稀溶液的依数性
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
稀溶液的依数性:当溶质溶解在溶剂中形成溶液后,溶液的蒸气压下降,沸点升高,凝固点降低及产生渗透压等性质,只与溶质中粒子的数目有关,而与溶质的本性无关。
由于这类性质的变化,只适用于稀溶液,故称之为稀溶液的依数性。
人工降雨:①根据开尔文公式RTlnPr/P0=2rVm/R’,最初生成的雨滴半径很小,所以其蒸气压很高,此时对平面液体过饱和度达4的水蒸气,对极小的水滴仍未达饱和,所以这个新的液构很难凝聚出来。
②而空气中的灰尘常会作为凝聚中心促使雨滴形成,若在这种水蒸气过饱和度已超过4的云层中,用火箭或撒入干冰提供凝聚中心,使凝聚水滴的曲率半径增大。
由laplace方程,Ps=2Y/R’,其相应的饱和蒸气压变小,蒸汽会还原凝结成冰。
暴沸:①通常在液态有机物中,溶解的空气很少,在蒸馏过程中,液体中形成的蒸汽泡内壁是一个凹液面。
②根据开尔文公式RTlnPr/P0=2rVm/R’可知,凹面上的R’越小,小蒸汽泡内的蒸气压就越低,所以在相同温度下,小蒸汽泡的蒸气压比平面液体的P0低很多;此时液体内部产生气泡所承受的压力P’1=P大气+P平面+Ps,所以当T超过正常沸点时,液体内部的小蒸汽泡无法形成,溶液无法沸腾。
③继续加热,直至小气泡开始形成,气泡一旦形成后便不断变大。
由laplace公式,Ps=2Y/R’,随着R’增大,Ps下降,而P静在气泡上升阶段中不断下降,此时Ti>T正常,故此很容易产生暴沸现象。
盐碱地农作物枯死:①农作物的生长需要水分,然而盐碱地中盐碱浓度大,此时化学势UA 较低,农作物的中心浓度较盐碱地低,其化学式势UB>UA。
②由UB>UA,土地中的渗透压>农作物中的渗透压,农作物中的水分通过细胞壁渗透到土壤中,导致细胞枯萎。
分解电压:电解质在电极上分解生成电解产物所需施加的最小电压。
析出电压:当外加电压等于分解电压时两极的电极电位,是开始析出物质时所必须的最小析出电位。
电极极化的意义:电极上有电流通过时,就会有净反应发生,表明电极失去了原有的平衡状态,电极电位将偏离平衡电位。
稀溶液的依数性是说溶液的某些性质与溶质的粒子数的多少有关,与溶质本性无关.依数性分别用拉乌尔定律、沸点升高、凝固点降低和渗透压公式定量描述.溶液的依数性所谓“依数性”顾名思义是依赖于数量的性质.稀溶液中溶剂的蒸气压下降、凝固点降低、沸点升高及渗透压等的数值均与稀溶液中所含溶质的数量有关,这些性质都称为稀溶液的依数性.1.蒸气压下降对二组分稀溶液,溶剂的蒸气压下降已如式(2-67)所述Δp=p*A-pA=p*AxB即Δp的数值正比溶质的数量—溶质的摩尔分数xB,比例系数即为纯A的饱和蒸气压p*A.2.凝固点(析出固态纯溶剂时)降低稀溶液当冷却到凝固点时析出的可能是纯溶剂,也可能是溶剂和溶质一起析出.当只析出纯溶剂时,即与固态纯溶剂成平衡的稀溶液的凝固点Tf比相同压力下纯溶剂的凝固点T*f低,实验结果表明,凝固点降低的数值与稀溶液中所含溶质的数量成正比,比例系数kf叫凝固点下降系数它与溶剂性质有关而与溶质性质无关.详细推导3.沸点升高沸点是液体或溶液的蒸气压p等于外压pex时的温度.