发酵工程-名词解释
- 格式:doc
- 大小:33.50 KB
- 文档页数:1
1. 引物:与待扩增的 DNA片段两头的状态下生长的培育方法。
核苷酸序列特异性互补的人工合成的 6. 聚合酶链式反响:又称聚合酶链式寡核苷酸序列,它是决定 PCR扩增特反响、或无细胞克隆技术,使依据 DNA异性的重点要素。
模板特异性模拟体内复制的过程,在2. 富集培育:经过采纳选择性培育基,体外适合的条件下,以单链为模DNA使目的微生物大批生殖,而其余微生板,以人工设计合成的寡核苷酸为引物的生长被克制,进而便于目的微生物,利用热稳固的 DNA聚合酶,从 5′物的分别。
-3 ′方向渗透单核苷酸,进而特异性3. 操控子学说:调理基因的产物隔绝的扩增 DNA片段的技术。
物,经过控制操控子中的操控基因从7. 代谢控制发酵:就是利用遗传学的而影响其周边的构造基因的活性。
方法或其余生物化学的方法,人为的4. 生长因子:凡是微生物生长不行缺在脱氧核糖核酸的分子水平上,改变少的微量有机物质,如氨基酸、嘌呤、和控制微生物的代谢,使实用的目的嘧啶、维生素等均称为生长因子。
产物大批生成、累积的发酵。
5. 连续发酵:连续不停的向发酵罐中8. 菌种退化:主要指生产菌种或选育流加新鲜发酵液,同时又连续不停的过程中挑选出来的较优秀菌株,因为排出等量的发酵液,进而使 pH、养分、进行接种传代或收藏以后,集体中某溶解氧保持恒定,使微生物生长和代些生理特点和形态特点渐渐减退或完谢活动保持旺盛稳固的状态的一种发全丧失的现象。
或菌种的一个或多个酵方式。
或以必定的速度向发酵罐内特征,随时间的推移逐渐减退或消逝增添新鲜培育基,同时以同样的速度的现象,一般常指菌株的生活力、产流出培育液,使培育物在近似恒定的孢能力弱退和目的产物产量的降落。
9. 基因工程菌:将目的基因导入细菌12.发酵热:是指发酵过程中开释出来体内使其表达,产生所需要的蛋白的的净热量,主要包含生物热和搅拌热。
细菌称为基因工程菌,如:大肠杆菌13.发酵:广义指借助微生物大批生成10. 种子培育:是指经冷冻干燥管、砂并累积特定产物的过程。
发酵⼯程重点第⼀章、绪论⼀、名词解释:1.发酵:利⽤微⽣物在有氧或⽆氧条件下的⽣命活动来制备微⽣物菌体或其代谢产物的过程2.发酵⼯程:主要指在最适发酵条件下,发酵罐中⼤量培养细胞和⽣产代谢产物的⼯艺技术。
3.微⽣物的纯培养:把各种微⽣物彼此分开培养成纯种微⽣物4.深层培养:(你们书上有的)5.微⽣物的⽣物转化:是利⽤⽣物细胞对⼀些化合物某⼀特定部位(基团)的作⽤,使它转变成结构相类似但具有更在经济价值的化合⼆、问题:1.发酵⼯业的基本流程是什么?①发酵原料的选择和预处理②微⽣物菌种的选育及扩⼤培养③发酵设备选择及⼯艺条件的控制④发酵产物的分离提取⑤废弃物的回收和利⽤等2.发酵⼯程有哪⼏部分组成?各部分研究⽬标是什么?- 上游⼯程- 发酵⼯程- 下游⼯程3.实现发酵产品的基本条件是什么?适宜的微⽣物、保证或控制微⽣物进⾏代谢的各种条件、进⾏微⽣物发酵的设备、精制成产品的⽅法的设备第⼆章、⼯业发酵菌种的选育⼀、名词解释:1.⾃然选育:在⽣产过程中,不经过⼈⼯处理,利⽤菌种的⾃发突变,选育出优良菌种的过程2.诱变选育:利⽤物理或化学诱变剂处理均匀分散的微⽣物细胞群,促使其突变率⼤幅度提⾼,然后采⽤简便、快速和⾼效的筛选⽅法。
3.富集培养:利⽤不同种类微⽣物⽣长繁殖对环境和营养的要求不同,⼈为的控制条件,使之利于某类或某种微⽣物⽣长,⽽不利于其他种类的微⽣物的⽣存,已达到使⽬的菌种占优势⽽得以快速分离纯化的⽬的。
⼆、问题:1、微⽣物菌种选育的⽅法:⾃然选育、诱变育种、细胞⼯程育种、DNA重组技术育种2、⾃然选育的主要步骤:答案⼀:菌种—菌悬液—分离单菌落—分别测定单菌落的⽣产能⼒—筛选⾼产菌株◆答案⼆:采样-增殖培养-培养分离-筛选(初筛和复筛)(⽼师说答案2还好,⼤家可以⾃⼰再整理下)3、诱变选育的⽅法和步骤?- ⽅法和步骤:①出发菌株的选择②制备菌悬液③诱变处理④中间培养⑤突变菌株筛选- 后培养(中间培养):由于在发⽣了突变尚未表现出来之前,有⼀个表现延迟的过程,即细胞内原有酶量的稀释过程(⽣理延迟),需3带以上的繁殖才能将突变性状表现出来。
发酵工程试题库一、名词解释1.代谢控制发酵:人为地改变微生物的代谢调控机制,使有用中间代谢产物过量积累,这种发酵称为代谢控制发酵。
2.临界氧浓度:微生物的耗氧速率受发酵液中氧的浓度的影响,各种微生物对发酵液中溶氧浓度有一个最低要求,这一溶氧浓度叫做临界氧浓度。
3.固定化酶:在酶促反应过程中,将酶定位或限制在一定的空间范围内,使其在反应后易于与反应物和产物分开,从而达到反复使用和连续化生产的新型酶制剂。
4.营养缺陷型突变株:指某一菌株丧失了合成某种营养物质的能力,在培养基中若不外加这种营养成分就不能正常生长的变异菌株。
5.巴氏消毒法:将物料加热至60℃维持60min,以杀死不耐高温的物料中的微生物营养细胞。
6.发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,或直接把微生物应用于工业生产过程,为人类生产有用产品的一种技术。
7.初级代谢产物:微生物细胞在其对数生长期所产生的产物,往往是细胞生长和繁殖中所必需的物质,如糖、氨基酸、脂肪酸、核苷酸以及由这些化合物聚合而成的高分子化合物,如多糖、蛋白质、脂类和核酸等,这些化合物称为初级代谢产物。
8.培养基:是人工配制的适合于不同微生物生长繁殖或积累代谢产物的营养基质。
根据微生物对营养的要求,培养基都基本包括碳源、氮源、无机盐、生长因子和水分,此外,还应根据微生物的要求,有一定的酸碱度和渗透压。
9.发酵:指微生物在无氧条件下,分解各种有机物质产生能量的一种方式。
或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。
如葡萄糖在无氧条件下被微生物利用产生酒精并放出二氧化碳,同时获得能量。
10.酵母的第三型发酵,又称碱法甘油发酵。
即在碱性条件下(pH7.6),2分子乙醛发生歧化反应,生成1分子乙醇和1分子乙酸,而磷酸二羟丙酮则还原为甘油。
总反应式:2葡萄糖+ H2O 2甘油+ 乙醇+ 乙酸+ 2CO211.DE值(葡萄糖值):表示淀粉水解程度及糖化程度,指葡萄糖(所有测定的还原糖都当作葡萄糖来计算)占干物质的百分率。
名词解释发酵工程:指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,是生物工程与生物技术学科的重要组成部分。
