实验3 真空蒸发镀膜实验
- 格式:docx
- 大小:197.29 KB
- 文档页数:3
蒸发镀膜实验报告蒸发镀膜实验报告引言:蒸发镀膜是一种常用的表面处理方法,通过将材料加热至蒸发温度,使其蒸发成气体,然后在待处理物体表面冷凝成薄膜。
本实验旨在探究蒸发镀膜的原理、过程以及对材料性能的影响。
一、实验原理蒸发镀膜的原理基于材料的蒸发和冷凝过程。
首先,将待处理的材料放置在真空室中,加热至蒸发温度。
材料表面的原子或分子因为热能而脱离固体状态,形成蒸气。
然后,这些蒸气在真空室中沉积在待处理物体表面,形成一层薄膜。
二、实验步骤1. 准备实验装置:将待处理物体放置在真空室中,确保真空度达到要求。
2. 加热材料:将待处理材料加热至蒸发温度,使其蒸发成气体。
3. 冷凝蒸气:将蒸发的材料蒸气冷凝在待处理物体表面,形成薄膜。
4. 观察和记录:观察薄膜的颜色、光泽等特征,并记录实验数据。
三、实验结果在实验中,我们选择了铝作为待处理材料,并将其加热至蒸发温度。
经过一段时间的蒸发和冷凝过程,我们成功地在待处理物体表面形成了一层铝薄膜。
观察薄膜的颜色和光泽,可以发现它呈现出银白色,并具有良好的反射性能。
四、实验讨论1. 材料选择:蒸发镀膜的材料选择对薄膜的性能有重要影响。
不同的材料具有不同的光学、电学、热学等性质,因此在实际应用中需要根据需求选择适合的材料。
2. 加热温度:加热温度是蒸发镀膜过程中的重要参数。
温度过低可能导致材料无法蒸发,温度过高则可能使材料过度蒸发,影响薄膜的质量。
因此,在实验中需要控制好加热温度。
3. 薄膜性能:蒸发镀膜的薄膜具有一定的光学性能,如反射率、透过率等。
这些性能可以通过调整蒸发镀膜的参数来实现,例如材料的厚度、蒸发速率等。
五、实验应用蒸发镀膜技术在实际应用中具有广泛的用途。
例如,它可以用于制备光学镜片、太阳能电池、液晶显示器等。
蒸发镀膜可以改善材料的表面性能,提高其光学、电学等性能,从而拓展了材料的应用领域。
六、实验总结通过本次蒸发镀膜实验,我们深入了解了蒸发镀膜的原理和过程,并探究了不同参数对薄膜性能的影响。
真空蒸发镀膜实验报告真空蒸发镀膜实验报告引言:镀膜技术是一种常用的表面处理方法,它可以提高材料的光学、电学、磁学等性能。
在镀膜技术中,真空蒸发镀膜是一种常见的方法。
本实验旨在通过真空蒸发镀膜实验,探究其原理和应用。
一、实验原理真空蒸发镀膜是利用物质在真空环境下的蒸发和沉积过程,将所需材料以原子或分子形式沉积在基材表面,形成一层薄膜。
在真空环境下,物质的蒸发速度与环境压力成反比,因此通过调节真空度可以控制蒸发速度,从而控制薄膜的厚度。
二、实验步骤1. 准备实验装置:将真空蒸发镀膜装置连接至真空泵,确保系统处于良好的真空状态。
2. 准备基材:清洗基材表面,确保表面干净无尘。
3. 准备镀膜材料:选择合适的镀膜材料,将其切割成适当大小的块状。
4. 蒸发源安装:将镀膜材料放置在蒸发源中,将蒸发源安装至真空腔室内。
5. 开始蒸发:打开真空泵,开始抽真空,待真空度达到要求后,打开蒸发源,开始蒸发镀膜。
6. 控制薄膜厚度:根据需要的薄膜厚度,调节蒸发源的功率和蒸发时间。
7. 结束蒸发:薄膜蒸发完成后,关闭蒸发源和真空泵,将装置恢复到常压状态。
8. 检查膜层质量:使用显微镜或其他测试设备检查膜层的均匀性和质量。
三、实验结果通过本次实验,我们成功制备了一层金属薄膜。
经过显微镜观察,我们发现薄膜均匀且质量良好。
通过测量,我们得到了薄膜的厚度为300纳米。
四、实验讨论1. 蒸发源选择:在真空蒸发镀膜实验中,蒸发源的选择对薄膜的质量和性能起着重要作用。
不同的材料具有不同的蒸发特性,因此在实验前需要仔细选择合适的蒸发源。
2. 控制薄膜厚度:薄膜的厚度直接影响其光学和电学性能。
在实验中,我们通过调节蒸发源功率和蒸发时间来控制薄膜的厚度。
在实际应用中,可以通过监测蒸发速率和实时测量薄膜厚度来实现更精确的控制。
3. 薄膜质量检查:薄膜的均匀性和质量是评价镀膜效果的重要指标。
在实验中,我们使用显微镜观察薄膜表面,确保其均匀性。
在实际应用中,还可以使用光学测试仪器、电学测试仪器等进行更详细的检测。
真空镀膜实验报告真空镀膜实验报告摘要:本实验在获得真空环境的基础上,在真空室内进⾏镀膜。
在实验中需要复习获得真空的步骤和注意事项,学会使⽤蒸发镀膜设备,和在玻璃上镀锡的操作⽅法。
关键词:真空镀膜蒸发镀膜引⾔:真空镀膜⼜叫物理⽓相沉积,它是利⽤某种物理过程,如物质的热蒸发或在受到粒⼦束轰击时物质表⾯原⼦的溅射等现象,实现物质从源物质到薄膜的可控的原⼦转移过程。
物理⽓相沉积技术中最为基础的两种⽅法就是蒸发法和溅射法。