若溶质不挥发,则溶液的蒸气压等于溶剂的蒸气压p=pA,对稀溶液pA=p*AxA,pA<p*A,所以在p—T图上稀溶液的蒸气压曲线在纯溶剂蒸气压曲线之下,由图可知,在外压pex时,溶液的沸点Tb必大于纯溶剂羝液的沸点Tb必大于纯溶剂的沸点T*b,即沸点升高.实验结果表明,含不挥发性溶质的稀溶液的沸点升高亦可用热力学方法推出,kb叫沸点升高系数.它与溶剂的性质有关,而与溶质性质无关.4.渗透压若在U形管中用一种半透膜把某一稀溶液和溶剂隔开,这种膜允许溶剂但不允许溶质透过. 实验结果表明,大量溶剂将透过膜进入溶液,使溶液的液面不断上升,直到两液面达到相当大的高度差时才能达到平衡.要使两液面不发生高度差,可在溶液液面上施加额外的压力,假定在一定温度下,当溶液的液面上施加压力为∏时,两液面可持久保持同样水平,即达到渗透平衡,这个∏值叫溶液的渗透压.根据实验得到,稀溶液的渗透压∏与溶质B的浓度cB成正比,比例系数的值为RT,即∏=cBRT(2-99)渗透和反渗透作用在生物学中是十分重要的.在海水淡化技术中亦有重要应用。
第三章 水化学重要概念1.稀溶液定律(依数性定律):由难挥发的非电解质所形成的稀溶液的性质,溶液的蒸气压下降,沸点上升,凝固点下降和溶液渗透压与一定量溶剂中所溶剂溶质的数量(物质的量)成正比,而与溶质本身的性质无关,故称依数性。
2.蒸气压:在一定条件下,液体内部那些能量较大的分子会克服液体分子间的引力从液体表面逸出,成为蒸气分子,这个过程称为蒸发或者气化,此过程吸热。
相反蒸发出来的蒸气分子也可能撞到液面,为液体分子所吸引,而重新进入液体中,此过程称为液化,此过程放热。
随着蒸发的进行,蒸气浓度逐渐增大,凝聚的速度也就随之增大,当凝聚的速度和蒸发的速度达到相等时,液体和它的蒸气就达到了平衡状态。
此时蒸气所具有的压力叫做该温度下液体的饱和蒸气压。
3.蒸气压下降:向溶剂(如水)中加入难挥发的溶质,使它溶解成为溶液时,可以测得溶剂的蒸气压下降。
同一温度下,纯溶剂蒸气压与溶液蒸气压之差叫做溶液的蒸气压下降。
4.在一定的温度下,难挥发的非电解质稀溶液中溶剂的蒸气压下降(p ∆)与溶质的摩尔分数成正比:A B A B p x p nn p =⨯=∆ 。
5.溶液的沸点上升和凝固点下降:当某一液体的蒸气压等于外界压力时(无特殊说明外界压力均指101.325kPa ),液体就会沸腾,此时温度称为液体的沸点。
表示为bp T 。
6.凝固点:该物质的液相蒸气压和固相蒸气压相等时的温度。
表示为fp T 。
7.一般由于溶质的加入会使溶剂的凝固点下降,溶液的沸点上升,而且溶液越浓,凝固点和沸点改变越大。
8.难挥发的非电解质稀溶液的沸点上升和凝固点下降与溶液的质量摩尔浓度成正比(所谓的质量摩尔浓度指1kg 溶剂中所含溶质的物质的量)。
用公式表示为:m K mk fp fp bp =∆=∆T T bp 式中fp bp K K 和分别称为溶剂的摩尔沸点上升常数,和溶剂的摩尔凝固点下降常数,单位为1mol kg K -⋅⋅。
9.渗透压:是维持被半透膜所隔开的溶液与纯溶剂之间的渗透平衡而需要的额外压力。
稀溶液的依数性正文非挥发性溶质溶解在溶剂中后,其稀溶液的蒸气压下
