .16k < D .8k ≥8.已知动圆C 经过点F (0,1),并且与直线1y =-相切,若直线34200x y -+=与圆C 有公共点,则圆C 的面积 A .有最大值为π B .有最小值为πC .有最大值为4πD .有最小值为4π二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.在极坐标系中,若点0(,)3A πρ(00ρ≠)是曲线2cos ρθ=上的一点,则0ρ= .10.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班各自5名学生学分的 标准差,则1s 2s .(填“>”、“<”或“=”)11.已知向量a =)0,1(,b =)1,(x ,若a b 2=,则x = ;a b += . 12. 已知数列{}n a 满足11a =,12n n n a a +=(n ∈N *),则910a a +的值为 . 13.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,若sin a c A =,则a bc+的最大值为 .14.给定集合{1,2,3,...,}n A n =,映射:n n f A A →满足: ①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取,n m A ∈若2m ≥,则有m {(1),(2),..,()}f f f m ∈..则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”.表1 表2(1)已知表2表示的映射f : 44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);(2)若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*(N )n ∈,求数列{}n b 的前n 项和n T .16.(本小题满分14分)已知四棱锥P A B C D -,底面A B C D 为矩形,侧棱P A A B C D ⊥底面,其中226B C A B P A ===,M N ,为侧棱PC 上的两个三等分点,如图所示. (Ⅰ)求证://AN MBD 平面;(Ⅱ)求异面直线AN 与PD 所成角的余弦值; (Ⅲ)求二面角M BD C --的余弦值.17.(本小题满分13分)为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立. (Ⅰ)求4人恰好选择了同一家公园的概率; (Ⅱ)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望. 18.(本小题满分13分)已知函数2()(2)e ax f x ax x =-,其中a 为常数,且0a ≥. (Ⅰ)若1a =,求函数()f x 的极值点;(Ⅱ)若函数()f x在区间上单调递减,求实数a 的取值范围. 19.(本小题满分13分)已知椭圆1C 和抛物线2C 有公共焦点F (1,0), 1C 的中心和2C 的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线2C 分别相交于A ,B 两点.(Ⅰ)写出抛物线2C 的标准方程;(Ⅱ)若12AM MB =,求直线l 的方程;(Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.20.(本小题满分14分)已知函数()f x 的图象在[,]a b 上连续不断,定义:1()min{()|}f x f t a t x =≤≤([,])x a b ∈, 2()max{()|}f x f t a t x =≤≤([,])x a b ∈.其中,min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数()f x 为[,]a b 上的“k 阶收缩函数”.(Ⅰ)若()cos f x x =,[0,]x π∈,试写出1()f x ,2()f x 的表达式;(Ⅱ)已知函数2()f x x =,[1,4]x ∈-,试判断()f x 是否为[1,4]-上的“k 阶收缩函数”,如果是,求出对应的k ;如果不是,请说明理由;(Ⅲ)已知0b >,函数32()3f x x x =-+是[0,]b 上的2阶收缩函数,求b 的取值范围.海淀区高三年级第二学期期末练习数学(理)参考答案及评分标准2010.5说明:合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.1 10.<11.212.48 1314.;84.三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a的公差为d,由2446,10a a S+==,可得11246434102a da d+=⎧⎪⎨⨯+=⎪⎩,………………………2分即1123235a da d+=⎧⎨+=⎩,解得111ad=⎧⎨=⎩,………………………4分∴()111(1)na a n d n n=+-=+-=,故所求等差数列{}n a 的通项公式为n a n =. ………………………5分 (Ⅱ)依题意,22n n n n b a n =⋅=⋅,∴12n n T b b b =+++231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅ ,………………………7分 又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅ ,………………9分两式相减得2311(22222)2n n n n T n -+-=+++++-⋅ ………………………11分()1212212n n n +-=-⋅-1(1)22n n +=-⋅-, ………………………12分∴1(1)22n n T n +=-⋅+.………………………13分16.(本小题满分14分)(Ⅰ)证明:连结AC 交BD 于O ,连结OM ,ABCD 底面为矩形, O AC ∴为中点, ………… 1分 M N PC 、为侧棱的三等分点, CM MN ∴=, //OM AN ∴ , ………… 3分 ,OM MBD AN MBD ⊂⊄ 平面平面,//AN MBD ∴平面. ………… 4分(Ⅱ)如图所示,以A 为原点,建立空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(3,6,0)C ,(0,6,0)D ,(0,0,3)P ,(2,4,1)M ,(1,2,2)N , (1,2,2),(0,6,3)AN PD ==-,………………………5分cos ,AN PD AN PD AN PD⋅∴<>==,………………………7分∴异面直线AN 与PD.………………………8分(Ⅲ) 侧棱PA ABCD ⊥底面,(0,0,3)BCD AP ∴=平面的一个法向量为, ………………………9分设MBD 平面的法向量为(,,)x y z =m ,D(3,6,0),(1,4,1)BD BM =-=-,并且,BD BM ⊥⊥ m m , 36040x y x y z -+=⎧∴⎨-++=⎩,令1y =得2x =,2z =-, ∴MBD 平面的一个法向量为(2,1,2)=-m . ………………………11分 2cos ,3AP AP AP ⋅<>==-m m m,………………………13分由图可知二面角M BD C --的大小是锐角,∴二面角M BD C --大小的余弦值为23. ………………………14分17. (本小题满分13分) 解:(Ⅰ)设“4人恰好选择了同一家公园”为事件A . ………………1分每名志愿者都有3种选择,4名志愿者的选择共有43种等可能的情况…………………2分 事件A 所包含的等可能事件的个数为3, …………………3分 所以,()431327P A ==. 即:4人恰好选择了同一家公园的概率为127. ………………5分(Ⅱ)设“一名志愿者选择甲公园”为事件C ,则()13P C =. ………………………6分4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数,因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4.………………………8分 ()4412()()33i i iP X i C -==, 0,1,2,3,4i =..………………………10分分X 的期望为()14433E X =⨯=.……………………13分18.(本小题满分13分)解法一:(Ⅰ)依题意得2()(2)e x f x x x =-,所以2()(2)e x f x x '=-,……………………1分令()0f x '=,得x =………………………2分()f x ',()f x 随x 的变化情况入下表:………………………4分由上表可知,x =函数()f x 的极小值点,x =()f x 的极大值点.………………………5分(Ⅱ) 22()[(22)2]e ax f x ax a x a '=-+-+,………………………6分由函数()f x 在区间上单调递减可知:()0f x '≤对任意x ∈恒成立,……7分当0a =时,()2f x x '=-,显然()0f x '≤对任意,2)x ∈恒成立;.…………………8分当0a >时,()0f x '≤等价于22(22)20ax a x a ---≥,因为x ∈,不等式22(22)20ax a x a ---≥等价于2222a x x a--≥,………………………9分令2(),g x x x x=-∈,则22()1g x x '=+,在上显然有()0g x '>恒成立,所以函数()g x 在单调递增,所以()g x 在上的最小值为0g =, ………………………11分由于()0f x '≤对任意x ∈恒成立等价于2222a x x a--≥对任意x ∈恒成立,需且只需2min22()a g x a -≥,即2220a a-≥,解得11a -≤≤,因为0a >,所以01a <≤.综合上述,若函数()f x 在区间2)上单调递减,则实数a 的取值范围为01a ≤≤. ………………………13分解法二:(Ⅰ)同解法一(Ⅱ)22()[(22)2]e ax f x ax a x a '=-+-+,………………………6分由函数()f x 在区间上单调递减可知:()0f x '≤对任意x ∈恒成立,即22(22)20ax a x a ---≥对任意x ∈恒成立, …………………7分当0a =时,()2f x x '=-,显然()0f x '≤对任意,2)x ∈恒成立;…………………8分当0a >时,令22()(22)2h x ax a x a =---,则函数()h x 图象的对称轴为21a x a-=,.……………9分 若210a a-≤,即01a <≤时,函数()h x 在(0,)+∞单调递增,要使()0h x ≥对任意x ∈恒成立,需且只需0h ≥,解得11a -≤≤,所以01a <≤;..………………………11分若210a a->,即1a >时,由于函数()h x 的图象是连续不间断的,假如()0h x ≥对任意x ∈恒成立,则有0h ≥,解得11a -≤≤,与1a >矛盾,所以()0h x ≥不能对任意x ∈恒成立.综合上述,若函数()f x在区间2)上单调递减,则实数a 的取值范围为01a ≤≤. ……13分19.(本小题满分13分)解:(Ⅰ)由题意,抛物线2C 的方程为:24y x =,…………2分(Ⅱ)设直线AB 的方程为:(4),(0)y k x k k =-≠存在且. 联立2(4)4y k x y x=-⎧⎨=⎩,消去x ,得 24160ky y k --=,………………3分显然216640k ∆=+>,设1122(,),(,)A x y B x y ,则 124y y k+=① 1216y y ⋅=- ②…………………4分 又12AM MB = ,所以 1212y y =- ③…………………5分由①② ③消去12,y y ,得 22k =, 故直线l的方程为y -或y =+ .…………………6分(Ⅲ)设(,)P m n ,则OP 中点为(,)22m n, 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩, …………………8分将其代入抛物线方程,得:222288()411k k k k-=⋅++,所以,21k =. ………………………9分联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222222()8160b a k x k a x a k a b +-+-=. ………………………10分由2222222222(8)4()(16)0k a b a k a k a b ∆=--+-≥,得 242222216()(16)0a k b a k k b -+-≥,即222216a k b k +≥,…………………12分将21k =,221b a =-代入上式并化简,得 2217a ≥,所以a ≥,即2a ≥ 因此,椭圆1C. ………………………13分20.(本小题满分14分) 解:(Ⅰ)由题意可得:1()cos ,[0,]f x x x π=∈ , ………………………1分 2()1,[0,]f x x π=∈ .………………………2分(Ⅱ)21,[1,0)()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,………………………3分221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩ , ………………………4分22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩, ………………………5分当[1,0]x ∈-时,21(1)x k x -≤+1k x ∴≥-,2k ≥;当(0,1)x ∈时,1(1)k x ≤+11k x ∴≥+1k ∴≥; 当[1,4]x ∈时,2(1)x k x ≤+21x k x ∴≥+165k ∴≥. 综上所述,165k ∴≥ ………………………6分 即存在4k =,使得()f x 是[1,4]-上的4阶收缩函数. ………………………7分(Ⅲ)()2()3632f x x x x x '=-+=--,令'()0f x =得0x =或2x =.函数()f x 的变化情况如下:令()0f x =,解得0x =或3. ………………………8分 ⅰ)2b ≤时,()f x 在[0,]b 上单调递增,因此,()322()3f x f x x x ==-+,()1()00f x f ==.因为32()3f x x x =-+是[0,]b 上的2阶收缩函数,所以,①()()21()20f x f x x -≤-对[0,]x b ∈恒成立;②存在[]0,x b ∈,使得()()21()0f x f x x ->-成立. ………………………9分①即:3232x x x -+≤对[0,]x b ∈恒成立,由3232x x x -+≤,解得:01x ≤≤或2x ≥,要使3232x x x -+≤对[0,]x b ∈恒成立,需且只需01b <≤.…………………10分②即:存在[0,]x b ∈,使得()2310x x x -+<成立.由()2310x x x -+<得:0x <x <<,所以,需且只需b >.综合①②1b <≤. ………………………11分ⅱ)当2b >时,显然有3[0,]2b ∈,由于()f x 在[0,2]上单调递增,根据定义可得: 2327()28f =,13()02f =, 可得 2133273()232282f f ⎛⎫-=>⨯= ⎪⎝⎭,此时,()()21()20f x f x x -≤-不成立. ………………………13分综合ⅰ)ⅱ1b <≤.注:在ⅱ)中只要取区间(1,2)内的一个数来构造反例均可,这里用32只是因为简单而已.。
