人教版初三数学上册《概率与统计专题复习》
- 格式:doc
- 大小:703.01 KB
- 文档页数:4
概率中考专题复习(教案)
一、教学目标
1.知识与技能
在具体情境中了解概率的含义,会用列举法分析简单事件发生的概率;知道大量重复实验时频率可作为事件发生概率的估计值;能解决一些简单的实际问题,具有对某一事情的评判能力和决策能力。
2.过程与方法
结合丰富的情景实例,加深对概率的理解;经历知识建构的过程,提高观察、分析、归纳以及交流、合作的能力;学习从数学角度提出问题、解决问题,发展应用意识。
3.情感态度与价值观
通过概率知识的复习,感受生活中的数学,形成学以致用的意识;通过分析、计算事件发生的概率,养成缜密的思维习惯;经历探究、交流与合作的过程,体验成功的喜悦。
二、教学重点
计算简单事件发生的概率。
三、教学难点
理解题意,运用列举法分析事件发生的概率。
四、教学用具
多媒体。
五、教学过程设计
六、教学反思
1.成功之处:------------------------ 2.不足之处:------------------------ 3.改进措施:------------------------。
中考专题复习一、统计与概率1.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表一周诗词3首4首5首6首7首8首诵背数量人数101015402520(1)活动启动之初学生“一周诗词诵背数量”的中位数为______;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.2.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有______人;在扇形统计图中,B所对应的扇形的圆心角的度数是______;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.3.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取______人;(2)m=______,n=______;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.4.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.二、一次函数实际应用5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.7.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)用租书卡每天租书的收费为元,用会员卡每天租书的收费是元;(2)分别写出用租书卡和会员卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?8.天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.三、反比例函数专题应用9.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=k的图x 象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)结合图象,直接写出2x>k时x的取值范围;x(3)若点P是反比例函数y=k图象上的一点,且满足△OPC与△ABC的面积相x等,求出点P的坐标.10.如图,反比例函数y=k的图象与一次函数y=mx+n的图象相交于A(a,−1),xB(−1,3)两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y=k的图象于点M,连接CN,OM.若S四边形COMN>3,x求t的取值范围.11.在平面直角坐标系xOy中,过点A(−4,2)向x轴作垂线,垂足为B,连接AO.双曲线y=k经过斜边AO的中点C,与边AB交于点D.x(1)求反比例函数的解析式;(2)求△BOD的面积.12.如图,在Rt△AOB中,AO⊥BO,AB⊥y轴,O为坐标原点,A的坐标为(n,√3),反比例函数y1=k1x 的图象的一支过A点,反比例函数y2=k2x的图象的一支过B点,过A作AH⊥x轴于H,若△AOH的面积为√32.(1)求n的值;(2)求反比例函数y2的解析式.13.如图,直线l分别交x轴、y轴于A、B两点,交反比例函数y=kx(k≠0)的图象于P、Q两点.若AB=2BP,且△AOB的面积为4.(1)求k的值;(2)当点P的横坐标为−1时,求△POQ的面积.14.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=kx(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当BCAC =12时,求直线AB的解析式.15.如图,一次函数y=kx+b的图象分别交x轴、y轴于C,D两点,交反比例函数y=nx 图象于A(32,4),B(3,m)两点.(1)求直线CD的表达式;(2)点E是线段OD上一点,若S△AEB=154,求E点的坐标;(3)请你根据图象直接写出不等式kx+b≥nx的解集.16.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3x(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求直线AB的解析式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求PA+PB的最小值.17.如图,已知反比例函数y=kx(k>0)的图象经过A(1,6)、B两点,直线AB与x 轴交于点C.(1)求反比例函数的解析式;(2)若BCAB =12,求点C点坐标.18.如图,已知A(0,4),B(−2,0),将△ABO向右平移3个单位,得到△A′B′O′,(x>0)图象上.顶点A′恰好在反比例函数y=kx(1)求反比例函数的表达式;(2)将△A′B′O′继续向右平移4个单位,得到△A″B″O″,求△A″B″O″的两边分别与反比例函数图象的交点P、Q的坐标.19.如图,在▱OABC中,点O为坐标顶点,点A(3,0),C(1,2),反比例函数y=k(k≠0)的图象经过点C.x(1)求k的值及直线OB的函数表达式;(2)试探究此反比例函数的图象是否经过▱OABC的中心.20.