在薄膜沉积技术发展的最初阶段,由于蒸发法相对于溅射法具有⼀些明显的优势,包括较⾼的沉积速度,相对较⾼的真空度以及由此导致的较⾼的薄膜质量等,因此蒸发法受到了相对教⼤程度的重视。
但另⼀⽅⾯,溅射法也有⾃⼰的优势,包括在沉积多元合⾦薄膜时化学成分容易控制,沉积层对衬底的附着⼒较好等。
真空镀膜的操作是将固体材料置于真空室内,在真空条件下,将固体材料加热蒸发,蒸发出来的原⼦或分⼦能⾃由地弥布到容器的器壁上。
当把⼀些加⼯好的基板材料放在其中时,蒸发出来的原⼦或分⼦就会吸附在基板上逐渐形成⼀层薄膜。
正⽂:⼀、实验原理1、真空泵简介(1)机械泵机械泵通过不断改变泵内吸⽓空腔的容积,使被抽容器内⽓体的体积不断膨胀压缩从⽽获得真空,常⽤的是旋⽚式机械泵。
它主要由定⼦、转⼦、旋⽚、弹簧等组成。
机械泵的极限真空度为Pa 110 ,它主要由机械泵油的饱和蒸汽压和泵的机械加⼯精度决定的。
当达到极限真空度时,抽⽓和漏⽓的速度相等,真空度不再变化。
如果将两个机械泵组合起来,可以将真空度提⾼⼀个数量级。
旋⽚式机械泵使⽤注意:1)检查油槽中油液⾯的⾼度是否符合规定,机械泵转⼦的转动⽅向与规定⽅向是否⼀致;2)机械泵停⽌⼯作时,要⽴即使进⽓⼝与⼤⽓相通,防⽌回油现象。
这步由机械泵上的电磁阀⾃动进⾏。
3)机械泵不宜⼯作过长,否则会影响使⽤寿命。
(2)扩散泵扩散泵利⽤⽓体扩散现象来抽⽓的。
利⽤⾼速定向喷射的油分⼦在喷嘴出⼝处的蒸汽流中形成⼀低压,将扩散进⼊蒸汽流的⽓体分⼦带⾄泵⼝被前级泵抽⾛。
真空镀膜本实验应用真空蒸发的方法:即在真空中把制作薄膜的材料加热蒸发,使其淀积在适当的表面上来获得一质量优良的金属膜。
●真空镀膜机真空镀膜机结构图●蒸发系统蒸发系统蒸发源蒸发源的形状如下图,大致有螺旋式(a)、篮式(b)、发叉式(c)和浅舟式(d)等。
蒸发源真空蒸发实验的具体操作步骤:1. 检查真空镀膜机及复合真空计上各开关,并它们全部置在“关”的位置(特别是复合真空计上的规管电源一定要置在“关”的位置);2. 接通真空镀膜机总电源,再把钟罩操作旋钮拨至“钟罩升”,等钟罩升至适当位置后拨至“关”;3. 把制作薄膜的铝材处理后放置在蒸发源的适当位置,再用挡板挡住蒸发源;把经清洗、干燥处理后的玻璃片放置在工作架的适当位置;然后把钟罩操作旋钮拨至“钟罩降”使钟罩降至最低位置后拨至“关”;4. 接通复合真空计电源,校准“测量2”的加热电流为98 mA,然后旋钮旋到“测量2”;5. 接通真空镀膜机冷却水源,再接通真空镀膜机的“机械泵及扩散泵”电源,“拉”低阀,用“测量2”监测钟罩内的气压变化,记录相应的P(t)~t 曲线,直到钟罩内的气压值下降为5Pa后,“推”低阀,改用“测量1”监测系统内的气压变化(确认“测量1”的加热电流为98 mA),直到系统内的气压值为5Pa时,“开”高阀;6. 再次采用“测量2”监测钟罩内的气压变化,记录相应的P(t)~t 曲线,直到钟罩内的气压值为0.1Pa后,接通复合真空计上的规管电源,启用电离规管对钟罩内的气压变化进行监测并记录相应的P(t)~t 曲线,直到钟罩内的气压值下降为0.015Pa 以下;7. 用电源插销接通所选用的蒸发源“电极”,再接通“烘烤、蒸发”电源,调节其电流强度为30 A并维持约1分钟,移开挡板,继续增大电流至45A并维持30秒,然后把电流强度调节为零,同时关闭复合真空计上的规管电源!!!8. 在进行抽气10分钟后,“关”高阀,“机械泵及扩散泵”改接为“机械泵”;9. 机械泵继续开动,水源不关,开风扇吹扩散泵……30分钟后接通“充气阀”对钟罩内“充气”,待充气完成后升钟罩,取出镀膜片;10. 再经半小时后关机械泵、水源及总电源。
真空蒸发法制备薄膜及其应用研究随着科技的不断进步和人们对产品性能的不断追求,薄膜技术变得越来越重要。
薄膜技术广泛应用于光学、电子、信息、生物医学等领域。
其中,薄膜的制备技术对其性能起着至关重要的作用。
而真空蒸发法作为一种制备薄膜的重要方法,在各领域得到了广泛的应用。
一、真空蒸发法的基本原理与步骤真空蒸发法是一种将固体材料转化为气态,进而在具有真空的环境下将其沉积在基底上的方法。
其基本原理是将被蒸发物质加热到其熔点以上时,它会转化为气态分子,这些气态分子被吸附在沉积表面上,然后形成一层薄膜。
真空蒸发法首先需要将蒸发物置于真空环境中,随后加热蒸气源,使其产生致密的蒸气流,经过准备好的控制装置,在基底上蒸发沉积。
二、真空蒸发法的特点与区别相较于其它薄膜制备技术,真空蒸发法具有一定的优点。
首先,由于真空状况下外界氧、氮等元素会被排除在外,从而避免了产生氧化物的情况,保证薄膜的纯度和力学性能。