高通量筛选:是指将许多模型固定在各自不同的载体上,用机器人加样,培养后,用计算机记录结果,并进行分析,实现快速、准确、微量的筛选菌株的方法。
细胞工程育种:在细胞水平上对菌种进行操作,采用杂交、接合、转化和转导等遗传学方法,将不同菌种的遗传物质进行交换重组,使不同菌种的优良性状集中在重组体重,从而提高产量。
主要有杂交育种和原生质体融合育种。
杂交育种:指将两个基因型不同的菌株经吻合是遗传物质重新组合,从中分离筛选出具有新型性状的菌株。
营养缺陷性标记:微生物经诱变处理后产生的一种突变体,需要在培养基上添加一种特定的有机物才能很好的生存,为筛选该菌株而适当添加的遗传标记。
菌种退化:指生产菌种或选育菌种过程中筛选出来的较优良菌株,由于进行接种传代或保藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象。
理论转化率:指理想状态下根据微生物的代谢途径进行物料衡算,得出转化率大小。
实际转化率:指发酵试验所得转化率的大小。
种子培养:指将冷冻干燥管、沙土管中处于休眠状态的工业菌种接入试管斜面活化后,再经过摇瓶及种子罐逐级扩大培养而获得一定数量的纯种的过程。
接种龄:指种子罐中培养的菌丝体转入下一级种子罐或发酵罐时的培养时间。
接种量:指移入的种子液体积和接种后培养液体积的比例。
表观得率:指对底物的总消耗而言的细胞得率。
理论得率:指仅用于细胞生长所消耗底物而言的细胞得率。
呼吸强度:指单位质量干菌体在单位时间内所吸取的氧量。
用Qo2表示。
耗氧速率:指单位体积培养液在单位时间内的耗氧量,也称摄氧量。
用γ表示。
高密度发酵:指工程菌在短时间内迅速分裂增殖,使菌体浓度迅速升高的过程。
重点部分:发酵工程技术的发展史1、1900年以前,自然发酵阶段。
酿造生产酒、醋等。
2、1900—1940,科赫建立微生物分离纯化和纯培养技术,创造了单细胞纯培养法。
生物发酵和氨基酸部分名词解释科普知识:生物发酵和氨基酸部分名词解释1、发酵:是指利用微生物的代谢作用,将微生物可利用的物质,如糖等转变为所需的目的产物的过程。
2、发酵工程:发酵工程,指采用现代工程技术手段,将发酵过程转化为可控的生产过程。
发酵工程研究的主要内容是微生物的代谢、调控、以及为了达到微生物正常生长和产生所需目的产物而采用的设备、工程控制等技术。
发酵工程是现代生物制药、食品、生物材料、生物制造的重要组成部分。
3、氨基酸:氨基酸是构成蛋白质的基本单位,是分子内同时含有氨基和羧基的一类有机化合物的通称。
人体需要的氨基酸有20种,分为必需氨基酸、半必需氨基酸、非必需氨基酸。
生命过程所需的氨基酸均是L-氨基酸,发酵过程生产的氨基酸都是L-氨基酸。
化学法合成的是DL-氨基酸,必须经过专门处理,才能得到可被生物利用的L-氨基酸。
必需氨基酸――指人或动物体内不能合成,必须从食物或其他外界来源中获得的氨基酸。
有以下8种:(1) 赖氨酸赖氨酸是碱性必需氨基酸,它能够帮助其它营养物质被人体充分吸收利用,人体只有补充了足够的L-赖氨酸才能提高食物蛋白质的吸收,达到均衡营养,促进生长发育。
(2) 苏氨酸苏氨酸主要用于医药、化学试剂、食品强化剂、饲料添加剂等方面。
在饲料中加入L-苏氨酸,可以改善禽畜肉质、提高饲料的营养价值、降低饲料原料成本。
(3) 色氨酸色氨酸是哺乳动物的必需氨基酸和生糖氨基酸,是植物体内合成生长素的重要物质。
它是继蛋氨酸、赖氨酸之后的第三代饲料添加剂,使用效果是赖氨酸的3―4 倍。
(4) 异亮氨酸异亮氨酸是三种支链氨基酸之一,因其特殊的结构和功能,在生命代谢中占有重要地位。
L-异亮氨酸主要用于配制复合氨基酸制剂,特别是应用于高支链氨基酸输液及口服液等。
(5) 缬氨酸缬氨酸是哺乳动物的必需氨基酸和生糖氨基酸。
有形成肌肉、强化肝功能、减轻肌肉疲劳等作用,缬氨酸作为一种运动营养补充剂,被广泛应用于运动功能性饮料配方中。
发酵工程名词解释加速期:经过迟滞期后,细胞开始大量繁殖,进入一个短暂的加速期并很快到达对数生长期。
对数生长期:微生物经过迟滞期的调整后,进入快速生长阶段,使细胞数目喝菌体质量的增长随培养时间成直线上升。
Monod 方程:菌体生长比速与限制性基质浓度的关系方程。
减速期:微生物群体不会长时间保持指数生长,因为营养物质的缺乏,代谢产物的积累,从而导致生长速率下降,进入减速期。
稳定生长期:微生物在对数生长后期,随着基质的消耗,基质不能支持微生物的下一次细胞分裂。
衰亡期:随着基质的严重缺乏,代谢产物的更多积累,细胞的能量储备消耗完毕以及环境条件如温度,PH ,无机离子浓度的恶劣变化,使细胞生长进入衰亡期简单反应型:底物以恒定的化学计量转化为产物,没有中间产物的积累并行反应型:底物以不定的化学计量转化为一种以上的产物,而且产物生成速率随底物浓度而变化,无中间产物的积累。
串联反应型:底物形成产物前积累一定程度的中间产物。
分段反应型:底物形成产物前全部转化为中间产物,再由中间产物转化为最终产物。
复合反应型:大多数发酵反应即底物转化产物的过程是一个复杂的联合反应。
得率:生成的菌体或产物与消耗的基质的关系。
最大生产率:指发酵时间按从对数生长期开始至发酵结束计算得出的生产率。
开放式连续培养与发酵:指在连续培养与发酵系统中,微生物细胞随发酵液一起从发酵容器中流出,细胞的流出速率与新细胞的生成速率相等。
封闭式连续培养与发酵:指在连续培养与发酵系统中,只允许发酵液从发酵容器中流出,而使微生物细胞保留在发酵容器中。
单级式连续培养与发酵:采用单个发酵容器进行的连续培养与发酵系统。
多级式连续培养与发酵:采用多个发酵容器串联起来进行的连续培养与发酵系统。
恒浊器:指通过光电池检测发酵容器中发酵液的浊度,使发酵容器中的微生物细胞浓度保持恒定,从而保证微生物以最大的生长速率生长。
恒化器:通过自动控制系统使发酵容器中限制性基质的浓度保持恒定,从而保持微生物恒定的生长速率。