降、沸点升高、冰点降低、渗透压等值只与溶质的分子数有关而与溶质的种类无关,这四种性质称为稀溶液的依数性。
蒸气压下降拉乌尔定律描述了非挥发性溶质溶解在溶剂中所引起的溶剂蒸气压下降:
Δp A=p┱x B (1)
式中Δp A为溶剂的蒸气压下降值;p┱为纯溶剂的蒸气压;x B为溶质的摩尔分数。
式(1)说明蒸气压下降只与溶质的摩尔分数有关,与溶质的种类无关。
沸点升高液体蒸气压等于外界压力时的温度称为沸点,外压为1大气压时的沸点称为正常沸点。
图1绘出溶液和纯溶剂的蒸气压曲线,在溶剂的沸
点T下,溶剂的蒸气压为b,溶液的蒸气压为c。
欲使溶液的蒸气压达到b,必须将温度升高到T b,T b与T之差称为稀溶液的沸点升高:
(2)
(3)
式中ΔT b为沸点升高值;m2为溶质的浓度;K b为沸点升高常数;R为气体常数;
T为溶剂的正常沸点;T b为溶液的沸点;Μ1为溶剂的相对分子量;为溶剂的摩尔气化热。
式 (3)说明沸点升高常数只是决定于溶剂的常数,因此, 当溶剂一定时沸点升高只与溶质物质的量有关,而与其他性质无关。
1871年 F. -M. 拉乌尔从实验中发现沸点升高关系,1886年J.H.范托夫从热力学角度导出式(2),1889年E.O.贝克曼设计了更精确的实验加以证实。
冰点降低冰点是固态纯组分1与溶液中的组分1达到两相平衡时的温度,即固态纯组分1的蒸气压与液态纯组分的蒸气压相等时的温度。
图2绘出溶剂、溶液、纯固体的蒸气压曲线,溶剂与纯固体的蒸气压曲线在a点相交,对应的冰点为T懤;溶液与纯固体的蒸气压曲线在b点相交,对应的冰点为T f,二者之差称为冰点降低:
ΔT f=T懤-T f=K f m2(4)
(5)
式中ΔT f为冰点降低值;T懤表示溶剂的冰点;T f为溶液的冰点;m2为溶质的浓
度;K f为冰点降低常数;R为气体常数;Μ1为溶剂的相对分子量;为1摩尔的溶剂由固态转变为液态的熔化热。
式(5)说明K f只与溶剂的种类有关,因此,冰
点降低只与溶质物质的量有关,而与溶质的种类无关。
1788年C.布莱格登发现冰点降低关系式(4),曾一度被称为布莱格登定律。
1886年范托夫从热力学角度给予严格证明,导出式(5)。
冰点降低可用于测定未知物的相对分子量:
(6)
式中Μ2为未知物的相对分子量;W2为未知物的质量。
虽然沸点升高法也可用于测定未知物的相对分子量, 但K f》K b,所以冰点降低法测定的准确性较高。
实验室中常用的冰盐浴制冷剂也是根据冰点降低的原理。
渗透压用半透膜将纯溶剂和稀溶液或稀溶液和浓溶液隔开后,溶剂分子能从溶剂一边进入溶液一边的现象称为渗透。
1827年法国生理学家H.迪特罗谢最早引入这一概念。
渗透压指为阻止溶剂分子渗透而在溶液上方所需要施加的额外压力。
1877年德国植物学家W.普菲费尔首次制出人工半透膜,并测定了蔗糖水溶液的渗透压。
范托夫分析了普菲费尔的实验数据,于1886年提出渗透压公式:
(7)
式中Π为渗透压;V为溶液的体积;n为溶质的摩尔数;R为气体常数;T为热力学温度。
显然,渗透压只依赖于溶质的量。
用沸点升高和冰点降低法测定胶体溶质的相对分子量时,误差较大,所以常用渗透压法测定。
渗透压对研究动、植物体的生命过程也有重要意义。
配图。