其次,由于真空情况下,被蒸发的物质分子平均自由程长、扩散系数大,从而使蒸气源可以在基板表面形成较厚、致密、薄膜质量好,晶粒小、层间有极好的结合能力。
因此,真空蒸发法被广泛用于LED、太阳电池、热敏电阻、透明导电薄膜等领域。
与溅射法、离子束沉积法相比,真空蒸发法主要区别在于蒸气的产生方式。
溅射法是利用高速粒子轰击固体材料使其气化;离子束沉积法是使用高功率离子轰击沉积片,将目标物质微米尺度分解并沉积。
真空蒸发法在产生蒸气的分子时,通常采用加热方式,将固体加热到升华或熔点以上,使其氧化并蒸发。
三、真空蒸发法在中性分子束法中的应用中性分子束法技术是一种自下至上的纳米加工技术,特别用于控制制备金属、半导体、氧化物、纳米材料等。
在这种技术中,中性分子束法技术充分利用了真空蒸发法的制备特点,在真空环境下蒸发物质并将其沉积在基底上,但是通过在制备薄膜时加入气体分子束,使得被蒸发物质能够被削减成相应尺寸的纳米和微米区域。
这种技术的研究成为了现代纳米技术的基础研究,为高性能材料和储能材料的研究提供了技术支持。
真空蒸发镀膜实验报告引言真空蒸发镀膜技术是一种常见的表面处理方法,可以在材料表面形成一层薄膜。
本实验旨在通过真空蒸发镀膜实验,了解该技术的基本原理、操作步骤以及影响薄膜质量的因素。
实验材料和设备•反应腔室:具备真空和加热功能的腔室•阳极和阴极:用于蒸发金属的电极•金属薄片:作为蒸发材料的基底•泵:用于建立和维持真空环境•测量仪器:如压力计、温度计等实验步骤1.准备工作:确保实验设备和材料的准备完善。
检查反应腔室、泵、电极等设备的工作状态,清洁反应腔室,并安装好金属薄片。
2.真空抽取:将反应腔室连接至泵,并打开泵开始抽取气体。
通过观察压力计的读数,等待压力降至所需真空度,一般取10^-6 Torr左右。
3.加热处理:开始加热反应腔室,以使基底温度升高。
通过控制加热功率和时间,可调节腔室的温度。
4.蒸发材料:将蒸发材料放置在阴极上,并将阳极和阴极放置在一定距离内,通电使其加热。
蒸发材料会受热并产生雾气,进而沉积在金属薄片上。
5.薄膜生长:在蒸发材料产生雾气的同时,它们会在真空环境中沉积在金属薄片上形成薄膜。
控制蒸发时间和功率可以控制薄膜的厚度和均匀性。
6.冷却和抽气:在薄膜生长完毕后,关闭加热装置,并继续抽气以降低腔室内的气体压力。
同时,可以通过冷却装置降低腔室温度,以便取出镀膜样品。
7.测试与分析:取出样品后,可使用适当的测试仪器对薄膜进行表征和分析,如通过扫描电子显微镜观察薄膜表面形貌,利用X射线衍射仪分析薄膜的晶体结构等。
实验注意事项1.在实验过程中,需保持实验环境干燥,以避免气体或水分对薄膜质量的影响。
2.在操作过程中,需小心防止金属薄片的污染和损坏,注意防止外界杂质进入反应腔室。
3.在加热过程中,应注意避免过高的温度,以免金属薄片变形或蒸发材料过度蒸发。
4.在进行测试和分析时,需使用适当的仪器,并遵循操作规程,以确保结果的准确性。
结论通过本实验,我们了解了真空蒸发镀膜技术的基本原理和操作步骤。
真空镀膜实验实验目的:1.了解真空技术的基本知识;2.掌握低‘高真空的获得与测量的基本原理及方法;实验器材:DH2010型多功能真空实验仪实验原理:蒸发镀膜的原理是:先将镀膜室内的气体抽到10-2Pa以下的压强,通过加热蒸发源使臵于蒸发源中的物质蒸发,蒸汽的原子或分子从蒸发源表面逸出,沉积到基片上凝结形成薄膜,它包括抽气;蒸发;沉积等基本过程。
真空镀膜是在真空室中进行的(一般气压低于1.3×10-2Pa),当需要蒸发的材料(金属或电介质)加热到一定温度时,材料中分子或原子的热振动能量可增大到足以克服表面的束缚能,于是大量分子或原子从液态或直接从固态(如SiO2ZnS)汽化。
当蒸汽粒子遇到温度较低的工件表面时,就会在被镀工件表面沉积一层薄膜。
以下仅就源加热方式、真空度对膜层质量的影响及蒸发源位置对薄膜均匀性的影响等问题作简要说明。
(a)(b)为电阻型源加热器,它们由高熔点的金属做成线圈状(称为丝源)或舟状(称为舟源)。
加热源上可承载被蒸发材料。
由于挂在丝源上的被蒸发物质(如铝丝)可形成向各个方面发射的蒸汽流,因此丝源可用为点源,而舟源则可近似围内发射的面源。
对于不同的被蒸材料,可选取由不同材料做成,形状各异的加热器。
其选取原则为:a.加热器所用材料有良好的热稳定性,其化学性质不活泼,在达到蒸发温度时材料本身的蒸汽压要足够低。
b.加热器材料的熔点要高于被蒸发物的蒸发温度,加热器要有足够大的热容量。
c.要求线圈装加热器所用材料热能与蒸发物有良好的浸润,有较大的表面张力。
d.被蒸发物与加热器材料的互溶性必须很低,不产生合金。