加速期:经过迟滞期后,细胞开始大量繁殖,进入一个短暂的加速期并很快到达对数生长期。 对数生长期:微生物经过迟滞期的调整后,进入快速生长阶段,使细胞数目喝菌体质量的增长随培养时间成直线上升。 Monod方程:菌体生长比速与限制性基质浓度的关系方程。 减速期:微生物群体不会长时间保持指数生长,因为营养物质的缺乏,代谢产物的积累,从而导致生长速率下降,进入减速期。 稳定生长期:微生物在对数生长后期,随着基质的消耗,基质不能支持微生物的下一次细胞分裂。 衰亡期:随着基质的严重缺乏,代谢产物的更多积累,细胞的能量储备消耗完毕以及环境条件如温度,PH,无机离子浓度的恶劣变化,使细胞生长进入衰亡期 简单反应型:底物以恒定的化学计量转化为产物,没有中间产物的积累 并行反应型:底物以不定的化学计量转化为一种以上的产物,而且产物生成速率随底物浓度而变化,无中间产物的积累。 串联反应型:底物形成产物前积累一定程度的中间产物。 分段反应型:底物形成产物前全部转化为中间产物,再由中间产物转化为最终产物。 复合反应型:大多数发酵反应即底物转化产物的过程是一个复杂的联合反应。 得率:生成的菌体或产物与消耗的基质的关系。 最大生产率:指发酵时间按从对数生长期开始至发酵结束计算得出的生产率。 开放式连续培养与发酵:指在连续培养与发酵系统中,微生物细胞随发酵液一起从发酵容器中流出,细胞的流出速率与新细胞的生成速率相等。 封闭式连续培养与发酵:指在连续培养与发酵系统中,只允许发酵液从发酵容器中流出,而使微生物细胞保留在发酵容器中。 单级式连续培养与发酵:采用单个发酵容器进行的连续培养与发酵系统。 多级式连续培养与发酵:采用多个发酵容器串联起来进行的连续培养与发酵系统。 恒浊器:指通过光电池检测发酵容器中发酵液的浊度,使发酵容器中的微生物细胞浓度保持恒定,从而保证微生物以最大的生长速率生长。 恒化器:通过自动控制系统使发酵容器中限制性基质的浓度保持恒定,从而保持微生物恒定的生长速率。 循环式连续培养与发酵:由发酵容器流出的带有或不带有细胞的发酵液再返回发酵容器本身的连续培养与发酵系统。 非循环式连续培养与发酵:由发酵容器流出的带有或不带有细胞的发酵液不再返回发酵容器本身的连续培养与发酵系统。 微生物生长的竞争性抑制作用:指在微生物生长过程中,与限制性基质结构相似的抑制剂,它与限制性基质竞争性与微生物结合,微生物不能同时与竞争性抑制剂和限制性基质结合。 稀释率:表示单位时间新鲜培养基流入培养器的体积与培养器总体积之比。 调节稀释率:在开放式单级均匀混合非循环连续发酵系统中,通过人为调节新鲜培养液流入发酵器的速度。 基质的消耗速率=流入的基质速率--流出的基质速率--细胞生长基质消耗速率--菌体维持基质消耗速率--产物生成基质消耗速率 产物浓度的变化=产率—流出率 发酵罐:是培养微生物和动植物细胞发酵生产生物量或其代谢产物的容器。 搅拌器:在发酵罐中实现一系列混合,包括气液混合,分散空气,氧的传递,热量传递,固体微粒的悬浮和保持整个罐内环境条件的一致。 搅拌器可分为:圆盘涡轮式。嵌叶圆盘式,变倾角变叶宽开启涡轮式和螺旋桨式。 挡板的作用:改变液流的方向,由径向流改为轴向流,消除中心漩涡,促使液体激烈翻动,增加溶氧量。 空气分散装置的作用:吹入无菌空气,并使空气均匀分布。 轴封作用:对灌顶或罐底与轴之间的缝隙加以密封,防止泄露和污染杂菌。 公称容积:发酵罐的圆柱部分和底封头容积之和。 气升式发酵罐:气体通过喷嘴从上导管底部进入,由于上导管和下导管内的流体密度不同,因而形成了料液循环的驱动力,驱动料液循环。 自吸式发酵罐:不需要空气压缩机,在搅拌过程中自动吸入空气的发酵罐。 半自吸式通风发酵罐:在自吸管上安装压力送风管,补充空气的不足。 贴壁生长:动物细胞比微生物细胞需要更多的营养,且大多数哺乳动物细胞需依附着在固体或半固体的表面才能生长。 旋转培养:反应器搅拌柔和,培养液可以连续地通过旋转的不锈钢或陶瓷过滤器从反应器中流出。 功率准数:液体受到外力与惯性力的比值。 雷诺系数:液体惯性力与粘滞力的比值。 彬汉塑性:当彬汉塑性流体的剪应力高于一个阀值后其剪切速率才与其剪应力成正比。 拟塑性流体:表现黏度随着剪切速率的增加而减小,许多多聚体溶液表现出了拟塑性。 凯松体流体:表现黏度如同拟塑性流体随着剪切速率的增加而降低。 液泛:由于空气流速和搅拌转速不匹配,流体的流动以空气流为主的现象。 不均匀型:在高的气速下,在发酵罐的底部产生的气泡不均匀,气泡聚合导致不同部位液体的密度不同,由于液体密度的不同而产生的循环流动。 比拟放大:增加发酵生产的规模,如从实验室规模到中试规模,或者从中试规模到生产规模。 比拟缩小:模拟工业生产条件进行实验室或中试试验。 溶解氧:发酵过程中,微生物只能利用溶解于液体的氧气。 临界氧浓度:满足微生物呼吸最低限度的溶解氧浓度。 泡沫:气体被分散在液体中的一种胶体体系,气液之间被一层液膜隔开。 机械消沫:一种物理消沫作用,依靠机械的强烈振动或压力的变化促使泡沫破裂。 反馈控制:最简单的控制回路。 比例控制:指控制器对测量组件对环境变化产生的输入信号的反应而产生的输出信号的变化是按比例的。 微分控制:一种输出能根据偏差的变化速度来动作的控制作用,输出的信号是偏差信号的比例及微分。 发酵工业用的主要原料:玉米 小麦 大麦 薯干 高粱 预处理:物料的除杂,筛选和粉碎 热处理:物料的糊化,糖化和灭菌 物料的粉碎:湿式粉碎 干式粉碎 湿式粉碎:将水和原料一起加入粉碎机中粉碎成粉浆。 气流输送:又称风力输送,借助空气在密闭管道内的高速流动,物料在气流中被悬浮输送到目的地的一种输送方式。 吸嘴:真空气流输送系统的进料装置。 离心泵:使用范围最广的流体输送设备,既能输送低黏度的溶液,也能输送含悬浮物的溶液。 螺杆泵:一种旋转式容积泵,利用一根或数根螺杆与螺腔的相互口齿合使空间容积变化来输送液体。 混凝:同时包括絮凝和凝聚作用的过程。 离心沉降:微粒沿径向沉降,作用于沉降微粒的加速度为离心加速度,它沿径向发生变化,沉降的速度随着微粒所处置的半径增大而增大。 沉降器:用重力沉降实现分离的设备。 茶杯效应:依据茶杯效应的漩涡原理进行操作的。 鼓泡点试验法:把待测式的过滤介质覆盖在开有筛孔的空心圆盒顶盖上,再用同样开有筛孔的盖板夹持并紧固。 助滤剂:用于过滤的一种颗粒均匀,质地坚硬,不可压缩的辅助过滤介质。 传统过滤槽的主要构件:虑板 麦芽汁导管 过滤旋塞 鹅颈管和耕槽器。 离心沉降:借惯性离心力的作用使连续介质中的分散质产生沉降运动的分离。 离心过滤:滤液借惯性离心力作用迅速穿过滤饼及过滤介质而固体颗粒被截留的分离。 离心分离:离心沉降和离心过滤的统称。 离心澄清机:借离心沉降速度的不同将悬浮液中的液相和固相分开的离心机。 离心分离机:把轻重不同,互不溶解的两种液体分开的离心机。 碟片式分离机:一种高速沉降离心机,它利用转鼓内的一组锥形碟片和转鼓高速旋转所产生的强大离心力工作。 盐析:向蛋白质溶液中加入高浓度的中性盐,以破坏蛋白质的胶体性质,使蛋白质的溶解度降低而从溶液中析出的现象。 