海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2013.1说明:合理答案均可酌情给分,但不得超过原题分数.一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8答案 A A C B C B D B二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.1 10. 11.12. 13. 14.0;三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I)因为………………6分又,,………………7分所以,………………9分(Ⅱ)由余弦定理得到,所以………………11分解得(舍)或………………13分所以16. (本小题满分13分)解:(I)由数据的离散程度可以看出,B型车在本星期内出租天数的方差较大………………3分(Ⅱ)这辆汽车是A类型车的概率约为这辆汽车是A类型车的概率为………………7分(Ⅲ)50辆A类型车出租的天数的平均数为………………9分50辆B类型车出租的天数的平均数为………………11分答案一:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,选择B类型的出租车的利润较大,应该购买B型车………………13分答案二:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为 4.8,而B型车出租天数的方差较大,所以选择A型车………………13分17. (本小题满分14分)解:(I) 连接交于点,连接因为为正方形,所以为中点又为中点,所以为的中位线,所以………………3分又平面,平面所以平面………………6分(Ⅱ)因为,又为中点,所以………………8分又因为在直三棱柱中,底面,又底面, 所以,又因为,所以平面,又平面,所以………………10分在矩形中, ,所以,所以,即………………12分又,所以平面………………14分18. (本小题满分13分)解:(I)因为所以在函数的图象上又,所以所以………………3分(Ⅱ)因为,其定义域为………………5分当时,,所以在上单调递增,所以在上最小值为………………7分当时,令,得到(舍)当时,即时,对恒成立,所以在上单调递增,其最小值为………………9分当时,即时, 对成立,所以在上单调递减,其最小值为………………11分当,即时, 对成立, 对成立所以在单调递减,在上单调递增其最小值为………13分综上,当时,在上的最小值为当时,在上的最小值为当时, 在上的最小值为.19. (本小题满分14分)解:(I)因为为椭圆的焦点,所以又所以所以椭圆方程为………………3分(Ⅱ)因为直线的倾斜角为,所以直线的斜率为1,所以直线方程为,和椭圆方程联立得到,消掉,得到………………5分所以所以………………7分(Ⅲ)当直线无斜率时,直线方程为,此时, 面积相等,………………8分当直线斜率存在(显然)时,设直线方程为,设和椭圆方程联立得到,消掉得显然,方程有根,且………………10分此时………………12分因为,上式,(时等号成立)所以的最大值为………………14分20. (本小题满分13分)解:(I)由题在是增函数,由一次函数性质知当时,在上是增函数,所以………………3分(Ⅱ)因为是“一阶比增函数”,即在上是增函数,又,有,所以,………………5分所以,所以所以………………8分(Ⅲ)设,其中.因为是“一阶比增函数”,所以当时,法一:取,满足,记由(Ⅱ)知,同理,所以一定存在,使得,所以一定有解………………13分法二:取,满足,记因为当时,,所以对成立只要,则有,所以一定有解………………13分。
北京市海淀区2014届高三数学上学期期末考试试题理(扫描版)新人教A版海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分cos sin x x =+π)4x+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分 所以4sin 5A ==,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分9. 2 10.4511. (0,1);412. 13 14.43;①②③(Ⅱ)由(Ⅰ)可得π())4f x x +,所以()f x 的最小正周期2πT =. -----------------------------------10分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X 的取值为:0,1,2,3.----------------------------------5分事件“X k =”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分 即X 的分布列为所以X 的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O =,所以O 为,AC BD 中点.-------------------------------------1分又因为,PA PC PB PD ==,所以,P O A ⊥⊥,---------------------------------------3分所以PO ⊥底面A.----------------------------------------4分 (Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,PB PD ==,可得PO OB OD ===所以(1A C-.---------------------------------------5分所以(1CP =,(1AP =-.由已知可得13(,0,44O FOA A =+= -----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.4x ⎧=⎪⎨+=⎪⎩ 令1x =,则z =,所以(1,0,=n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分所以直线CP 与平面BDF 所成角的正弦值为12, 所以直线CP 与平面BDF 所成角的大小为30.-----------------------------------------10分 (Ⅲ)设BMBPλ=(01)λ≤≤,则(1)CM CB BM CB BP λλ=+=+=-.---------------------------------11分若使CM ∥平面B D F ,需且仅需0CM ⋅=n 且CM ⊄平面B D F ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分 所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BMBP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R .------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分 (Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10eaF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分所以此时函数()F x 总存在零点.--------------------------------------------13分 综上所述,所求实数a 的取值范围是2e 0a -<<. 19.(本小题共14分)解:(Ⅰ)由题意得1c =,---------------------------------------1分 由12c a =可得2a =,------------------------------------------2分 所以23b a c =-=,-------------------------------------------3分所以椭圆的方程为22143x y +=. ---------------------------------------------4分 (Ⅱ)由题意可得点3(2,0),(1,)2A M -, ------------------------------------------6分 所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分 设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分 因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()2x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列, 2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数,所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. *,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++,所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. 由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1k g g d =++,所以*,d b ∀∈N ,数列{()}g n 中总存在三项(1),[(1)1],[2(1)(1)1]g g g g g g d +++成等比数列.所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分。
海淀区高三年级第一学期期末练习数 学 (文科) 2010.11.sin225︒=( ) A .1B .1-CD. 2. 下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩所表示的平面区域内的点是( )A .(02),B .(20)-,C .(02)-,D .(20),3. 双曲线222y x -=的渐近线方程是( )A .y x =±B. y =C. y =D.2y x =±4.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为( ) A. 分层抽样,简单随机抽样 B.简单随机抽样,分层抽样 C.分层抽样,系统抽样 D. 简单随机抽样, 系统抽样5. 已知,m n 是两条不同直线, ,αβ是两个不同平面.下列命题中不.正确的是 ( ) A .若m ∥α,n αβ= ,则m //nB .若m //n ,m ⊥α,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则αβ⊥ 6. 如图,向量-a b 等于 ( ) A. 1242--e e B. 1224--e eC. 123-e eD. 123-e e7. 若直线l 与直线7,1==x y 分别交于点Q P ,,且线段PQ 的中点坐标为)1,1(-,则直线l 的斜率为( )A.31 B.31- C.23- D.328.已知椭圆C :1422=+y x 的焦点为12,F F ,若点P 在椭圆上,且满足212||||||PO PF PF =(其中O 为坐标原点),则称点P 为“★点”.那么下列结论正确的是 A .椭圆C 上的所有点都是“★点” B .椭圆C 上仅有有限个点是“★点” C .椭圆C 上的所有点都不是“★点”D .椭圆C 上有无穷多个点(但不是所有的点)是“★点”第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.抛物线24y x =的准线方程是____________10. 某程序的框图如图所示,则执行该程序,输出的S = .11.一个几何体的三视图如图所示,则该几何体的表面积为__________________.正视图侧视图俯视图12.在区间[2,2]-上,随机地取一个数x ,则2x 位于0到1之间的概率是____________.13.已知1F 为椭圆22:12x C y +=的左焦点,直线1:-=x y l 与椭圆C 交于B A 、两点,那么11||||F A F B +的值为_______.14.对于函数()f x ,若存在区间[,],()M a b a b =<,使得{|(),}y y f x x M M =∈=,则称区间M 为函数()f x 的一个“稳定区间”.请你写出一个具有“稳定区间”的函数__________;(只要写出一个即可) 给出下列4个函数:①()xf x e =;②3()f x x =,③()cos2f x x p= ④()ln 1f x x =+ 其中存在“稳定区间”的函数有_______(填上正确的序号)15. (本小题共12分) 已知集合S ={x |205+<-x x },P ={ x | 1a +<x 215a <+ },(Ⅰ)求集合S ;(Ⅱ)若S P ⊆,求实数a 的取值范围.16. (本小题共13分)某校高三年级进行了一次数学测验,随机从甲乙两班各抽取6名同学,所得分数的茎叶图如右图所示:(I)根据茎叶图判断哪个班的平均分数较高,并说明理由; (II)现从甲班这6名同学中随机抽取两名同学,求他们的分数之和大于165分的概率.