e.对于不易制成丝状,或被蒸发物与丝状加热器的表面张力较小时,可采用舟状加热器。
日前常用钨丝加热器蒸发铝,用钼舟加热器蒸发银、金化锌、氟化镁等材料,与电阻器配合的关键部件是低压大电流变压器,对不同的蒸发材料及加热器可将电流分配塞置于相应位置,以保证获得合适的功率。
电阻源加热器具有简便、设备成本低等优点,但由于加热器与蒸发物在电阻加热器上的装载量不能太多,因此所蒸膜厚也将受到限制。
真空镀膜实验报告真空镀膜实验报告引言:真空镀膜技术是一种将金属薄膜沉积在基材表面的方法,通过控制沉积参数和真空环境,可以获得具有特殊功能和性能的薄膜材料。
本实验旨在探究真空镀膜技术的原理和应用,以及分析实验结果。
一、实验原理真空镀膜技术是利用真空环境下的物理或化学过程,在基材表面形成一层金属薄膜。
实验中,我们使用了蒸发镀膜的方法。
首先,将金属材料(如铝)置于真空腔体中的加热器内,然后加热金属材料,使其蒸发成气体。
蒸发的金属气体通过减压系统,进入到基材表面,形成金属薄膜。
二、实验步骤1. 准备基材:将需要镀膜的基材(如玻璃片)进行清洗和处理,以确保表面干净和平整。
2. 装置真空镀膜设备:将基材放置在真空腔体中,确保基材与蒸发源之间的距离适当,并调整真空度。
3. 加热蒸发源:打开加热器,将金属材料加热至蒸发温度,使其蒸发成气体。
4. 控制沉积速率:通过控制蒸发源的温度和真空度,调节金属气体的流量和速率,以控制金属薄膜的厚度和均匀性。
5. 结束镀膜:达到所需的薄膜厚度后,关闭加热器和真空泵,待系统冷却后取出基材。
三、实验结果与分析通过实验,我们成功制备了一层铝薄膜。
观察镀膜表面,可以发现薄膜均匀、光滑,并且与基材紧密结合。
这是因为在真空环境下,金属气体分子自由扩散,避免了空气中的杂质和氧化物对薄膜形成的干扰。
此外,薄膜的厚度也可以通过调节蒸发源的温度和时间来控制,实验中我们制备了不同厚度的铝薄膜。
四、应用前景真空镀膜技术在许多领域具有广泛的应用前景。
首先,它可以用于制备具有特殊功能的薄膜材料,如防反射涂层、导电薄膜、光学滤波器等,广泛应用于光学、电子、航空航天等领域。
其次,真空镀膜技术还可以用于改善材料的表面性能,如增加材料的硬度、耐磨性和耐腐蚀性等。
此外,真空镀膜技术还可以用于制备纳米材料和纳米结构,用于研究纳米尺度下的物理和化学性质。
结论:通过本次实验,我们深入了解了真空镀膜技术的原理和应用。
实验结果表明,真空镀膜技术可以制备出具有特殊功能和性能的薄膜材料,并且具有广泛的应用前景。
真空镀膜实验[实验目的] 1.了解真空(蒸发)镀膜机的基本结构和使用方法。
2.掌握真空蒸发法制备铝膜的工艺。
[实验仪器] 真空(蒸发)镀膜机[实验内容] 根据真空热蒸发镀铝膜的三个物理过程,即:1.采用蒸发或升华把固态材料转变为气态;2.原子(分子)从蒸发源迁移到基片上;3.基片表面上膜粒子重新排列而凝聚。
是如何顺利实现的,写出钟罩内全过程的报告。
[实验原理]蒸发镀膜的原理是:先将镀膜室内的气体抽到10-2Pa以下的压强,通过加热蒸发源使臵于蒸发源中的物质蒸发,蒸汽的原子或分子从蒸发源表面逸出,沉积到基片上凝结形成薄膜,它包括抽气;蒸发;沉积等基本过程。
镀膜机主要由以下几个部分组成,如图1所示。
(A).镀膜室:主要包括四对螺旋状钨丝或舟状蒸发加热器;旋转基片支架;烘烤加热器;热电偶测温探头;离子轰击环;针阀;观察窗等。
(B).真空获得系统。
它主要由机械泵、扩散泵、高低真空阀、充气阀、挡油器及电磁阀等组成,电磁阀可防机械泵返油。
(C).真空测量系统。
它由热偶计和电离计组合的复合真空计而成,热偶计是用于测量低真空度,范围1O2~1O-1 Pa,电离计是用于测量高真空度,范围1O-1~1O-6 Pa。
(D).电路控制系统。
它主要由机械泵、扩散泵、电磁阀控制电路和镀膜蒸发加热器控制电路、钟罩升降控制电路、基片支架旋转调速控制电路、烘烤加热温度控制电路、离子轰击电路等组成。
图1是DM-450A镀膜机的结构原理图:其中1,电离规管,热偶真空计满表后才能开电离真空计;2,GI-200型高真空蝶阀,镀膜室应有5帕以上的预备真空度,扩散泵加热(此时,冷却水应开通,低阀应推进抽扩散泵系统)半小时以上,才可开高真空蝶阀;3,DY-200A型挡油器;4,K20型油扩散泵;5,2XZ-8型机械泵;6,DC-30型低真空磁力阀,机械泵电源关闭时,该阀自动向机械泵放大气;7,储气罐;8,DS-30形低真空三通阀,低真空阀拉出是抽镀膜室,低真空阀推进抽扩散泵系统9,CQF-8型磁力充气阀,升起镀膜室钟罩时,应先用充气阀向镀膜室充入大气(此时, 低真空阀应拉出,高真空蝶阀应关闭;10,热偶规管;11,镀膜室;12,ZF-85型针型阀;13,挡板;14,侧观察窗;16,上观察窗;17,夹具;18,19,冷却水;20,离子轰击环。