盐溶:中性盐浓度较低时,蛋白质的溶解度增加。 等电点:在特定的PH溶液中,当所带正电荷数等于负电荷数,即所带静电荷为零时,蛋白质在电场中不再移动,此时溶液的PH值。 吸附作用:物质从流体相浓缩到固体表面从而达到分离的过程 吸附物:被吸附的物质。 吸附剂:在表面上发生吸附作用的固体。 物理吸附:吸附剂与吸附物之间通过分子间引力产生的吸附。 解吸:在吸附的同时,吸附物分子由于热运动会离开吸附剂表面。 化学吸附:吸附剂和吸附物之间有电子转移,发生化学反应而产生的吸附。 离子交换分离技术:基于不溶性高分子化合物作为层析物质的一种分离方法。 阳离子交换树脂:活性离子带正电荷,则可以和溶液中的阳离子发生交换。 离子交换纤维素:以天然纤维素分子为母体,通过酯化,醚化等化学反应,引入可交换的离子基团,构成一种半合成的离子交换剂。 离子交换葡聚糖:葡聚糖经环氧丙烷交联后形成的具有多孔三维空间网状结构和离子交换功能基团的多糖衍生物。 树脂的有效粒径:以百分之九十粒子可以通过其相对应的筛孔直径。 真密度:树脂在干燥时的密度。 静态交换:将树脂与交换溶液混合置于一定的容器中搅拌进行。 动态交换:将树脂装柱,交换溶液以平流方式通过柱床进行交换。 洗脱:离子交换完成后将树脂所吸附的物质释放出来重新转入溶液的过程。 膜:指能将流体分隔成两部分,对流体中的物质可按大小不同进行分离的薄层物质。 浓差极化:指在膜分离过程中,由于水透过膜,因而在膜表面的溶质浓度增高,形成溶质的浓度梯度。 膜装置:由膜,固体膜的支撑体,间隔物已经收纳这些部件的容器构成的一个单元。 微滤:以静压差为推动力,利用膜的筛分作用进行物质分离的膜分离过程。 超滤:在静压差为推动力的作用下,原料液中大于膜孔的大粒子溶质被膜截留,小于膜孔的小溶质粒子通过滤膜,从而实现不同大小物质的分离,其分离机理一般认为是机械筛分原来,属于压力驱动型膜分离过程。 反渗透:以膜两侧静压差为推动力,克服溶剂的渗透压,通过反渗透膜的选择透过性使溶剂透过而离子物质被截留,从而实现对液体混合物进行分离的膜过程。 渗透现象:水从浓度低的溶液透过膜迁移到浓度高的溶液的现象。 提浓:将发酵成熟醪中的酒精提取出来并提高浓度至95%以上。 粗馏塔的作用:将发酵成熟醪中的酒精和所有的挥发性杂质蒸出,在正常操作情况下,要求酒槽中酒精的含量在0.04%以下。 精馏塔的作用:把粗馏塔的酒精蒸汽或液体蒸馏提取到产品要求的浓度,并分离杂质使产品质量达到要求的标准。 爬膜现象:环形流液体的上升是靠高速蒸汽流对液层的拖带而形成。 晶体:纯的,化学均一性的固体,同一晶体内各个不同部位的成分和结构是相同的。 2、发酵生长因子 从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子 3、菌浓度的测定 是衡量产生菌在整个培养过程中菌体量的变化,一般前期菌浓增长很快,中期菌浓基本恒定。补料会引起菌浓的波动,这也是衡量补料量适合与否的一个参数。 4、搅拌热 :在机械搅拌通气发酵罐中,由于机械搅拌带动发酵液作机械运动,造成液体之间,液体与搅拌器等设备之间的摩擦,产生可观的热量。搅拌热与搅拌轴功率有关 7、比耗氧速度或呼吸强度 单位时间内单位体积重量的细胞所消耗的氧气 8、次级代谢产物 是指微生物在一定生长时期,以初级代谢产物为前体物质,合成一些对微生物的生命活动无明确功能的物质过程,这一过程的产物,即为次级代谢产物。 9、实罐灭菌 实罐灭菌(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。 10、种子扩大培养 :指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。这些纯种培养物称为种子。 11、初级代谢产物 是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动所需要的物质和能量的过程。这一过程的产物即为初级代谢产物。 12、倒种 :一部分种子来源于种子罐,一部分来源于发酵罐。 13、维持消耗(m) 指维持细胞最低活性所需消耗的能量,一般来讲,单位重量的细胞在单位时间内用于维持消耗所需的基质的量是一个常数。 16、发酵热 :所谓发酵热就是发酵过程中释放出来的净热量。什么叫净热量呢?在发酵过程中产生菌分解基质产生热量,机械搅拌产生热量,而罐壁散热、水分蒸发、空气排气带走热量。这各种产生的热量和各种散失的热量的代数和就叫做净热量。发酵热引起发酵液的温度上升。发酵热大,温度上升快,发酵热小,温度上升慢。 17、染菌率 总染菌率指一年发酵染菌的批(次)数与总投料批(次)数之比的百分率。染菌批次数应包括染菌后培养基经重新灭菌,又再次染菌的批次数在内 20、回复突变 由突变型回到野生型的基因突变 22、培养基 广义上讲培养基是指一切可供微生物细胞生长 繁殖所需的一组营养物质和原料。同时培养基也为微生物培养提供除营养外的其它所必须的条件。
发酵工程名词解释关于《发酵工程》课程复习中名词解释、简答题、问答题内容要求如下:四、名词解释1.葡萄糖效应:葡萄糖对微生物利用其他碳源的阻遏2.分批发酵:将发酵培养基一次性投入发酵罐,接种发酵后再一次性地将发酵液放出的一种间歇式发酵操作方式。
3.发酵工业用玉米浆:制造玉米淀粉须将玉米粒先用亚硫酸浸泡,浸泡液浓缩即制成黄褐色的液体4.微孔接种法:(孢子悬浮液一般)利用注射器在罐的接种口橡皮膜上注入种子罐内。
5.接种量:=移入种子液的体积/接种后培养液的体积6.合适种龄:指处于对数生长期,菌体量还未达到最大值时的培养时间。
7.初级代谢:初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质8.发酵级数:是指制备种子需逐级扩大培养的次数9.巴斯德效应:酵母菌呼吸抑制发酵酒精的现象10.补料分批发酵:在分批发酵过程中,间歇或连续地补加营养物质,是介于分批发酵和连续发酵之间的一种发酵方法11.DE值(葡萄糖值):表示淀粉水解程度及糖化程度,指葡萄糖(所有测定的还原糖都当作葡萄糖来计算)12.实罐灭菌:(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。
13.种龄:开始培养到可移入下一级种子罐或发酵罐时的培养时间。
14.通风比:是1m3发酵液1min通入无菌空气m3量15.发酵热:引起发酵过程温度变化的原因是发酵过程所产生的热量,称为发酵热。