甲班乙班198760228027635617. (本小题共14分)长方体1111ABCD A B C D -中11,2AB AA AD ===.点E 为AB中点.(I)求三棱锥1A ADE -的体积; (II)求证:1A D ⊥平面11ABC D ; (III )求证:1BD // 平面1A DE .[来源:学科网ZXXK]18. (本小题共13分)函数2()1x af x x +=+()a R ∈ .(I )若)(x f 在点(1,(1))f 处的切线斜率为12,求实数a 的值; (II )若()f x 在1x =处取得极值,求函数()f x 的单调区间.19. (本小题共14分)已知圆C 经过点(2,0),(0,2)-A B ,且圆心在直线y x =上,且,又直线:1l y kx =+与圆C相交于P 、Q 两点. (I )求圆C的方程;(II )若2OP OQ =-,求实数k 的值;(III )过点(0,1)作直线1l 与l 垂直,且直线1l 与圆C交于M N 、两点,求四边形PMQN 面积的最大值.20. (本小题共14分)已知函数()2f x x m =+,其中m R ∈.定义数列{}n a 如下:10=a ,()*1,+=∈n n a f a n N . (I )当1m =时,求234,,a a a 的值;(II )是否存在实数m ,使234,,a a a 构成公差不为0的等差数列?若存在,请求出实数m 的值,若不存在,请说明理由; (III )求证:当14m >时,总能找到k N ∈,使得2010k a >.海淀区高三年级第一学期期末练习数 学(文)参考答案及评分标准 2010.1说明: 合理答案均可酌情给分,但不得超过原题分数第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.1-=x 10. 25 11.1224π+ 12.2113.328 14.x y = ;②, ③15.(本小题共12分) 解:(I )因为052<-+x x ,所以0)2)(5(<+-x x . ……………………………2分 解得25x -<<, ……………………………4分 则集合{|25}S x x =-<<. ……………………………6分[来源:学|科|网](II )因为P S ⊆, 所以⎩⎨⎧+≤-≤+152521a a , ……………………………8分解得⎩⎨⎧-≥-≤53a a , ……………………………10分所以]3,5[--∈a . ……………………………12分 注: 若答案写为(5,3)a ?-,扣1分. 16.(本小题共13分)解:(I )因为乙班的成绩集中在80分,且没有低分,所以乙班的平均分比较高. ……………………………5分 (II )设从甲班中任取两名同学,两名同学分数之和超过165分为事件A.……………………………7分 从甲班6名同学中任取两名同学,则基本事件空间中包含15个基本事件,……………………9分 而事件A中包含4个基本事件, ……………………11分所以,154)(=A P . ……………………12分 答:从甲班中任取两名同学,两名同学分数之和超过165分的概率为154.……………………13分 17.(本小题共14分)解;(I )在长方体1111ABCD A B C D -中,因为1,AB E =为AB 的中点,所以,12AE =, 又因为2AD =,所以111122222ADES AD AE ∆=⋅=⨯⨯= , …………………2分 又1AA ⊥底面,ABCD ,21=AA 所以,三棱锥ADE A -1的体积31=V 11112323ADE S AA ∆⋅=⨯⨯=. ……………4分 (II )因为AB ⊥平面11ADD A ,1A D ⊂平面11ADD A ,所以AB ⊥1A D . …………………6分 因为11ADD A 为正方形,所以1AD ⊥1A D , …………………7分 又1AD AB A =,所以1A D ⊥平面11ABC D . …………………9分(III )设1,AD 1A D 的交点为O ,连结OE ,因为11ADD A 为正方形,所以O 是1AD 的中点, …………………10分 在∆1AD B 中,OE 为中位线,所以1//OE BD , …………………11分 又OE ⊂平面1A DE ,1BD ⊄平面1A DE , …………………13分 所以1//BD 平面1A DE . …………………14分18.(本小题共13分)解:(I)22222(1)2'()(1)(1)+--+-==++ x x x a x x af x x x , ………………3分 若()f x 在点(1,(1))f 处的切线斜率为12, 则 1'(1)2f =. …………………5分 所以,31'(1)42-==a f ,得 a =1. …………………6分(II) 因为()f x 在1x =处取得极值,所以'(1)0f =, ………………7分 即 120a +-=,3a =, …………………8分2223'()(1)+-∴=+x x f x x . …………………9分因为()f x 的定义域为{|1}x x ≠-,所以有:…………………11分[来源:Z*xx*]所以,()f x 的单调递增区间是∞∞(-,-3),(1,+),单调递减区间是(-3,-1),(-1,1).…………………13分19.(本小题共14分)解:(I)设圆心(,),C a a 半径为r . 因为圆经过点(2,0),(0,2)A B -所以||||AC BC r ==,解得0,2a r == , …………………2分 所以圆C 的方程是224+=x y . …………………4分 (II)方法一:因为22cos ,2⋅=⨯⨯〈〉=-OP OQ OP OQ , …………………6分所以1cos 2∠=-POQ ,120∠=POQ , …………………7分 所以圆心到直线:10l kx y -+=的距离1d =, …………………8分又=d ,所以0=k . …………………9分方法二:设1122(,),(,)P x y Q x y ,[来源:]因为2214=+⎧⎨+=⎩y kx x y ,代入消元得22(1)230++-=k x kx . …………………6分 由题意得: 2212212244(1)(3)02131k k k x x k x x k ⎧⎪∆=-+->⎪-⎪+=⎨+⎪-⎪⋅=⎪+⎩ …………………7分 因为⋅OP OQ =12122⋅+⋅=-x x y y ,又212121212(1)(1)()1⋅=++=⋅+++y y kx kx k x x k x x ,所以, 1212x x y y ⋅+⋅ =2222233212111k k k k k---+++=-+++, …………………8分 化简得: 22533(1)0--++=k k ,所以20, =k 即0k =. …………………9分 (III)方法一:设圆心O 到直线1,l l 的距离分别为1,d d ,四边形PMQN 的面积为S . 因为直线1,l l 都经过点(0,1),且1l l ⊥,根据勾股定理,有2211+=d d , …………………10分又根据垂径定理和勾股定理得到,||2|2PQ MN == ………………11分 而1||||2S PQ MN =⋅⋅,即1222 7,S =⨯==≤==…………13分当且仅当1d d =时,等号成立,所以S 的最大值为7. ………………14分方法二:设四边形PMQN 的面积为S . 当直线l 的斜率0=k 时,则1l 的斜率不存在,此时142=⋅=S …………………10分 当直线l 的斜率0≠k 时,设11:1l y x k=-+则2214=+⎧⎨+=⎩y kx x y ,代入消元得22(1)230k x kx ++-= 所以2212212244(1)(3)02131k k k x x k x x k ⎧⎪∆=-+->⎪-⎪+=⎨+⎪-⎪⋅=⎪+⎩122|||1=-==+PQ x x k同理得到||MN ==. ………………11分21||||211 22 1S PQ MN k =⋅⋅====+== ………………12分因为221224k k ++≥+=, 所以7272S ≤=⨯=, ………………13分当且仅当1=±k 时,等号成立,所以S 的最大值为7. ………………14分20(本小题共14分)解:(I)因为10=a ,1m =,所以2(0)1a f m ===,23()2a f m m m ==+=,()()22435a f a m m m ==++=. ………………4分 (II )方法一:假设存在实数m ,使得234,,a a a 构成公差不为0的等差数列.由(I )得到2(0)==a f m ,23()==+a f m m m , ()()2243==++a f a m m m .因为234,,a a a 成等差数列,所以3242=+a a a , ………………6分 所以,()()2222m m m m mm +=+++, 化简得()22210m m m +-=,解得0m =(舍),1m =-. ………………8分 经检验,此时234,,a a a 的公差不为0,所以存在1m =-±234,,a a a 构成公差不为0的等差数列.…………9分 方法二:因为234,,a a a 成等差数列,所以3243-=-a a a a , ………………6分 即222233+-=+-a m a a m a ,所以()()2232320---=a a a a ,即()()323210-+-=a a a a .因为320-≠a a ,所以3210a a +-=解得1m =- ………………8分 经检验,此时234,,a a a 的公差不为0.所以存在1m =-±234,,a a a 构成公差不为0的等差数列. …………9分(III )因为221111244n n n n n a a a m a a m m +⎛⎫⎛⎫-=+-=-+-≥- ⎪ ⎪⎝⎭⎝⎭, 又 14m >, 所以令104d m =->. 由1n n a a d --≥,12n n a a d ---≥,……21a a d -≥,将上述不等式全部相加得1(1)n a a n d -≥-,即(1)n a n d ≥-, 因此只需取正整数20101>+k d ,就有2010(1)()2010k a k d d d≥->⋅=. …………14分说明:其它正确解法按相应步骤给分.。
北京市海淀区高三上学期期末考试数学试卷(文)一、选择题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.双曲线的左焦点的坐标为( )A. (-2,0)B.C.D.【答案】A【解析】先根据方程求出,再求出焦点坐标.由题意可知焦点在x轴上,,即,所以选A.2.已知等比数列满足,且成等差数列,则( )A. B. C. D.【答案】C【解析】设公比为q,由等比数列的通项公式和等差数列中项性质列方程,解方程可得q,即可得到所求值.成等差数列,得,即:,所以,=16故选:C.3.若,则( )A. B. C. D.【答案】D【解析】利用对数的运算得出,从而得出,解出a即可.化为,即,所以,,40,故选:D4.已知向量,且,则( )A. B. C. D.【答案】B【解析】利用已知条件求出t,然后可得结果.因为,所以,2t=2,t=1,(2,0)-(1,1)=(1,-1),故选B5.直线被圆截得的弦长为,则的值为( )A. B. C. D.【答案】A【解析】利用圆的弦的性质,通过勾股定理求出.圆心为,半径为;圆心到直线的距离为,因为弦长为2,所以,解得,故选A.6.已知函数,则“”是“函数在区间上存在零点”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】先将函数的零点问题转化成两个函数图象交点的问题,再判断充分必要性.=0,得:,设函数,当时,如下图,函数有交点,所以,在区间上存在零点,充分性成立。
(2)当在区间上存在零点时,如果=0,函数在上无交点如果>0,函数在上图象在第一象限,的图象在第四象限,无交点所以,还是<0,必要性成立,所以是充分必要条件,选C。
7.已知函数为的导函数,则下列结论中正确的是( )A. 函数的值域与的值域不同B. 存在,使得函数和都在处取得最值C. 把函数的图象向左平移个单位,就可以得到函数的图象D. 函数和在区间上都是增函数【答案】C【解析】根据辅助角公式化简可得f(x)sin(x),求导化简可得g(x)sin(x),结合三角形的函数的图象和性质即可判断,值域为:[-,],,值域为:[-,],两函数的值域相同,所以,A错误;B选项,不存在x0,使得函数f(x)和g(x)都在x0处取得极值点,B错误;C选项,的图像向右平移个单位:与相同,C正确;求出单调递增区间可知,在区间上不是增函数,D错误。