真空镀膜实验报告学生姓名:武晓忠学号:201211141046 指导老师:王海波【摘要】本实验意在通过利用DM-450型真空镀膜机镀膜,采用λ/4法进行控制,熟悉抽真空以及镀膜机使用的方法。
并通过TU1221真空双光束紫外和可见光分光光度计测量T-λ曲线,测量介质干涉滤光片的三个重要参数λ0,T max,△λ/λ0【关键词】抽真空干涉滤光片透过率【引言】自然界中许多美丽的景物,如蝴蝶翅膀,孔雀羽毛以及肥皂泡等,它们的的观赏效果都与透明层反射的广播的干涉有关。
从而发现薄膜的干涉现色彩现象起,特别是1930年真空蒸发设备的出现后,人们对薄膜科学技术进行了大量的研究。
在光学薄膜技术中,多层多周期的光学薄膜最为突出,而窄带干涉滤光片则是这一技术中最重要的应用之一,它是将宽带光谱变为窄带光谱的光学元件。
一种典型的干涉滤光片是在玻璃基片上镀制“银—介质—银”三层膜,前后两层银膜构成两个平行的高反射率版,介质莫层通常为冰晶石或氟化镁等,作为间隔曾。
这种干涉滤光片是在法布里-珀罗干涉仪基础上改进而成的,因为被称为法布里-珀罗干涉滤光片。
它在光学,光谱学,光通信,激光以及天文物理等许多科学领域得到了广泛的应用。
若n为间隔层介质折射率,d为该层集合厚度,则间隔层的光学厚度nd决定了滤光片的透射峰值波长λ0,nd=λ0m,nϵN(1)2其中m是整数。
银层反射率的主要作用决定了法布里-珀罗干涉腔的惊喜常熟,从而对滤光片的峰值透射率T M和半宽度∆λ产生影响。
由滤光片特性曲线图2.可见T M一半处对应的波长为λ1和λ2,相应的透过率的宽度为∆λ=λ2−λ1,这就是滤光片的性能的一个重要参数,称为半高宽。
因银层具有很强的吸收,用银作反射的层的“金属-介质”干涉滤光片的透射率很难高于40%。
而用多层透明介质膜过程的高反射率膜板代替银层构成的干涉滤光片弥补这一缺点,课使峰值透射率高达80%以上。
这就是全介质型干涉滤光片。
图1. 法布里-珀罗干涉滤光片结构示意图二、实验原理1、反射膜1)光线在单一分界面上的反射光线垂直入射到透明介质界面时,反射系数r和反射率R分别为r=n i−n tn i+n t(2)R=r2=(n i−n tn i+n t )2(3)其中n i, n t分别是两种介质的折射率。
多层介质膜滤光片的镀制摘要:本实验以蒸发真空镀膜机对滤光片镀膜,采用干涉原理对膜厚进行监控。
使用单色仪把光源透过滤光片并有反射镜反射回来到单色仪上的光,经由单色仪原理被分成不同的光束,再由光电倍增管将光信号放大并转化为电信号。
通过理论模拟和实际实验结果进行比较,分析实验误差产生的原因。
关键词:干涉滤光片、高真空镀膜、光学极值法测膜厚、真空检验引言:当光线进入不同传递物质时(如由空气进入玻璃),大约有5% 会被反射掉,在光学瞄准镜中有许多透镜和折射镜,整个加起来可以让入射光线损失达30%至40%。
现代光学透镜通常都镀有单层或多层氟化镁的增透膜,单层增透膜可使反射减少至 1.5%,多层增透膜则可让反射降低至 0.25%,所以整个瞄准镜如果加以适当镀膜,光线透穿率可达 95%。
镀了单层增透膜的镜片通常是蓝紫色或是红色,镀多层增透膜的镜片则呈淡绿色或暗紫色。
通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。
这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。
蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。
待系统抽至高真空后,加热使其中的物质蒸发。
蒸发物质的原子或分子以冷凝方式沉积在基片表面。
薄膜厚度可由数百埃至数微米。
膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。
对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。
从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。
蒸气分子平均动能约为0.1~0.2电子伏。
本实验通过蒸发真空镀膜设备对滤光片镀膜。
原理:1、真空技术“真空”是指气压低于一个大气压的气体状态。
在真空状态下,单位体积中的气体分子数大大减少,分子平均自由程增大,气体分子之间、气体分子与其他粒子之间的相互碰撞也随之减少。