发酵热包括生物热、搅拌热、蒸发(汽化)热和辐射热等。
16.染菌:是指在发酵培养中侵入了有碍生产的其他微生物。
17.黄酒的定义:以稻米、黍米、黑米、玉米、小麦等为原料,经过蒸料,拌以麦曲、米曲或酒药,进行糖化和发酵酿制而成的各类黄酒。
五、简答题(5×4,20%)1.生产菌种的衰退及原因:(菌种经过长期人工培养或保藏),由于自发突变的作用而引起某些优良特性变弱或消失的现象,导致衰退的原因有:保藏方法不妥、保藏操作不当、传代不当、培养基不适、回复突变2.满足发酵工业原料选择的三个要求是什么?①满足菌体生长的营养要求,有利于大量积累产物;②原料来源丰富、价格便宜;③发酵周期短和对产物提取无妨碍等。
发酵工程名词解释Nomenclature1)2-dimensional electrophoresis 双向电泳双向电泳是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。
2)Abortive transduction 流产转导转导的DNA不整合到受体的细胞的染色体上,虽然不能继续复制,但仍能表达基因的功能的转导,最终将随细胞分裂而丢失,也可能出现单线遗传。
3)Active site 酶的活性部位有些必需基团虽然在一级结构上可能相距很远,但在形成空间结构时彼此靠近,集中在一起,形成具有一定空间结构的区域,并能与底物特异地结合,将底物转化为产物。
这一区域,称为酶的活性部位4)Adaptive enzyme 适应酶在细胞中合成量受效应物调控的酶5)Affinity chromatography 亲和色谱法将相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。
6)Allosteric regulation 变构调节就是指小分子化合物与酶蛋白分子活性中心以外的某一部位特异结合,引起酶蛋白分子构像变化、从而改变酶的活性。
7)Amphibolic pathway 两用代谢途径亦称无定向代谢途径,即指把合成作用和分解作用合在一起的代谢途径。
8)Ampholyte 两性电解质同时带有可解离为负电荷和正电荷基团的电解质9)Anabolism 合成代谢10)又称同化作用或生物合成,是从小的前体或构件分子(如氨基酸和核苷酸)合成较大的分子(如蛋白质和核酸)的过程11)Apoenzyme 脱脯基酶蛋白酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
12)Aptamer 适体是用配体指数富集法系统演化(SELEX)技术从人工体外合成的随机寡核苷酸序列库中反复筛选得到的能以极高的亲和力和特异性与靶分子结合的一段寡核苷酸序列。
发酵工业:就是利用生物的生命活动产生的酶,对无机或有机原料进行酶加工(生物化学反应过程),获得产品的工业。
其主体是利用微生物进行生化反应的工业。
现代发酵工程:现代发酵工程是将传统发酵技术和现代DNA重组、细胞融合等新技术相结合并发展起来的现代生物技术,并通过现代化学工程技术,生产有用物质或直接用于工业化生产的一种大工业体系。
高技术:世界所拥有的先进技术构成的一个强大的、活跃的技术群体,叫做高技术。
高技术凝聚着人类早期的发明和近期的创造,代表着当代的科技文明。
生物技术:关于生物技术,目前能广泛接受的定义是由国际经济合作及发展组织在1982年提出来的。
生物技术是应用自然科学和工程学的原理,依靠生物作用剂的作用将物料进行加工以提供产品或为社会服务的技术。
生物工程:狭义的生物工程仅指以基因工程技术为核心的现代生物技术的总称。
广义的生物工程:泛指运用生物科学知识及工程学的原理,开发利用生物材料为人类社会提供产品和服务的工程技术自然选育:是指生产中根据菌种自发突变进行菌种筛选的过程。
诱变育种:是通过物理或化学等诱变剂处理,使诱变对象细胞内的遗传物质发生变化,分为点突变或染色体畸变。
点突变分为碱基对置换和码组错位突变;染色体畸变包括缺失、倒位、重复、易位及染色体数目变化等结构变化,通过分离筛选获得具有优良性状的变异菌株。
菌种退化现象:菌种退化通常是指在较长时期保藏后,菌株的一个或多个生理性状和形态特征减退或消失的现象。
在生产实践中体现的是菌种的发酵力(如糖、氧的消耗)或繁殖力(如孢子的产生)下降,或是发酵产品的得率降低。
菌种退化:是指群体中退化细胞在数量上占一定比例后,所表现出菌种生产性能的下降。
因此,完全有可能采取一些相应措施,使退化菌株复壮培养基:是提供微生物生长繁殖和生物合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。
酸解法:又称酸糖化法,它是以酸(无机酸或有机酸)为催化剂,在高温高压下将淀粉水解转化为葡萄糖的方法。
加速期:经过迟滞期后,细胞开始大量繁殖,进入一个短暂的加速期并很快到达对数生长期。
对数生长期:微生物经过迟滞期的调整后,进入快速生长阶段,使细胞数目喝菌体质量的增长随培养时间成直线上升。
Monod方程:菌体生长比速与限制性基质浓度的关系方程。
减速期:微生物群体不会长时间保持指数生长,因为营养物质的缺乏,代谢产物的积累,从而导致生长速率下降,进入减速期。
稳定生长期:微生物在对数生长后期,随着基质的消耗,基质不能支持微生物的下一次细胞分裂。
衰亡期:随着基质的严重缺乏,代谢产物的更多积累,细胞的能量储备消耗完毕以及环境条件如温度,PH,无机离子浓度的恶劣变化,使细胞生长进入衰亡期简单反应型:底物以恒定的化学计量转化为产物,没有中间产物的积累并行反应型:底物以不定的化学计量转化为一种以上的产物,而且产物生成速率随底物浓度而变化,无中间产物的积累。
串联反应型:底物形成产物前积累一定程度的中间产物。
分段反应型:底物形成产物前全部转化为中间产物,再由中间产物转化为最终产物。
复合反应型:大多数发酵反应即底物转化产物的过程是一个复杂的联合反应。
得率:生成的菌体或产物与消耗的基质的关系。
最大生产率:指发酵时间按从对数生长期开始至发酵结束计算得出的生产率。
开放式连续培养与发酵:指在连续培养与发酵系统中,微生物细胞随发酵液一起从发酵容器中流出,细胞的流出速率与新细胞的生成速率相等。
封闭式连续培养与发酵:指在连续培养与发酵系统中,只允许发酵液从发酵容器中流出,而使微生物细胞保留在发酵容器中。
单级式连续培养与发酵:采用单个发酵容器进行的连续培养与发酵系统。
多级式连续培养与发酵:采用多个发酵容器串联起来进行的连续培养与发酵系统。