海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2010.1说明: 合理答案均可酌情给分,但不得超过原题分数第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 9.3- 10.34 11.2412π+ 12.10100 13.3414.②③;28 三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(Ⅰ)由已知,3C π=,5b =,因为 1sin 2ABC S ab C ∆= ,即 15sin 23a π⋅ ,………………..1分 解得 8a = .………………..3分由余弦定理可得:2642580cos493c π=+-=, ………………..5分所以 7c =. ………………..7分 (Ⅱ)由(Ⅰ)有4925641cos 707A +-==,………………..9分由于A 是三角形的内角,易知 sin A = ………………..10分所以 sin()sin cos cos sin 666A A A πππ+=+………………..11分1172+⨯1314= . ………………..13分16.(本小题满分13分)解:(Ⅰ)设样本试卷中该题的平均分为x ,则由表中数据可得: 01983802069823023.011000x ⨯+⨯+⨯+⨯== ,……………….4分 据此可估计这个地区高三学生该题的平均分为3.01分.……………….5分(Ⅱ)依题意,第一空答对的概率为0.8,第二空答对的概率为0.3,……………….7分 记“第一空答对”为事件A ,“第二空答对”为事件B ,则“第一空答错”为事件A , “第二空答错”为事件B .若要第一空得分不低于第二空得分,则A 发生或A 与B 同时发生,……………….9分 故有: ()()0.80.20.70.94P A P A B +⋅=+⨯= .……………….12分 答:该同学这道题第一空得分不低于第二空得分的概率为0.94. ……………….13分17. (本小题满分13分) 解:(Ⅰ)因为E ,F 分别为正方形ABCD 的两边BC ,AD 的中点,所以BE FD ∥,所以,BEDF 为平行四边形,……………….2分 得//ED FB ,……………….3分 又因为FB ⊂平面PFB ,且ED ⊄平面PFB ,……………….4分 所以DE ∥平面PFB .……………….5分(Ⅱ)如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系.设PD =a , 可得如下点的坐标:P (0,0,a ),F (1,0,0),B (2,2,0) 则有:(1,0,),(1,2,0),PF a FB =-=因为PD ⊥底面ABCD ,所以平面ABCD 的一个法向量为(0,0,1)=m , 设平面PFB 的一个法向量为(,,)x y z =n ,则可得=0PF FB ⎧⋅=⎪⎨⋅⎪⎩n n即+2=0 x azx y-=⎧⎨⎩令x=1,得11,2z ya==-,所以11(1,,)2a=-n. ……………….9分由已知,二面角P-BF-C:1cos<,>||||⋅===m nm nm n……………….10分解得a =2. ……………….11分因为PD是四棱锥P-ABCD的高,所以,其体积为182433P ABCDV-=⨯⨯=. ……………….13分18.(本小题满分13分)解:由2()1x af xx+=+,可得222()(1)x x af xx+-'=+. ……………….2分(Ⅰ)因为函数()f x在点(1,(1))f处的切线为12y x b=+,得:1(1)21(1)2ff b⎧'=⎪⎪⎨⎪=+⎪⎩……………….4分解得112ab=⎧⎪⎨=⎪⎩……………….5分(Ⅱ)令()0f x'>,得220x x a+->…①……………….6分当440a∆=+≤,即1a≤-时,不等式①在定义域内恒成立,所以此时函数()f x的单调递增区间为(,1)-∞-和(1,)-+∞. ……………….8分当440a∆=+>,即1a>-时,不等式①的解为1x>-1x<-……………….10分又因为1x≠-,所以此时函数()f x的单调递增区间为(,1-∞--和(1)-++∞,单调递减区间为(11)--和(1,1--+..……………….12分所以,当1a≤-时,函数()f x的单调递增区间为(,1)-∞-和(1,)-+∞;当1a >-时,函数()f x的单调递增区间为(,1-∞-和(1)-++∞,单调递减区间为(11)---和(1,1--..……………….13分19.(本小题满分14分)解:(Ⅰ)由于A (2,1)在抛物线2y ax =上, 所以 14a =,即14a =. ……………….2分 故所求抛物线的方程为214y x =,其准线方程为1y =-. ……………….3分(Ⅱ)当直线1l 与抛物线相切时,由21x y ='=,可知直线1l 的斜率为1,其倾斜角为45︒,所以直线2l 的倾斜角为135︒,故直线2l 的斜率为1-,所以2l 的方程为3y x =-+ …….4分 将其代入抛物线的方程214y x =,得 24120x x +-=, 解得 122,6x x ==-, …….5分 所以直线2l 与抛物线所围成封闭区域的面积为:2222266611(3)d d (3)d 44x x x x x x x ----+-=-+-⎰⎰⎰……………….6分223611(3)212x x x -=-+-643=……………….8分(Ⅲ)不妨设直线AB 的方程为1(2) (0)y k x k -=->,……………….9分由21(2)14y k x y x -=-⎧⎪⎨=⎪⎩ 得24840x kx k -+-=, ……………….10分易知该方程有一个根为2,所以另一个根为42k -, 所以点B 的坐标为2(42,441)k k k --+, 同理可得C 点坐标为2(42,441)k k k --++,……………….11分所以||BC=, ……………….12分线段BC 的中点为2(2,41)k -+,因为以BC 为直径的圆与准线1y =-相切,所以 241(1)k +--=,由于0k >, 解得 k =. …………….13分此时,点B 的坐标为2,3-,点C 的坐标为(2,3-+,直线BC 1=-,所以,BC 的方程为(3[2)]y x --=--,即10x y +-=. …….14分 20.(本小题满分14分)解:(Ⅰ)记数列①为{}n b ,因为23456,,,,b b b b b 与678910,,,,b b b b b 按次序对应相等,所以数列①是“5阶可重复数列”,重复的这五项为0,0,1,1,0;记数列②为{}n c ,因为12345,,,,c c c c c 、23456,,,,c c c c c 、34567,,,,c c c c c 、45678,,,,c c c c c 、 56789,,,,c c c c c 、678910,,,,c c c c c 没有完全相同的,所以{}n c 不是“5阶可重复数列”.……………….3分(Ⅱ)因为数列{}n a 的每一项只可以是0或1,所以连续3项共有328=种不同的情形.若m =11,则数列{}n a 中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{}n a 一定是“3阶可重复数列”;若m =10,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”;则310m ≤<时,均存在不是“3阶可重复数列”的数列{}n a .所以,要使数列{}n a 一定 是“3阶可重复数列”,则m 的最小值是11. ……………….8分 (III )由于数列{}n a 在其最后一项m a 后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{}n a 的末项m a 后再添加一项01或,则存在i j ≠,使得1234,,,,i i i i i a a a a a ++++与321,,,,0m m m m a a a a ---按次序对应相等,或1234,,,,j j j j j a a a a a ++++与321,,,,1m m m m a a a a ---按次序对应相等,如果1234,,,a a a a 与321,,,m m m m a a a a ---不能按次序对应相等,那么必有2,4i j m ≤≤-,i j ≠,使得123,,,i i i i a a a a +++、123,,,j j j j a a a a +++与321,,,m m m m a a a a ---按次序对应相等.此时考虑11,i j a a --和4m a -,其中必有两个相同,这就导致数列{}n a 中有两个连续的五项恰按次序对应相等,从而数列{}n a 是“5阶可重复数列”,这和题设中数列{}n a 不是“5阶可重复数列”矛盾!所以1234,,,a a a a 与321,,,m m m m a a a a ---按次序对应相等,从而4 1.m a a ==……………….14分说明:其它正确解法按相应步骤给分.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
海淀区高三年级第二学期期中练习数 学 (理科) 2010.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数1iiz =-(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.在同一坐标系中画出函数log a y x =,x y a =,y x a =+的图象,可能正确的是( )3.在四边形ABCD 中,AB DC =,且AC ·BD =0,则四边形ABCD 是( )A.矩形B. 菱形C. 直角梯形D. 等腰梯形4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,.若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是 ( )A .1,3π⎛⎫- ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .2,3π⎛⎫- ⎪⎝⎭D .42,3π⎛⎫-⎪⎝⎭5.一个体积为的正三棱柱的三视图如图所示, 则这个三棱柱的左视图的面积为 ( ) A . B .8C .D .126.已知等差数列1,,a b ,等比数列3,2,5a b ++,则该等差数列的公差为( )A .3或3-B .3或1-C .3D .3-7.已知某程序框图如图所示,则执行该程序后输出的结果是( )A .1-B .1B AC DC .2D .128.已知数列()1212:,,,0,3nn A a a a a a a n ≤<<<≥具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题:①数列0,1,3具有性质P ;②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则10a =;④若数列()123123,,0a a a a a a ≤<<具有性质P ,则1322a a a +=. 其中真命题有( ) A .4个 B .3个C .2个D .1个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的人数为 _______.10.如图,AB 为O 的直径,且8AB = ,P 为OA 的中点,过P 作O 的弦CD ,且:3:4CP PD =,则弦CD 的长度为 . 11.给定下列四个命题:①“6x π=”是“1sin 2x =”的充分不必要条件; ②若“p q ∨”为真,则“p q ∧”为真;xB③若a b <,则22am bm <; ④若集合A B A =,则A B ⊆.其中为真命题的是 (填上所有正确命题的序号).12.在二项式25()ax x -的展开式中,x 的系数是10-,则实数a 的值为 .13.已知有公共焦点的椭圆与双曲线中心为原点,焦点在x 轴上,左右焦点分别为12,F F ,且它们在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是 .14.在平面直角坐标系中,点集22{(,)|1}A x y x y =+≤,{(,)|4,0,,340}B x y x y x y =≤≥-≥, 则(1)点集1111{(,)3,1,(,)}P x y x x y y x y A ==+=+∈所表示的区域的面积为_____; (2)点集12121122{(,),,(,),(,)}Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示. (Ⅰ)求,ωϕ的值;(Ⅱ)设()()()4g x f x f x π=-,求函数()g x 的单调递增区间.16.(本小题满分13分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望. 17.(本小题满分14分)如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ;(Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值;(Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.18.(本小题满分13分)已知函数()ln ,f x x a x =+其中a 为常数,且1a ≤-.(Ⅰ)当1a =-时,求()f x 在2[e,e ](e=2.718 28…)上的值域; (Ⅱ)若()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围.1A BCO A 1B 1C19.(本小题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为12,F F ,且12||2F F =,点(1,32) 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆2F 为圆心且与直线l 相切的圆的方程.20.(本小题满分14分)已知数列{}n a 满足:10a =,21221,,12,,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数,2,3,4,.n =(Ⅰ)求567,,a a a 的值; (Ⅱ)设212n n na b -=,试求数列{}n b 的通项公式;(Ⅲ)对于任意的正整数n ,试讨论n a 与1n a +的大小关系.海淀区高三年级第二学期期中练习数 学 (理)参考答案及评分标准 2010.4说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.30 10.7 11.①,④ 12.1 13.12(,)35 14.π;18π+.三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(Ⅰ)由图可知πππ=-=)42(4T ,22==Tπω, ………………2分又由1)2(=πf 得,1)sin(=+ϕπ,又(0)1f =-,得sin 1ϕ=-πϕ<||2πϕ-=∴, ………………4分(Ⅱ)由(Ⅰ)知:x x x f 2cos )22sin()(-=-=π………………6分因为()(cos 2)[cos(2)]cos 2sin 22g x x x x x π=---=1sin 42x = ………………9分 所以,24222k x k ππππ-≤≤+,即 (Z)2828k k x k ππππ-≤≤+∈.……………12分故函数()g x 的单调增区间为[,] (Z)2828k k k ππππ-+∈.……………13分 16.(本小题满分13分)解:设指针落在A ,B ,C 区域分别记为事件A ,B ,C .则111(),(),()632P A P B P C ===. ………………3分(Ⅰ)若返券金额不低于30元,则指针落在A 或B 区域.111()()632P P A P B ∴=+=+=………………6分即消费128元的顾客,返券金额不低于30元的概率是12. (Ⅱ)由题意得,该顾客可转动转盘2次.随机变量X 的可能值为0,30,60,90,120.………………7分111(0);224111(30)2;23311115(60)2;263318111(90)2;369111(120).6636P X P X P X P X P X ==⨯===⨯⨯===⨯⨯+⨯===⨯⨯===⨯= ………………10分………………12分其数学期望115110306090120404318936EX =⨯+⨯+⨯+⨯+⨯= .