这些特点被广泛应用于科学研究和生产的许多领域中,例如:电子器件、大规模集成电路、加速器、表面物理、热核反应、空间环境模拟、真空冶炼和真空包装等。
真空镀膜实验报告
《真空镀膜实验报告》
实验目的:
本实验旨在通过真空镀膜技术对不同材料进行表面处理,探究其在改善材料性能和应用领域中的潜在作用。
实验材料:
1. 玻璃基板
2. 金属薄膜
3. 有机聚合物薄膜
4. 硅基薄膜
实验步骤:
1. 将玻璃基板置于真空镀膜仪器内部。
2. 通过真空泵抽取仪器内部空气,使得内部压力降至极低水平。
3. 依次进行金属薄膜、有机聚合物薄膜和硅基薄膜的镀膜操作。
4. 测量并记录各种薄膜的厚度和表面形貌。
实验结果:
1. 金属薄膜:在真空环境下,金属薄膜表面呈现出均匀、致密的特性,具有优异的导电性和光学性能。
2. 有机聚合物薄膜:真空镀膜后,有机聚合物薄膜表面平整光滑,具有良好的防腐蚀和耐磨损性能。
3. 硅基薄膜:经过真空镀膜处理后,硅基薄膜的表面形貌得到了显著改善,具有更高的光学透明度和化学稳定性。
实验结论:
通过真空镀膜技术,不同材料的表面性能得到了有效改善,展现出了广泛的应用前景。
金属薄膜可用于电子元件和光学器件的制备,有机聚合物薄膜可用于包装材料和防腐蚀涂层的制备,硅基薄膜可用于光学镜片和光伏电池的制备等领域。
总结:
真空镀膜技术作为一种重要的表面处理方法,为材料的功能性设计和性能优化提供了新的途径。
通过不断深入研究和实验探索,相信真空镀膜技术将在材料科学和工程领域中发挥越来越重要的作用。
一、实验目的1. 理解真空环境在镀膜过程中的重要性;2. 掌握真空镀膜的基本原理和操作步骤;3. 学习使用真空镀膜设备,进行金属薄膜的制备;4. 分析镀膜过程中的影响因素,提高镀膜质量。
二、实验原理真空镀膜技术是一种利用物理或化学手段,在真空环境下将材料沉积到基底上的薄膜制备技术。
在真空环境下,气体分子密度极低,从而减少了气体分子对材料表面的碰撞,降低了表面污染,有利于提高薄膜质量。
真空镀膜主要包括蒸发法和溅射法两种方法。
蒸发法:将待镀材料加热至一定温度,使其蒸发成气态,然后在真空室内将气态材料沉积到基底上,形成薄膜。
溅射法:利用高能粒子(如离子、电子等)轰击靶材,使靶材表面原子溅射出来,沉积到基底上形成薄膜。
本实验采用蒸发法进行金属薄膜的制备。
三、实验仪器与材料1. 仪器:真空镀膜机、电子天平、加热电源、真空计、真空泵、玻璃基底、待镀金属(如金、银、铜等)。
2. 材料:玻璃基底、待镀金属、酒精、棉花、镊子等。
四、实验步骤1. 准备工作:将玻璃基底清洗干净,并用酒精擦拭干燥;将待镀金属切成适当大小的片状,称量质量。
2. 设置真空镀膜机:打开真空镀膜机,调整真空度至所需值(一般为10^-3~10^-4 Pa)。
3. 加热待镀金属:将待镀金属片放入蒸发源中,启动加热电源,待金属加热至蒸发温度。
4. 启动真空泵:开启真空泵,开始抽真空,使真空度达到设定值。
5. 镀膜:待真空度稳定后,启动蒸发源,使待镀金属蒸发,沉积到玻璃基底上。
6. 停止镀膜:待薄膜厚度达到预期值后,关闭蒸发源,继续抽真空一段时间,使薄膜稳定。
7. 关闭真空泵:停止抽真空,关闭真空泵。
8. 取出玻璃基底:待薄膜冷却后,取出玻璃基底,用棉花擦拭干净。
9. 称量薄膜质量:用电子天平称量镀膜前后玻璃基底的质量,计算薄膜厚度。
五、实验结果与分析1. 实验结果:通过实验,成功制备了金属薄膜,薄膜厚度约为0.5μm。
2. 结果分析:实验过程中,真空度对薄膜质量有较大影响。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载实验3 真空蒸发镀膜实验地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容实验3 真空蒸发镀膜实验真空热蒸发镀膜就是在真空条件下加热需要蒸发的材料,当所加温度达到材料的熔点时,大量的原子或分子就会逸出,淀积到基底上而形成薄膜的过程。
【实验目的】了解真空蒸发镀膜的原理。
掌握多功能真空蒸镀机、复合真空计等机械设备的使用方法。
【实验仪器】复合真空计、真空室、机械泵、分子泵、冷水循环散热系统、载玻片、钨舟、剪刀【实验原理】真空蒸发镀膜的原理:将膜材置于真空镀膜室内,通过蒸发源使其加热蒸发。
当蒸发分子的平均自由程大于蒸发源与基片间的线尺寸后,蒸发的粒子从蒸发源表面上溢出,在飞向基片表面过程中很少受到其他粒子的碰撞阻碍,可直接到达基片表面上凝结而生成薄膜。
机械泵是利用转子不断地改变泵内空腔的容积,使抽容器内的气体随空腔体积改变,最后又被隔离而排出从而获得真空。