恒浊器:指通过光电池检测发酵容器中发酵液的浊度,使发酵容器中的微生物细胞浓度保持恒定,从而保证微生物以最大的生长速率生长。
恒化器:通过自动控制系统使发酵容器中限制性基质的浓度保持恒定,从而保持微生物恒定的生长速率。
发酵工程名词解释1、发酵工程:是指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系。
该技术体系主要包括菌种选育和保藏、菌种的扩大生产、微生物代谢产物的发酵生产和分离纯化制备。
2、现代发酵工程:是指将DNA重组及细胞融合技术、组学及代谢网络调控技术、发酵过程优化放大与精准控制技术等新技术与传统发酵工程融合,大大提高了传统发酵技术,拓展了传统发酵应用领域和产品范围的一种现代工业生物技术理论与工程技术体系。
3、富集培养:是在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境下的优势种,以利分离到所需的菌种。
4、诱变育种:就是人为的利用物理或化学等因素,使诱变对象细胞内的遗传物质发生变化,引起突变,并通过筛选获得符合要求的变异菌株的一种育种方法。
5、代谢控制育种:是通过选育特定突变型,达到改变代谢通路,降低支路代谢终产物的生产,或切断支路代谢途径,并提高细胞膜的透性等,使代谢流向目的产物积累方向。
6、分解代谢阻遏现象:在初级或次级代谢中都存在,其含义是指代谢过程中酶的合成往往受高浓度的葡萄糖或其他易分解利用的碳源或氮源所抑制。
7、渗漏缺陷型:是一种特殊的营养缺陷型,是遗传性障碍不完全的突变型,其特点是酶活力下降但没有完全丧失,并能在基本培养基上少量生长。
8、抗反馈作用突变株:是一种解除合成代谢反馈调节机制的突变型菌株,其特点是所需产物不断积累,不会因其浓度超量而终止生产。
9、结构类似物:是指那些结构上和代谢终产物(氨基酸、嘌呤、维生素等)相似的物质。
10、代谢工程:利用多基因重组技术有目的地对细胞代谢途径进行修饰、改造、改变细胞特性,并与细胞基因调控、代谢调控及生化工程相结合,为实现构建新的代谢途径,生产特定目的产物而发展起来的一个新的学科领域。
11、菌种退化:所谓菌种退化,是指优良菌种的群体中出现某些生理特征和形态特征逐渐减退或丧失,而表现为目的代谢产物合成能力下降的现象。
1.自生说(spontaneous generation):一个古老的学说,认为一切生命有机体能够从无生命的物质自然的发生的。
2.路易斯·巴斯德(Louis Pasteur,1822—1895):法国人,原为化学家,后来转向微生物学研究领域,为微生物学的建立和发展做了卓越的贡献,成为了微生物学的奠基人。
(1).用曲颈试验彻底否定了“自然发生说”,建立了病原学说。
(2).证实了发酵由微生物引起的。
(3)首次制成狂犬疫苗,证实其免疫学说。
(4)发明了巴氏消毒法。
3.罗伯特·柯赫(Robert Koch,1843—1910):德国人,著名细菌学家,对病原细菌的研究做出了突出贡献。
(1)证实了炭疽病菌是炭疽病的病原菌。
(2)分离培养了结核病的病原菌。
(3)提出了某种微生物是否为某种疾病病原体的基本原则—柯赫氏定律。
(4)创造的细菌染色的方法。
4.SARS (Severe Acute Respiratory Syndrome):严重急性呼吸道综合症,即我国称为的非典型肺炎,也简称非典。
5.微生物(microorganism):因为太小,一般用肉眼看不清楚的生物。
这些微小生物包括,无细胞结构不能独立生活的病毒、亚病毒,具原核细胞结构的真细菌、古细菌,以及具真核细胞结构的真菌、单细胞藻类、原生生物等。
也有少数成员是肉眼可见的。
6.纯培养物(pure culture):仅有单一一种微生物繁殖得到的培养物。
7.培养基(culture medium):由人工配置的,供微生物生长繁殖或积累代谢产物的营养基质。
8.无菌技术(aseptic technique):在分离转接及培养微生物时,防止其被环境中微生物污染或其自身污染环境的技术。
9.富集培养(enrichment culture):利用不同微生物间生命活动特点的不同,指定特定的环境条件,使劲适应于该环境条件的微生物旺盛生长,从而使其在群落中的数量大大增加,从自然界中分离到特定的微生物。
fermentation(发酵):利用生物细胞(含动植物、微生物),在合适条件下经特定的代谢途径转变成所需产物菌体的过程。
fermentation engineering(发酵工程):是发酵原理与工程学的结合,是研究由生物细胞(包括动植物、微生物)参与的工艺过程的原理和科学,是研究利用生物材料生产有用物质,服务于人类的一门综合性科学技术。
bioengineering(生物工程):以生物科学和生物技术为基础,结合化学工程,机械工程,控制工程,环境工程等工程科学,研究或发展利用生物体系或其中的一部分生产有益于社会的产品或达到一定社会目标的过程科学。
广义上说是指运用生物科学知识及工程学的原理,开发利用生物材料为人类社会提供产品和服务的工程技术。
狭义上是指以基因工程技术为核心的现代生物技术的总称biocatalyst(生物催化剂):指传统发酵所利用的微生物外,还包括现在生物技术所利用的动植物细胞或细胞中的酶isolation of strain(菌种分离):根据生产要求和菌种特征性采用各种不同的筛选方法从众多的杂菌种分离出所需的性能良好的纯种Strain breeding (菌种选育):从分离筛选获得的有价值菌种中经过人工选育出各种突变体以大幅提高了菌种产生有价值的代谢产物的水平,改进产品质量,去除不需要的代谢产物或产生新代谢产物Nature breeding(自然选育):不经人工处理,利用微生物的自然突变进行菌种选育的过程Mutation breeding (诱变育种):利用各种被称为诱变剂的物理因素和化学因素试剂处理微生物细胞提高基因突变率,再通过适当的筛选方法获得所需的高产优质植株Cross breeding(杂交育种):通过杂交方法,将不同植株的遗传物质进行交换、重组,使不同菌株的优良性状集中在重组体中,克服长期诱变引起的生活力下降等缺陷Protoplast fusion(原生质体融合):用酶分别酶解两个两个出发菌株的细胞壁,在高渗环境中释放出原生质,将他们混合,在助溶剂或电场作用下使他们互相凝聚,发生细胞融合,实现遗传重组Genetically engineered