………13分 17. (本小题满分14分)解:(Ⅰ)证明:因为11A A AC =,且O 为AC 的中点, 所以1AO AC ⊥.………………1分又由题意可知,平面11AAC C ⊥平面ABC ,交线为AC ,且1A O ⊂平面11AA C C , 所以1A O ⊥平面ABC .………………4分(Ⅱ)如图,以O 为原点,1,,OB OC OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 由题意可知,112,A A AC AC ===又,AB BC AB BC =⊥1,1,2OB AC ∴== 所以得:11(0,0,0),(0,1,0),(0,1,0),(1,0,0)O A A C C B - 则有:11(0,1,3),(0,1,3),(1,1,0).A C AA AB =-==………………6分设平面1AA B 的一个法向量为(,,)x y z =n ,则有110000AA y x y AB ⎧⎧⋅=+=⎪⎪⇔⎨⎨+=⎪⋅=⎪⎩⎩n n ,令1y =,得1,x z =-=所以(1,1,=-n . ………………7分 11121cos ,|||A C A C A C ⋅<>==n n |n ………………9分因为直线1A C 与平面1A AB 所成角θ和向量n 与1A C 所成锐角互余,所以sin θ=………………10分 (Ⅲ)设0001(,,),,E x y z BE BC λ==………………11分即000(1,,)(x y z λ-=-,得00012x y z λλ⎧=-⎪=⎨⎪=⎩所以(1,2),E λλ=-得(1,2),OE λλ=- ………………12分 令//OE 平面1A AB ,得=0OE ⋅n ,………………13分即120,λλλ-++-=得1,2λ=即存在这样的点E ,E 为1BC 的中点.………………14分18.(本小题满分13分) 解:(Ⅰ)当1a =-时,()ln ,f x x x =-得1()1,f x x '=-………………2分令()0f x '>,即110x->,解得1x >,所以函数()f x 在(1,)+∞上为增函数, 据此,函数()f x 在2[e,e ]上为增函数,………………4分而(e)e 1f =-,22(e )e 2f =-,所以函数()f x 在2[e,e ]上的值域为2[e 1,e 2]--………………6分(Ⅱ)由()1,a f x x '=+令()0f x '=,得10,ax+=即,x a =-当(0,)x a ∈-时,()0f x '<,函数()f x 在(0,)a -上单调递减;当(,)x a ∈-+∞时,()0f x '>,函数()f x 在(,)a -+∞上单调递增; ……………7分 若1e a ≤-≤,即e 1a -≤≤-,易得函数()f x 在2[e,e ]上为增函数,此时,2max ()(e )f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e )e 1f ≤-即可,所以有2e 2e 1a +≤-,即2e e 12a -+-≤而22e e 1(e 3e 1)(e)022-+---+--=<,即2e e 1e 2-+-<-,所以此时无解.………………8分若2e e a <-<,即2e e a ->>-,易知函数()f x 在[e,]a -上为减函数,在2[,e ]a -上为增函数, 要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需2(e)e 1(e )e 1f f ≤-⎧⎨≤-⎩,即21e e 12a a ≤-⎧⎪⎨-+-≤⎪⎩, 由22e e 1e e 1(1)022-+--++--=<和222e e 1e e 1(e )022-+-+---=>得22e e 1e 2a -+--<≤.………………10分若2e a -≥,即2e a ≤-,易得函数()f x 在2[e,e ]上为减函数,此时,max ()(e)f x f =,要使()e 1f x ≤-对2[e,e ]x ∈恒成立,只需(e)e 1f ≤-即可, 所以有e e 1a +≤-,即1a ≤-,又因为2e a ≤-,所以2e a ≤-.……………12分 综合上述,实数a 的取值范围是2e e 1(,]2-+--∞.……………13分19.(本小题满分13分)解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F ..……………1分532422a ∴==+=..……………3分2,a ∴=又1c = 2413b =-=,……………4分故椭圆的方程为22143x y +=. .……………5分(Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意..……………6分当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=, .……………7分显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k-+=-⋅=++ .……………8分又||AB ==即22212(1)||3434k AB k k +==++, .……………9分 又圆2F的半径r ==.……………10分所以2221112(1)||2234AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±所以,r ==.……………12分故圆2F 的方程为:22(1)2x y -+=. .……………13分(Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ ……………8分所以12||y y -==243t =+.……………9分又圆2F的半径为r ==,.……………10分所以21212121||||||27AF BS F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==……………12分故圆2F 的方程为:22(1)2x y -+=. .……………13分20.(本小题满分14分)解:(Ⅰ)∵ 10a =,21121a a =+=,31222a a =+=,42123a a =+=, ∴ 52325a a =+=;63125a a =+=;73428a a =+=. ………………3分 (Ⅱ)由题设,对于任意的正整数n ,都有:12121111221222n n n n n n n a a b b +--++++===+, ∴ 112n n b b +-=.∴ 数列{}n b 是以1211102a b -==为首项,12为公差的等差数列.∴ 12n n b -=. …………………………………………………………7分 (Ⅲ)对于任意的正整数k , 当2n k =或1,3n =时,1n n a a +<; 当41n k =+时,1n n a a +=;当43n k =+时,1n n a a +>. ……………………………………8分 证明如下:首先,由12340,1,2,3a a a a ====可知1,3n =时,1n n a a +<; 其次,对于任意的正整数k ,2n k =时,()()122112120n n k k k k a a a a a k a k ++-=-=+-++=-<;…………………9分41n k =+时,14142n n k k a a a a +++-=-()()()()2212212121222222122120k k k k k k k a a k a a k a k a ++=++-+=+-=++-++=所以,1n n a a +=.…………………10分43n k =+时,14344n n k k a a a a +++-=-()()()()()21222122112221221222121221241k k k k k k k k k a a k a a k k a a k a a ++++++=++-+=++-=++++-+=+-+事实上,我们可以证明:对于任意正整数k ,1k k k a a ++≥(*)(证明见后),所以,此时,1n n a a +>. 综上可知:结论得证.…………………12分对于任意正整数k ,1k k k a a ++≥(*)的证明如下: 1)当2k m =(*m ∈N )时,()()12212212120k k m m m m k a a m a a m a m a m +++-=+-=++-++=>, 满足(*)式。
海淀区高三年级第一学期期末练习数学(理)答案及评分参考2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分) 9. 222x y x += (1,0) 10. 180 11. 512. M P N e e e << 13.① ④ 14. 4 32 (1)2 3 (01)k kk k ⎧+≥⎪⎨⎪+<<⎩ 三、解答题(本大题共6小题,共80分) 15.(共12分)解:(I ) x x x f 2cos )32cos()(--=πx x x 2cos 3sin2sin 3cos2cos -+=ππ .......................................2分x x 2cos 212sin 23-=)62si n(π-=x . .......................................4分)2,0(π∈x Θ,)65,6(62πππ-∈-∴x , .......................................5分]1,21()62sin(-∈-∴πx ,即)(x f 在(0,2π)的值域为]1,21(- . .......................................6分(II )由(I )可知,)62sin()(π-=A A f ,1)62sin(=-∴πA , ......................................7分π<<A 0Θ , 611626πππ<-<-∴A , .....................................8分 3,262πππ==-∴A A . ....................................9分A bc c b a cos 2222-+=Θ , .....................................10分把3a b ==代入,得到2320c c -+=, ..................................11分1=∴c 或2=c . ....................................12分 16.(共13分) 解:(I )方法一设选手甲在A 区投两次篮的进球数为X ,则)109,2(~B X , 故591092)(=⨯=X E , ....................................... 2分 则选手甲在A 区投篮得分的期望为6.3592=⨯ . ....................................... 3分设选手甲在B 区投篮的进球数为Y ,则)31,3(~B Y ,故1313)(=⨯=Y E , ....................................... 5分则选手甲在B 区投篮得分的期望为313=⨯ . ....................................... 6分 36.3>Θ,∴选手甲应该选择A 区投篮. .......................................7分方法二:(I )设选手甲在A 区投篮的得分为ξ,则ξ的可能取值为0,2,4,212291(0)(1)101009918(2)(1)1010100981(4)().10100P P C P ξξξ==-===⋅-====;;所以ξ的分布列为.......................................2分6.3=∴ξE .......................................3分 同理,设选手甲在B 区投篮的得分为η,则η的可能取值为0,3,6,9,3123223318(0)(1);327114(3)(1);339112(6)()(1);33911(9)().327P P C P C P ηηηη==-===⋅-===-====所以η的分布列为:.......................................5分3E η∴=, .......................................6分ηξE E >Θ,∴选手甲应该选择A 区投篮. .......................................7分(Ⅱ)设选手甲在A 区投篮得分高于在B 区投篮得分为事件C ,甲在A 区投篮得2分在B 区投篮得0分为事件1C ,甲在A 区投篮得4分在B 区投篮得0分为事件2C ,甲在A 区投篮得4分在B 区投篮得3分为事件3C ,则123C C C C =U U ,其中123,,C C C 为互斥事件. .......................................9分 则: 12312318881881449()()= ()()()1002710027100975P C P C C C P C P C P C =++=⨯+⨯+⨯=U U 故选手甲在A 区投篮得分高于在B 区投篮得分的概率为4975..................................13分17. (共14分)解:(I )Θ棱柱ABCD —1111A B C D 的所有棱长都为2,∴四边形ABCD 为菱形,AC BD ⊥ . .......................................1分又1A O ⊥平面ABCD, BD ⊂平面ABCD ,1AO BD ∴⊥ . .......................................2分 又1AC AO O =Q I ,1,AC AO ⊂平面11ACC A , ⊥∴BD 平面11ACC A , .......................................3分⊂1AA Θ平面11ACC A ,∴ BD ⊥1AA . .......................................4分(Ⅱ)连结1BCΘ四边形ABCD 为菱形,AC BD O =IABC1B 1C 1A DF1D OO ∴是BD 的中点. ....................................... 