分子泵工作原理是:分布密集的扇叶高速旋转,通过高速旋转的叶片,不断地对气体分子施以定向的动量和压缩作用,把空气排出腔室,由下级机械泵辅抽,完成高真空抽取。
真空机配有ZJ-52/T电阻规与ZJ-27电离规,其工作原理为:(1)电阻计的工作原理电阻规在真空系统低压强时,利用气体分子的热传导,在高压时利用气体分子的对流传热特性,使电阻规的电阻随所测系统的压强变化而变化。
电阻规的电阻与压强是一种非线性关系,故压强变化所引起的电阻规电阻值的变化,从测量桥路输出电压信号,由放大器放大,经A/D转换送入CPU进行非线处理性运算,最后显示。
(2)电离计工作原理当电离规管灯丝加热发射电子,电子在比阴极电位更高的加速极作用下,与气体分子碰撞而使气体电离,电离后的正离子被阴极电位更负的收集极吸收,经电流放大后,通过CPU电路修正处理,送显示器显示。
多层介质膜滤光片的镀制摘要:本实验以蒸发真空镀膜机对滤光片镀膜,采用干涉原理对膜厚进行监控。
使用单色仪把光源透过滤光片并有反射镜反射回来到单色仪上的光,经由单色仪原理被分成不同的光束,再由光电倍增管将光信号放大并转化为电信号。
通过理论模拟和实际实验结果进行比较,分析实验误差产生的原因。
关键词:干涉滤光片、高真空镀膜、光学极值法测膜厚、真空检验引言:当光线进入不同传递物质时(如由空气进入玻璃),大约有5% 会被反射掉,在光学瞄准镜中有许多透镜和折射镜,整个加起来可以让入射光线损失达30%至40%。
现代光学透镜通常都镀有单层或多层氟化镁的增透膜,单层增透膜可使反射减少至 1.5%,多层增透膜则可让反射降低至 0.25%,所以整个瞄准镜如果加以适当镀膜,光线透穿率可达 95%。
镀了单层增透膜的镜片通常是蓝紫色或是红色,镀多层增透膜的镜片则呈淡绿色或暗紫色。
通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。
这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。
蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。
待系统抽至高真空后,加热使其中的物质蒸发。
蒸发物质的原子或分子以冷凝方式沉积在基片表面。
薄膜厚度可由数百埃至数微米。
膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。
对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。
从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。
蒸气分子平均动能约为0.1~0.2电子伏。
本实验通过蒸发真空镀膜设备对滤光片镀膜。
原理:1、真空技术“真空”是指气压低于一个大气压的气体状态。
在真空状态下,单位体积中的气体分子数大大减少,分子平均自由程增大,气体分子之间、气体分子与其他粒子之间的相互碰撞也随之减少。
这些特点被广泛应用于科学研究和生产的许多领域中,例如:电子器件、大规模集成电路、加速器、表面物理、热核反应、空间环境模拟、真空冶炼和真空包装等。
真空镀膜—蒸发镀膜法实验报告陈焕07180217 物理072摘要:本文主要介绍了真空镀膜的原理和方法—蒸发镀膜法,源加热器的材料以及真空镀膜的实验过程。
关键字:真空镀膜蒸发镀膜法源加热器实验过程引言:空镀膜技术及设备两百年发展历史。
化学镀膜最早用于在光学元件表面制备保护膜。
随后,1817年,Fraunhofe在德国用浓硫酸或硝酸侵蚀玻璃,偶然第一次获得减反射膜,1835年以前有人用化学湿选法淀积了银镜膜它们是最先在世界上制备的光学薄膜。
后来,人们在化学溶液和蒸气中镀制各种光学薄膜。
50年代,除大快窗玻璃增透膜的一些应用外,化学溶液镀膜法逐步被真空镀膜取代。
真空蒸发和溅射这两种真空物理镀膜工艺,是迄今在工业领域能够制备光学薄膜的两种最主要的工艺。
它们大规模地应用,实际上是在1930年出现了油扩散泵——机械泵抽气系统之后。
一、真空镀膜的两种方法;真空镀膜中常用的方法有真空蒸发和离子溅射,各有优缺点。
此外,将蒸发法与溅射法相结合,即为离子镀。
这种方法的优点是得到的膜与基板间有极强的附着力,有较高的沉积速率,膜的密度高。
本实验采用的是蒸发镀膜法。
真空蒸发镀膜是在真空度不低于10-2Pa的环境中,用电阻加热或电子束和激光轰击等方法把要蒸发的材料加热到一定温度,使材料中分子或原子的热振动能量超过表面的束缚能,从而使大量分子或原子蒸发或升华,并直接沉淀在基片上形成薄膜。