breeding(基因工程育种):使用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下进行切割,获得代表某一性状的目的基因,把该目的基因与作为载体的DNA 分子连接起来,然后导入某一受体细胞中,让外来的目的基因在受体细胞中进行正常的复制和表达,从而获得目的产物Culture preservation/maintenance of culture(菌种保藏):根据菌种的生理生化特点,人为创造条件使孢子或菌体的生长代谢活动尽量降低,以减少其变异Degeneration of culture/strain deterioration(菌种退化):通常是指在较长时期传代保藏后,菌株的一个或多个生理性状和形态特征逐渐减退或消失的现象Rejuvenation of culture(菌种复壮):使衰退的菌种重新恢复原来的优良特性Inoculum enlargement(种子扩大培养):指将保藏在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入固体试管斜面活化后,在经过摇瓶或静置培养,以及种子罐逐级扩大培养而获得发酵产量高、生产性能稳定、数量充足、不被杂菌和噬菌体污染的生产菌种的纯种制备过程Seed age(接种龄):指种子罐中培养的菌丝体移入下一级种子罐或发酵罐式的培养时间Seed volume/inoculum size(接种量):指移入种子液的体积和接种后培养液体积的比Fermentation industrial raw material(发酵工业原料):通常以糖质或淀粉质等碳水化合物为主,加入少量有机氮源和无机氮源,只要不含毒物,一般无精制的必要Fermentation medium(发酵培养基):是指提供微生物生长繁殖和生物合成各种代谢产物所需要的,按照一定的比例配置的多种营养物质的混合物Growth factor(生长因子):具有刺激细胞生长活性的因子。
发酵工程中的定向名词解释发酵工程是一门研究利用微生物对物质进行生化转化的工程科学。
在发酵过程中,使用合适的微生物、培养基和操作条件,通过调整温度、pH值、氧气浓度等因素,使微生物进行生物化学反应,从而达到生产有机物或转化废料的目的。
在发酵工程中,我们经常遇到一些定向名词,这些名词对于理解和应用发酵工程具有重要意义。
本文将对一些常见的发酵工程定向名词进行解释,帮助读者更好地理解这一专业领域。
1. 微生物菌种微生物菌种是指用于发酵过程中的微生物种类。
微生物菌种的选择直接影响发酵工程的结果。
常用的微生物菌种包括细菌、酵母菌和真菌。
细菌常用于产生酸、醇等有机物质,酵母菌常用于发酵酒精、乳酸等产品,真菌常用于生产酶制剂等。
2. 发酵培养基发酵培养基是供给微生物生长和生化反应所必需的物质组成。
发酵培养基通常由有机物、无机盐和微量元素组成。
有机物提供能量和碳源,无机盐提供微生物所需的矿质元素,而微量元素则作为酶的辅助因子,调节微生物代谢。
发酵培养基的配方和调控对于发酵工程的效果至关重要。
3. 发酵代谢途径发酵代谢途径是指微生物在发酵过程中利用底物产生产品的途径。
不同的微生物通过不同的发酵代谢途径进行代谢过程。
常见的发酵代谢途径包括乳酸发酵、醇发酵、醋酸发酵等。
通过掌握微生物的发酵代谢途径,可以调控发酵反应,提高产品产量和纯度。
4. 发酵控制系统发酵控制系统是指对发酵过程中的温度、pH值、氧气浓度等操作条件进行监测和调节的装置和系统。
发酵控制系统通过传感器、控制器和执行器等组成,可以实时监测发酵过程的关键参数,并根据设定的控制策略进行调节。
发酵控制系统的合理设计和稳定运行对于发酵工程的成功至关重要。
5. 发酵产物回收发酵产物回收是指将发酵过程中所产生的有价值的产物从发酵液中提取和纯化的过程。
这些有价值的产物可能是有机酸、有机溶剂、生物柴油等。
发酵产物回收的过程涉及到离心、蒸馏、结晶等物理和化学技术,能够提高产品的纯度和产量,降低生产成本。
一、概念发酵工程,是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。
发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。
二、内容介绍它是一级学科“轻工技术与工程”中的一个重要分支和重点发展的二级学科,在生物技术产业化过程中起着关键作用。
(1)“发酵”有“微生物生理学严格定义的发酵”和“工业发酵”,词条“发酵工程”中的“发酵”应该是“工业发酵”。
(2)工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺被称为“发酵工艺”。
为实现工业化生产,就必须解决实现这些工艺(发酵工艺)的工业生产环境、设备和过程控制的工程学的问题,因此,就有了“发酵工程”。
(3)发酵工程是用来解决按发酵工艺进行工业化生产的工程学问题的学科。
发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段,这三个阶段都有各自的工程学问题,一般分别把它们称为发酵工程的上游、中游和下游工程。
(4)微生物是发酵工程的灵魂。
近年来,对于发酵工程的生物学属性的认识愈益明朗化,发酵工程正在走近科学。
(5)发酵工程最基本的原理是发酵工程的生物学原理。
发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。
人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。
随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。
现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。
例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。
发酵工程试题及答案一、名词解释1、分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出外,与外部没有物料交换。
2、补料分批发酵:又称半连续发酵,是指在微生物分批发酵中,以某种方式向培养系统不加一定物料的培养技术。
3、絮凝:在某些高分子絮凝剂的作用下,溶液中的较小胶粒聚合形成较大絮凝团的过程。
1、生物发酵工艺多种多样,但基本上包括菌种制备、种子培养、发酵和提取精制等下游处理几个过程。