5分 又Θ点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , .......................................6分 ⊄OF Θ平面11BCC B ,⊂1BC 平面11BCC B∴//OF 平面11BCC B .......................................8分(III )以O 为坐标系的原点,分别以1,,OA OB OA 所在直线为,,x y z 轴建立空间直角坐标系. Θ侧棱1AA 与底面ABCD 的所成角为60°,1A O ⊥平面ABCD .ο601=∠∴AO A ,在AO A Rt 1∆中,可得11,AO AO == 在Rt AOB ∆中,OB ===得1(1,0,0),(0,A A D B ...............................10分 设平面D AA 1的法向量为),,(1111z y x n =⎪⎩⎪⎨⎧=⋅=⋅∴0111AD n AA n )0,3,1(),3,0,1(1--=-=Θ111100x x ⎧-+=⎪∴⎨-=⎪⎩ 可设)1,1,3(1-=n .......................................11分 又ΘBD ⊥平面11ACC A所以,平面11A ACC的法向量为2n OB ==u u r u u u r.......................................12分55353,cos 21-=⋅-=>=<∴n n , Θ二面角D —1AA —C 为锐角,故二面角D —1AA —C 的余弦值是55. ....................................14分18. (共13分)解:2211(21)()1(1)(1)a x ax a f x a x x x --+-'=--=+++,1x >-, .......................................2分(I )由题意可得13(1)24af -'==-,解得3a =, ....................................3分 因为(1)ln 24f =-,此时在点(1,(1))f 处的切线方程为(ln24)2(1)y x --=--, 即2ln22y x =-+-,与直线:21l y x =-+平行,故所求a 的值为3. ....................4分 (II ) 令()0f x '=,得到1212,0x x a=-= , 由12a ≥可知120a-≤ ,即10x ≤. ................................5分 ① 即12a =时,12120x x a=-==. 所以,2'2()0,(1,)2(1)x f x x x =-≤∈-+∞+, ................................6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当112a <<时,1120a-<-<,即1210x x -<<=, 所以,在区间1(1,2)a--和(0,)+∞上,'()0f x <; ...............................8分在区间1(2,0)a-上,'()0f x >. .................................9分故 ()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分③当1a ≥时,1121x a=-≤-, 所以,在区间(1,0)-上()0f x '>; ................................11分在区间(0,)+∞上()0f x '< , ...............................12分 故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. ............................13分 综上讨论可得: 当12a =时,函数()f x 的单调递减区间是(1,)-+∞; 当112a <<时,函数()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a-; 当1a ≥时,函数()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. 19. (共14分)解:(Ⅰ)抛物线22y px = (0)p >的准线为2px =-, .....................................1分 由抛物线定义和已知条件可知||1()1222p pMF =--=+=,解得2p =,故所求抛物线方程为24y x =. 2880y y b +-= ......................................3分 (Ⅱ)联立2124y x by x⎧=-+⎪⎨⎪=⎩,消x 并化简整理得.依题意应有64320b ∆=+>,解得2b >-. ..............................................4分 设1122(,),(,)A x y B x y ,则12128,8y y y y b +=-=-, .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==, ........................6分又||AB =. 所以||28AB r ==, .........................................7分解得85b =-. .........................................8分所以12124822224165x x b y b y b +=-+-=+=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. ............................................9分 方法二:联立2124y x b y x⎧=-+⎪⎨⎪=⎩,消掉y 并化简整理得22(416)40x b x b -++=, 依题意应有2216(4)160b b ∆=+->,解得2b >-. ............................................4分 设1122(,),(,)A x y B x y ,则21212416,4x x b x x b +=+= . .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-, 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==. .....................................6分又||AB =,又||28AB r ==8, .............................................7分解得85b =-, ..............................................8分所以12485x x +=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. .............................................9分 (Ⅲ)因为直线l 与y 轴负半轴相交,所以0b <,又l 与抛物线交于两点,由(Ⅱ)知2b >-,所以20b -<<,...........................................10分 直线l :12y x b =-+整理得220x y b +-=, 点O 到直线l的距离d , .................................................11分所以1||42AOB S AB d ∆==-= ..................................................12分令32()2g b b b =+,20b -<<,24()343()g b b b b b '=+=+,由上表可得()g b 最大值为432()327g -= . ...............................................13分所以当43b =-时,AOB ∆. ...............................................14分20.(共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L 不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到该集合中两个元素110b =与210b m =+,使得12b b m -=成立................2分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ................................................3分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠. .....................................................................4分 (Ⅱ)当1000n =时,则{}1,2,3,,1999,2000A =L①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P ....................5分 首先因为{}2001T x x S =-∈,任取02001,t x T =-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2000}x ∈,从而0120012000x ≤-≤,即,t A ∈所以T A ⊆. ...........................6分 由S 具有性质P ,可知存在不大于1000的正整数m , 使得对S 中的任意一对元素12,s s ,都有12s s m -≠. 对于上述正整数m ,从集合{}2001T x x S =-∈中任取一对元素11222001,2001t x t x =-=-,其中12,x x S ∈, 则有1212t t x x m -=-≠,所以集合{}2001T x x S =-∈具有性质P . .............................8分②设集合S 有k 个元素.由第①问知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P . 任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000, 所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000,不妨设S 中有t 2k t ⎛⎫≥ ⎪⎝⎭个元素12,,,t b b b L 不超过1000.由集合S 具有性质P ,可知存在正整数1000m ≤, 使得对S 中任意两个元素12,s s ,都有12s s m -≠, 所以一定有12,,,t b m b m b m S +++∉L .又100010002000i b m +≤+=,故12,,,t b m b m b m A +++∈L , 即集合A 中至少有t 个元素不在子集S 中, 因此2k k +≤2000k t +≤,所以20002kk +≤,得1333k ≤, 当{}1,2,,665,666,1334,,1999,2000S =L L 时, 取667m =,则易知对集合S 中任意两个元素12,y y , 都有12||667y y -≠,即集合S 具有性质P ,而此时集合S中有1333个元素.因此集合S 元素个数的最大值是1333. .....................................14分说明:其它正确解法按相应步骤给分.。
2010—2011海淀区高三数学(理)期末考试题(带答案)海淀区高三年级第一学期期末练习数 学(理)答案及评分参考 2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 12345678答案B D DC A BD C第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分) 9. 222x y x += (1,0) 10. 180 11. 512.M P Ne e e << 13.① ④ 14. 432 (1)2 3 (01)k k k k ⎧+≥⎪⎨⎪+<<⎩三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )xx x f 2cos )32cos()(--=πxx x 2cos 3sin2sin 3cos2cos -+=ππ.......................................2分x x 2cos 212sin 23-=)62sin(π-=x . .......................................4分)2,0(π∈x Θ, )65,6(62πππ-∈-∴x , .......................................5分 ]1,21()62sin(-∈-∴πx , 即)(x f 在(0,2π)的值域为]1,21(- . .......................................6分 (II )由(I )可知,)62sin()(π-=A A f , 1)62sin(=-∴πA , ......................................7分 π<<A 0Θ , 611626πππ<-<-∴A , .....................................8分 3,262πππ==-∴A A . ....................................9分 Abc c b a cos 2222-+=Θ , .....................................10分把73a b ==,代入,得到2320cc -+=, ..................................11分1=∴c 或2=c . ....................................12分 16.