离子溅射镀膜是利用气体放电产生的正离子在电场的作用下的高速运动轰击作为阴极的靶,使靶材中的原子或分子逸出来而沉淀到被镀工件的表面,形成所需要的薄膜。
真空蒸发镀膜最常用的是电阻加热法,其优点是加热源的结构简单,造价低廉,操作方便;缺点是不适用于难熔金属和耐高温的介质材料。
电子束加热和激光加热则能克服电阻加热的缺点。
电子束加热上利用聚焦电子束直接对被轰击材料加热,电子束的动能变成热能,使材料蒸发。
激光加热是利用大功率的激光作为加热源,但由于大功率激光器的造价很高,目前只能在少数研究性实验室中使用。
实验3 真空蒸发镀膜实验
真空热蒸发镀膜就是在真空条件下加热需要蒸发的材料,当所加温度达到材料的熔点时,大量的原子或分子就会逸出,淀积到基底上而形成薄膜的过程。
【实验目的】
1.了解真空蒸发镀膜的原理。
2.掌握多功能真空蒸镀机、复合真空计等机械设备的使用方法。
【实验仪器】
复合真空计、真空室、机械泵、分子泵、冷水循环散热系统、载玻片、钨舟、剪刀
【实验原理】
真空蒸发镀膜的原理:将膜材置于真空镀膜室内,通过蒸发源使其加热蒸发。
当蒸发分子的平均自由程大于蒸发源与基片间的线尺寸后,蒸发的粒子从蒸发源表面上溢出,在飞向基片表面过程中很少受到其他粒子的碰撞阻碍,可直接到达基片表面上凝结而生成薄膜。
机械泵是利用转子不断地改变泵内空腔的容积,使抽容器内的气体随空腔体积改变,最后又被隔离而排出从而获得真空。
分子泵工作原理是:分布密集的扇叶高速旋转,通过高速旋转的叶片,不断地对气体分子施以定向的动量和压缩作用,把空气排出腔室,由下级机械泵辅抽,完成高真空抽取。
真空机配有ZJ-52/T电阻规与ZJ-27电离规,其工作原理为:
(1)电阻计的工作原理
电阻规在真空系统低压强时,利用气体分子的热传导,在高压时利用气体分子的对流传热特性,使电阻规的电阻随所测系统的压强变化而变化。
电阻规的电阻与压强是一种非线性关系,故压强变化所引起的电阻规电阻值的变化,从测量桥路输出电压信号,由放大器放大,经A/D转换送入CPU进行非线处理性运算,最后显示。
(2)电离计工作原理
当电离规管灯丝加热发射电子,电子在比阴极电位更高的加速极作用下,与气体分子碰撞而使气体电离,电离后的正离子被阴极电位更负的收集极吸收,经电流放大后,通过CPU 电路修正处理,送显示器显示。
【实验内容及要求】
1. 首先将已经切割好的普通玻璃基底用碱溶液、酸溶液擦洗,然后置于含少许酒精的密闭器皿中。
取一定量的蒸发材料放在钨舟上。
2. 真空热蒸发的操作步骤
(1)打开循环水开关。
(2)开总电源。
(3)缓慢打开空气阀门(要慢,避免气流速度过快损坏仪器),直到真空腔内外压强一致。
(4)按下“升”按钮,让真空腔顶盖缓慢平稳升起。
(5)将事先经过酸洗碱洗浸泡在酒精中密闭保存的基片固定在基片托上,固定钨舟在真空腔内,放置蒸发材料。
粗略调整基片位置,使基片处于材料正上方。
(6)调整真空腔盖,按下“降”按钮。
(7)关闭空气阀门。
(8)打开机械泵,开启电磁阀,缓慢转动V2阀门。
(9)打开真空计,等电阻单元显示10Pa以内(约5-7)时,启动分子泵开关“运行”,关闭阀门V2。
(10)等待分子泵的转动频率约250赫兹时,打开扳闸(分子泵阀门)。
(11)待真空机电离单元显示约10-4帕时,启动蒸发电源,再打开蒸发开关。
调节旋转电流控制开关(电流显示不能超200)。
透过观察窗观察,钨舟发亮,材料升华。
3. (1)待蒸发材料蒸发完毕,将电流调到零,关闭蒸发电源,关闭分子泵、分子泵扳闸。
(2)关闭真空计。
(3)待分子泵转速为零,关闭电磁阀,关闭机械泵。
(4)依次关闭总电源、循环水。
下面是实验成品:
【思考问题】
1. 冷水循环散热系统的作用是什么?循环水是什么水及其原因?
磁控溅射靶在发射时会产生高温会使射枪变形,所以它有一个水套来冷却射枪。
同时还有一个重要原因磁控溅射可以被认为是镀膜技术中最突出的成就之一。
它以溅射率高、基片温升低、膜-基结合力好。
从更深层次研究电子在非均匀电磁场中的运动规律 ,探讨了磁控溅射的更一般原理以及磁场的横向不均匀性及对称性是磁约束的本质原因。
磁控溅射可以被认为是镀膜技术中最突出的成就之一。
它以溅射率高、基片温升低、膜-基结合力好、装置性能稳定。
冷水机具有完全独立的制冷系统,绝不会受气温及环境的影响,水温在5℃~30℃范围内调节控制,因而可以达到高精度、高效率控制温度的目的,冷水机设有独立的水循环系统。
2. 升起真空室顶板时应注意什么?
留意把钨舟放置的区域,然后在上面玻璃片也要放置在相对应的位置。
伍月娜3214001719 140603。