2、根据过滤介质截留的物质颗粒大小的不同,过滤可分为粗滤、微滤、超滤和反渗透四大类。
3、微生物的育种方法主要有三类:诱变法,细胞融合法,基因工程法。
4、发酵培养基主要由碳源,氮源,无机盐,生长因子组成。
5、青霉素发酵生产中,发酵后的处理包括:过滤、提炼,脱色,结晶。
6、利用专门的灭菌设备进行连续灭菌称为连消,用高压蒸汽进行空罐灭菌称为空消。
7、可用于生产酶的微生物有细菌、真菌、酵母菌。
常用的发酵液的预处理方法有酸化、加热、加絮凝剂。
8、根据搅拌方式的不同,好氧发酵设备可分为9、依据培养基在生产中的用途,可将其分成10、现代发酵工程不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用。
11、发酵工程的主要内容包括生产菌种的选育、发酵条件的优化与控制、反应器的设计及产物的分离、提取与精制。
12、发酵类型有微生物菌体的发酵、微生物酶的发酵、微生物代谢产物的发酵、微生物转化发酵、生物工程细胞的发酵。
13、发酵工业生产上常用的微生物主要有细菌、放线菌、酵母菌、霉菌。
14、当前发酵工业所用的菌种总趋势是从野生菌转向变异菌,从自然选育转向代谢调控育种,从诱发基因突变转向基因重组的定向育种。
15、根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵、补料分批发酵。
16、分批发酵全过程包括空罐灭菌、加入灭过菌的培养基、接种、发酵过程、放罐和洗罐,所需的时间总和为一个发酵周期。
17、分批发酵中微生物处于限制性的条件下生长,其生长周期分为延滞期、对数生长期、稳定期、衰亡期。
现代发酵工程名词解释
现代发酵工程是一门研究微生物发酵过程及其应用的科学,涉及到微生物的遗传、生理、代谢和调控等方面,是现代生物学和工程学的重要分支之一。
以下是现代发酵工程中的一些重要名词解释:
1. 发酵罐:发酵罐是一种用于发酵过程的设备,通常由一个或多个圆柱形容器和一个出口端组成。
容器内部通常填充有惰性气体,如氮气或二氧化碳,以保持微生物的生长和发酵过程的稳定性。
2. 发酵剂:发酵剂是指用于发酵过程的微生物或其代谢产物。
常见的发酵剂包括酵母、细菌、霉菌、代谢产物等。
3. 发酵条件:发酵条件是指影响发酵过程的因素,如温度、pH值、氧气浓度、营养物质种类和浓度、代谢产物种类和浓度等。
4. 发酵过程中的控制:发酵过程中的控制包括温度、pH值、氧气浓度、营养物质种类和浓度、代谢产物种类和浓度等的控制。
5. 基因组学:基因组学是指研究生物体基因组的结构和功能的科学。
通过对生物体的基因组进行深入研究,可以更好地了解其遗传信息和控制机制。
6. 代谢组学:代谢组学是指研究微生物代谢途径和代谢产物组成的科学。
通过对微生物的代谢途径和代谢产物进行深入研究,可以更好地了解微生物的代谢能力和代谢产物的功能。
7. 发酵技术:发酵技术是指应用发酵原理和设备进行发酵生产的方法和技术,包括微生物培养、发酵条件控制、代谢产物分离和纯化、发酵产品合成等。
除了上述名词解释外,现代发酵工程还涉及到其他许多重要的概念和领域,如代谢工程、基因工程、蛋白质工程、发酵药物开发等。
随着科技的不断进步和
发展,现代发酵工程将会在各个领域发挥越来越重要的作用。
C初级代谢产物:微生物合成在它们生长和繁殖过程中所必须的物质(如糖、氨基酸、脂肪、核苷酸及其聚合物)的过程;所合成的物质称为初级代谢产物。 次级代谢产物:微生物在生长和繁殖过程中合成对微生物的生长、繁殖无关或功能不明确的化合物的过程;这些化合物称为次级代谢产物。 F发酵:任何通过扩大规模培养生物细胞(含动、植物细胞和微生物细胞)来生产产品的过程。 发酵机制:微生物通过其代谢活动,利用基质合成人们所需要的产物的内在规律。 分批培养:在一个密闭系统内一次性投入有限数量营养物进行培养的方法。 发酵动力学:研究发酵过程中菌体生长、基质消耗、产物生成的动态平衡及其内在规律的科学。 H呼吸强度:指单位质量干菌株在单位时间内的吸氧量。 耗氧速率:指单位体积培养液在单位时间内的吸氧量。 J静置培养法:又称厌气培养,即将培养基盛于发酵罐中,在接种后,不通空气进行培养。 绝对过滤:是介质之间的空隙小于被滤除的微生物,当空气流过介质后,空气中的微生物被滤除的过滤方式。 L连续培养:又称连续发酵,是指以一定速度向发发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发酵罐内的液量维持恒定,使培养物在近似恒定状态下生长的培养方法。 M灭菌:用物理或化学的方法杀死物料或设备中所有有生命的有机体的技术或工艺过程;它既能杀死营养细胞又能杀死细菌芽孢。 P培养基:微生物生长繁殖和生物合成各种代谢产物所需要的、按一定比例配制的、多种营养物质的混合物。 Q
前体:产物的生物合成过程中,被菌体直接用于产物合成而自
身结构无显著变化的物质。
T
通气培养法:又称好气性发酵,这种发酵在培养过程中必须通
入空气,以维持一定的溶氧水平,菌体才能迅速进行生长发酵。
同功酶:能催化相同的生化反应,但酶蛋白分子结构有差异的一类酶。
调节组成酶:酶的合成不依赖于环境中的物质存在而存在的一类酶。
调节诱导酶:细胞为适应外来底物或其结构类似物而临时合成的一类酶。
调节突变株:指菌株因外界条件影响,而产生不受终产物及其结
构类似物反馈抑制或阻遏的突变株,此时终产物能够大量积累。
W
微生物工程:研究微生物生长、繁殖及代谢活动、代谢产物
合成及其控制规律的科学。
完全培养基:即在培养基内不但含有碳源与无机盐,还含有构成
菌体所需要材料的培养基。
X
消毒:用物理或化学的方法杀死物料、容器器皿内外病原微生
物的过程,一般只能杀死营养细胞而不能杀死细菌芽孢。
Y
营养缺陷型突变株:指在微生物生长过程中,因产品合成途径
中某种酶缺陷,而不能生成终产物,只能生成中间代谢物,必须
添加终产物,微生物才能生长的突变株。
Z
种子扩大培养:指将保存在沙土管、冷冻干燥管中处于休眠状
态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐
逐级扩大培养,最终获得一定数量和质量的纯种的过程。
最低临界氧浓度:各种微生物对培养液中溶氧浓度的最低要求,
称为临界氧浓度。
最低培养基:即培养基是由单一碳源葡萄糖与无机盐组成,这时
葡萄糖在微生物生长代谢过程中既作为生长代谢过程中所需要
的能源,又作为构成菌体材料的培养基。