(共13分) 解:(I )方法一设选手甲在A 区投两次篮的进球数为X ,则)109,2(~B X , 故591092)(=⨯=X E , ....................................... 2分 则选手甲在A 区投篮得分的期望为6.3592=⨯ . ....................................... 3分设选手甲在B 区投篮的进球数为Y ,则)31,3(~B Y , 故1313)(=⨯=Y E , ....................................... 5分 则选手甲在B 区投篮得分的期望为313=⨯ . ....................................... 6分 36.3>Θ,∴选手甲应该选择A 区投篮. .......................................7分方法二:(I )设选手甲在A 区投篮的得分为ξ,则ξ的可能取值为0,2,4,212291(0)(1)101009918(2)(1)1010100981(4)().10100P P C P ξξξ==-===⋅-====;;所以ξ的分布列为 ξ 0 2 4 p 1100 18100 81100.......................................2分6.3=∴ξE .......................................3分 同理,设选手甲在B 区投篮的得分为η,则η的可能取值为0,3,6,9,3123223318(0)(1);327114(3)(1);339112(6)()(1);33911(9)().327P P C P C P ηηηη==-===⋅-===-====所以η的分布列为:η0 3 6 9p 827 49 29127.......................................5分3E η∴=, .......................................6分 ηξE E >Θ,∴选手甲应该选择A 区投篮. .......................................7分(Ⅱ)设选手甲在A 区投篮得分高于在B 区投篮得分为事件C ,甲在A 区投篮得2分在B 区投篮得0分为事件1C ,甲在A 区投篮得4分在B 区投篮得0分为事件2C ,甲在A 区投篮得4分在B 区投篮得3分为事件3C ,则123C C C C =U U ,其中123,,C C C 为互斥事件. .......................................9分则: 123123188******** ()()= ()()()1002710027100975P C P C C C P C P C P C =++=⨯+⨯+⨯=U U 故选手甲在A 区投篮得分高于在B 区投篮得分的概率为4975 ..................................13分17. (共14分)解:(I )Θ棱柱ABCD —1111A B C D 的所有棱长都为2,∴四边形ABCD 为菱形,AC BD ⊥ . .......................................1分又1A O ⊥平面ABCD,BD ⊂平面ABCD ,1AO BD ∴⊥ . .......................................2分又1AC AO O =Q I,1,AC AO ⊂平面11ACC A ,⊥∴BD 平面11ACC A , .......................................3分⊂1AA Θ平面11ACC A ,∴BD ⊥1AA . .......................................4分(Ⅱ)连结1BCΘ四边形ABCD 为菱形,AC BD O=IO ∴是BD 的中点. ....................................... 5分 又Θ点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , .......................................6分⊄OF Θ平面11BCC B ,⊂1BC 平面11BCC B∴//OF 平面11BCC B .......................................8分(III )以O 为坐标系的原点,分别以1,,OA OB OA 所在直线为,,x y z 轴建立空间直角坐标系. Θ侧棱1AA 与底面ABCD 的所成角为60°,1A O ⊥平面ABCD .ο601=∠∴AO A ,在AO A Rt 1∆中,可得11,3,AO AO ==在Rt AOB ∆中,22413OB AB AO =--ABC1B 1C 1A DF1D O得1(1,0,0),3),(0,3,0),3,0)A A D B - ...............................10分 设平面D AA 1的法向量为),,(1111z y x n= ⎪⎩⎪⎨⎧=⋅=⋅∴00111AD n AA n)0,3,1(),3,0,1(1--=-=Θ 11113030x z x ⎧-=⎪∴⎨-=⎪⎩ 可设)1,1,3(1-=n .......................................11分 又ΘBD ⊥平面11ACC A所以,平面11A ACC 的法向量为23,0)n OB ==u u r u u u r .......................................12分 55353,cos 212121-=⋅-=⋅>=<∴n n n n , Θ二面角D —1AA —C 为锐角,故二面角D —1AA —C 的余弦值是55 . ....................................14分18. (共13分) 解:2211(21)()1(1)(1)a x ax a f x a x x x --+-'=--=+++,1x >-, .......................................2分(I )由题意可得13(1)24a f -'==-,解得3a =, ....................................3分因为(1)ln 24f =-,此时在点(1,(1))f 处的切线方程为(ln24)2(1)y x --=--,即2ln22y x =-+-,与直线:21l y x =-+平行,故所求a 的值为3. ....................4分(II ) 令()0f x '=,得到1212,0x x a =-= ,由12a ≥可知120a -≤ ,即10x ≤. ................................5分 ① 即12a =时,12120x x a =-==. 所以,2'2()0,(1,)2(1)x f x x x =-≤∈-+∞+, ................................6分故()f x 的单调递减区间为(1,)-+∞ . ................................7分② 当112a <<时,1120a -<-<,即1210x x -<<=, 所以,在区间1(1,2)a --和(0,)+∞上,'()0f x <; ...............................8分 在区间1(2,0)a -上,'()0f x >. .................................9分 故 ()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a-. .........10分 ③当1a ≥时,1121x a=-≤-, 所以,在区间(1,0)-上()0f x '>; ................................11分在区间(0,)+∞上()0f x '< , ...............................12分故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. ............................13分 综上讨论可得: 当12a =时,函数()f x 的单调递减区间是(1,)-+∞; 当112a <<时,函数()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a-; 当1a ≥时,函数()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞.19. (共14分)解:(Ⅰ)抛物线22y px = (0)p >的准线为2p x =-, .....................................1分 由抛物线定义和已知条件可知||1()1222p p MF =--=+=, 解得2p =,故所求抛物线方程为24y x =. ......................................3分(Ⅱ)联立2124y x b y x ⎧=-+⎪⎨⎪=⎩,消x 并化简整理得2880y y b +-=.依题意应有64320b ∆=+>,解得2b >-. ..............................................4分 设1122(,),(,)A x y B x y ,则12128,8y y y y b +=-=-, .............................................5分设圆心00(,)Q x y ,则应有121200,422x x y y x y ++===-.因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==, ........................6分 又22221212121212||()()(14)()5[()4]5(6432)AB x x y y y y y y y y b =-+-+-+-=+.所以 ||25(6432)8AB r b =+, .........................................7分 解得85b =-. .........................................8分 所以12124822224165x x b y b y b +=-+-=+=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. ............................................9分方法二: 联立2124y x b y x ⎧=-+⎪⎨⎪=⎩,消掉y 并化简整理得22(416)40xb x b -++=, 依题意应有2216(4)160b b ∆=+->,解得2b >-. ............................................4分 设1122(,),(,)A x y B x y ,则21212416,4x x b x x b +=+= . .............................................5分设圆心00(,)Q x y ,则应有121200,422x x y y x y ++===-,因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==. .....................................6分 又2222121212121215||()()(1)()[()4]5(6432)44AB x x y y x x x x x x b =-+-+-+-+, 又||28AB r ==5(6432)8b +, .............................................7分解得85b =-, ..............................................8分 所以12485x x +=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. .............................................9分(Ⅲ)因为直线l 与y 轴负半轴相交,所以0b <,又l 与抛物线交于两点,由(Ⅱ)知2b >-,所以20b -<<,...........................................10分 直线l :12y x b =-+整理得220x y b +-=, 点O 到直线l 的距离55d , .................................................11分 所以321||4224222AOB SAB d b b b b ∆==-++ ..................................................12分 令32()2g b bb =+,20b -<<, 24()343()3g b b b b b '=+=+, b 4(2,)3-- 43- 4(,0)3-()g b ' +0 - ()g b 极大由上表可得()g b 最大值为432()327g -= . ...............................................13分 所以当43b =-时,AOB ∆323. ...............................................14分20.(共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L 不具有性质P . ...................................1分 因为对任意不大于10的正整数m ,都可以找到该集合中两个元素110b =与210b m =+,使得12b b m -=成立................2分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ................................................3分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠. .....................................................................4分 (Ⅱ)当1000n =时,则{}1,2,3,,1999,2000A =L①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P ....................5分 首先因为{}2001T x x S =-∈,任取02001,t x T =-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2000}x ∈, 从而0120012000x ≤-≤,即,t A ∈所以T A ⊆. ...........................6分由S 具有性质P ,可知存在不大于1000的正整数m , 使得对S 中的任意一对元素12,s s ,都有12s s m -≠.对于上述正整数m , 从集合{}2001T x x S =-∈中任取一对元素11222001,2001t x t x =-=-,其中12,x x S ∈, 则有1212t t x x m -=-≠, 所以集合{}2001T x x S =-∈具有性质P . .............................8分 ②设集合S 有k 个元素.由第①问知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P . 任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000, 所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000,不妨设S 中有t 2k t ⎛⎫≥ ⎪⎝⎭个元素12,,,t b b b L 不超过1000.由集合S 具有性质P ,可知存在正整数1000m ≤, 使得对S 中任意两个元素12,s s ,都有12s s m -≠, 所以一定有12,,,t b m b m b m S +++∉L .又100010002000i b m +≤+=,故12,,,t b m b m b m A +++∈L ,即集合A 中至少有t 个元素不在子集S 中, 因此2kk +≤2000k t +≤,所以20002kk +≤,得1333k ≤,当{}1,2,,665,666,1334,,1999,2000S =L L 时,取667m =,则易知对集合S 中任意两个元素12,y y , 都有12||667y y -≠,即集合S 具有性质P ,而此时集合S中有1333个元素.因此集合S 元素个数的最大值是1333. .....................................14分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第一学期期末练习数学 2020. 01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}2,3,4B =,则集合U A B ð是(A ){1,3,5,6}(B ){1,3,5} (C ){1,3} (D ){1,5}(2)抛物线24y x =的焦点坐标为 (A )(0,1)(B )(10,) (C )(0,1-) (D )(1,0)-(3)下列直线与圆22(1)(1)2x y -+-=相切的是(A )y x =- (B )y x =(C )2y x =- (D )2y x =(4)已知,a b R Î,且a b >,则 (A )11ab <(B )sin sin a b >(C )11()()33ab<(D )22a b >(5)在51()x x-的展开式中,3x 的系数为 (A )5-(B )5(C )10-(D )10(6)已知平面向量,,a b c 满足++=0a b c ,且||||||1===a b c ,则⋅a b 的值为(A )12-(B )12(C)2-(D2(7)已知α, β, γ是三个不同的平面,且=m αγ,=n βγ,则“m n ∥”是“αβ∥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)已知等边△ABC 边长为3. 点D 在BC 边上,且BD CD >,AD =下列结论中错误的是(A )2BDCD= (B )2ABDACDS S ∆∆= (C )cos 2cos BADCAD∠=∠ (D )sin 2sin BAD CAD ∠=∠(9)声音的等级()f x (单位:dB )与声音强度x (单位:2W/m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 (A )610倍(B )810倍(C )1010倍(D )1210倍(10)若点N 为点M 在平面a 上的正投影,则记()N f M a =. 如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为b ,平面ABCD 为g ,点P 是棱1CC 上一动点(与C ,1C 不重合),1[()]Q f f P g b =,2[()]Q f f P b g =. 给出下列三个结论:①线段2PQ长度的取值范围是1[22;②存在点P 使得1PQ ∥平面b ; ③存在点P 使得12PQ PQ ^. 其中,所有正确结论的序号是 (A )①②③(B )②③(C )①③(D )①②第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,,那么下列结论中可能不成立的是( )(A )(B ) (C )()UA B ≠∅ (D )()U B A =∅(2)抛物线的准线方程为 ( )(A ) (B ) (C ) (D ) (3)将函数的图象按向量平移后得到函数的图象,那么( )(A ) (B )(C ) (D ) (4)在中,角、、C 所对的边分别为、、c ,如果,,那么角C 等于( )(A ) (B ) (C ) (D )(5)位于北纬x 度的、两地经度相差,且、两地间的球面距离为(为地球半径),那么x 等于( )(A )30 (B ) 45 (C ) 60 (D )75 (6)已知定义域为的函数,对任意的都有恒成立,且,则 等于 ( )(A )1 (B ) 62 (C ) 64 (D )83(7)已知,那么使得的数对共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个(8)如果对于空间任意条直线总存在一个平面,使得这条直线与平面所成的角均相等,那么这样的( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)22462limnnn = .(10)如果 那么 ;不等式的解集是 .(11)已知点、分别是双曲线的两个焦点, 为该双曲线上一点,若为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、满足 且的最小值为3,则实数的值为 .(13)已知直线与圆交于不同的两点、,是坐标原点,,那么实数的取值范围是 . (14)已知:对于给定的及映射.若集合,且C 中所有元素对应的象之和大于或等于,则称C 为集合A的好子集.① 对于,,映射,那么集合A 的所有好子集的个数为 ; ② 对于给定的,,映射的对应关系如下表:x 1 2 3 4 5 6 1 1 1 1 1若当且仅当C 中含有和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组: .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知函数(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)求函数在上的最大值和最小值并指出此时相应的x 的值.(16)(本小题共12分)已知函数是的反函数,点、分别是、图象上的点,1l 、2l 分别是函数、的图象在两点处的切线,且1l ∥2l .(Ⅰ)求、两点的坐标;(Ⅱ)求经过原点及、的圆的方程.(17)(本小题共14分)已知正三棱柱中,点是棱的中点,.(Ⅰ)求证:平面;C到平面的距离;(Ⅱ)求1(Ⅲ)求二面角的大小.(18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间(单位:年)有关. 若,则销售利润为0元;若,则销售利润为100元;若,则销售利润为200元. 设每台该种电器的无故障使用时间,及这三种情况发生的概率分别为,又知是方程的两个根,且.(Ⅰ)求的值;(Ⅱ)记表示销售两台这种家用电器的销售利润总和,求的分布列;(Ⅲ)求销售两台这种家用电器的销售利润总和的平均值.(19)(本小题共14分)已知点、,是一个动点,且直线、的斜率之积为.(Ⅰ)求动点的轨迹C的方程;(Ⅱ)设,过点的直线l交C于、两点,的面积记为S,若对满足条件的任意直线l,不等式恒成立,求的最小值.(20)(本小题共14分)如果正数数列满足:对任意的正数M,都存在正整数,使得,则称数列是一个无界正数列.(Ⅰ)若,分别判断数列、是否为无界正数列,并说明理由;(Ⅱ)若,是否存在正整数k,使得对于一切,有成立;(Ⅲ)若数列是单调递增的无界正数列,求证:存在正整数,使得.海淀区高三年级第一学期期末练习数学(理科)参考答案及评分标准2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)1 (10)1,(11)(12)9 4(13)(14),三、解答题(本大题共6小题,共80分)(15)(本小题共12分)解:(Ⅰ)………………………………………………4分所以. ………………………………………………5分由得所以函数的最小正周期为,单调递减区间为.………………………………………………7分(Ⅱ)由(Ⅰ)有.因为,所以.因为,所以当时,函数取得最小值;当时,函数取得最大值2.………………………………………………12分(16)(本小题共12分)解:(Ⅰ)因为,所以.从而. ………………………………………………3分所以切线的斜率分别为.又,所以. ………………………………………………4分因为两切线平行,所以. ………………………………………………5分从而.因为,所以.所以两点的坐标分别为. ………………………………………7分(Ⅱ)设过、、三点的圆的方程为:.因为圆过原点,所以.因为、关于直线对称,所以圆心在直线上.所以.又因为在圆上,所以.所以过、、三点的圆的方程为:. ………………12分(17)(本小题共14分)(Ⅰ)证明:连结交于点G,连结.在正三棱柱中,四边形是平行四边形,∴.∵,∴∥. ………………………………………2分 ∵平面,平面,∴∥平面.………………………………………4分解法一:(Ⅱ)连结,设1C 到平面的距离为.∵四边形是平行四边形,∴.∴. ∵,∴. ………………………………………6分在等边三角形中,为的中点,∴.∵是在平面内的射影,∴. ………………………………………8分 ∴.∴. ………………………………………9分(Ⅲ)过点作交于,过点作交于,连结.∵平面⊥平面,平面,平面平面,∴平面.∴是在平面内的射影. ∴.∴是二面角的平面角. ………………………………………12分 在直角三角形中,. 同理可求: . ∴. ∵,∴. ………………………………………14分解法二:过点作交于,过点作交于.因为平面⊥平面,所以平面.分别以所在的直线为x 轴,轴,轴建立空间直角坐标系,如图所示.因为,是等边三角形,所以为的中点.则,,,,,. ………………………………………6分 (Ⅱ)设平面的法向量为,则10,0.n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩ ∵,, ∴取,得平面的一个法向量为. ………………………………………8分∴1C 到平面的距离为:13913CC n n⋅=. ………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面的一个法向量为. …………………………12分 设二面角的大小为θ,则.∵, ∴. ………………………………………14分(18)(本小题共14分) 解:(Ⅰ)由已知得. , .是方程的两个根, .,. ………………………………………3分(Ⅱ)的可能取值为0,100,200,300,400. ………………………………………4分 =, =, =, =,=. ………………………………………9分随机变量的分布列为:0 100 200 300 400………………………………………11分 (Ⅲ)销售利润总和的平均值为==240.销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出,没有说明平均值为240元,扣1分. (19)(本小题共14分) 解:(Ⅰ)设动点的坐标为,则直线的斜率分别是11,y y x x. 由条件得1112y y x x . 即.所以动点的轨迹C 的方程为. ………………………………………5分 注:无扣1分. (Ⅱ)设点的坐标分别是.当直线l 垂直于x 轴时,.所以.所以. ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为, 由得.所以. ………………………………………9分 所以. 因为, 所以.综上所述的最大值是217. ………………………………………11分 因为恒成立, 即恒成立. 由于. 所以.所以恒成立. ………………………………………13分 所以的最小值为174. ………………………………………14分 注:没有判断为锐角,扣1分.(20)(本小题共14分)解:(Ⅰ)不是无界正数列.理由如下: 取M = 5,显然,不存在正整数满足; 是无界正数列.理由如下:对任意的正数M ,取为大于2M 的一个偶数,有,所以是无界正数列. ………………………………………4分 (Ⅱ)存在满足题意的正整数k .理由如下: 当时,因为32121231n nn a a a a a a a a a ++---=+++,即取,对于一切,有成立. ……………………9分 注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列是单调递增的正数列,所以32121231n nn a a a a a a a a a ++---=+++. 即.因为是无界正数列,取,由定义知存在正整数,使. 所以.由定义可知是无穷数列,考察数列,,,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数,使得.重复上述操作,直到确定相应的正整数.则.即存在正整数,使得成立.………………………………………14分。