如图,在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.21.如图,△AOB中,∠ABO=90°,边OB在x轴上,反比例函数y=kx(x>0)的图象经过斜边OA的中点M,与AB相交于点N,S△AOB=12,AN=92.(1)求k的值;(2)求直线MN的解析式.22.如图,正方形ABCD的边AB在x轴上,点D的坐标为(2,2),点M是AD的中点,反比例函数y=kx的图象经过点M,交BC于点N.(1)求反比例函数的表达式;(2)若点P是x轴上的一个动点,求PM+PN的最小值.23.如图,过点A(2,1)的双曲线y=2x (x>0)与过点C的双曲线y=kx(x<0)关于y轴对称,点D在y轴上,点B在x轴上,四边形ABCD为矩形且CB=2AB.(1)求出k的值;(2)求CB的长.(x>0)的图象经过点24.如图,在平面直角坐标系xOy中,反比例函数y=mx),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.A(4,32(1)m=______,点C的坐标为______;(2)若点D为线段AB上的一个动点,过点D作DE//y轴,交反比例函数图象于点E,求△ODE面积的最大值.25.如图,在平面直角坐标系中,平行四边形OABC的边OC在x轴上,对角线AC,(k≠0,x>0)的图象经过A,M OB交于点M,点B(12,4).若反比例函数y=kx两点,求:(1)点M的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.26.如图,一次函数y=x+2的图象与反比例函数y=k的图象相交,其中一个x交点的横坐标是1.(1)求k的值;(2)若将一次函数y=x+2的图象向下平移4个单位长度,平移后所得到的图的图象相交于A,B两点,求此时线段AB的长.象与反比例函数y=kx(k>0)的图象上,27.如图,平行四边形OABC的顶点A,C都在反比例函数y=kx已知点B的坐标为(8,4),点C的横坐标为2.(k>0)的解析式;(1)求反比例函数y=kx(2)求平行四边形OABC的面积S.三、锐角三角函数综合应用28.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40n mile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6n mile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?29.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,√3≈1.732)30.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE.(2)求大楼AB的高度.(结果保留根号)31.楼房AB后有一假山,其坡度为i=1:√3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)32.如图,为了测量某铁塔的高度AB,从塔底B处向前行走一段路,到达一山坡坡底C处,在这里观看铁塔A处,仰角为60°,再沿着坡度为i=0.75的山坡CD 行走100米,走至坡顶D处,观看塔顶的仰角为31°,B,C,E在同一水平线上(人的高度忽略不计),求该铁塔的高度.(参考数据:√3≈1.72,sin31°≈0.52,tan31°≈0.60,cos31°≈0.86,结果保留整数)33.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)34.如图①,一台灯放置在水平桌面上,底座AB与桌面垂直,底座高AB=5cm,连杆BC=CD=20cm,BC,CD与AB始终在同一平面内.(1)如图②,转动连杆BC,CD,使∠BCD成平角,∠ABC=143°,求连杆端点D离桌面l的高度DE.(2)将图②中的连杆CD再绕点C逆时针旋转16°,如图③,此时连杆端点D离桌面l的高度减小了______cm.(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)35.如图,为了测量小河对岸大树BC的高度,小明在点A处测得大树顶端B的仰角为37°,再从点A出发沿倾斜角为30°的斜坡AF走4m到达斜坡上点D,在此处测得树顶端B的仰角为26.7°.求大树BC的高度(精确到0.1m).(参考数据:tan37°≈0.75,tan26.7°≈0.5,√3≈1.73.)36.春节期间,小明发现远处大楼的大屏幕时出现了“新年快乐”几个大字,小明想利用刚学过的知识测量“新”字的高度:如图,小明先在A处,测得“新”字底端D的仰角为60°,再沿着坡面AB向上走到B处,测得“新”字顶端C的仰角为45°,坡面AB的坡度i=1:√3,AB=50m,AE=75m(假设A、B、C、D、E在同一平面内).(1)求点B的高度BF;(2)求“新”字的高度CD.(CD长保留一位小数,参考数据√3≈1.732)37. 一架无人机沿水平直线飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为30°,面向AB 方向继续飞行5米,测得该建筑物底端B 的俯角为45°,已知建筑物AB 的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:√2≈1.414,√3≈1.732).38. 如图,为了测量山坡上竖直旗杆CD 的高度,小明在点A 处利用测角仪测得旗杆顶端D 的仰角为37°,然后他沿着正对旗杆CD 的方向前进10m 到达B 点处,此时测得旗杆顶部D 和底端C 的仰角分别为45°和30°,求旗杆CD 的高度.(结果精确到0.1m.参考数据:sin37°≈35,cos37°≈45,tan37°≈34,√3≈1.732)39. 为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示,该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB =∠FED),在F 处测得旗杆顶A 的仰角为39.5°,平面镜E 的俯角为45°,FD =1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:sin39.5°≈0.62,cos39.5°≈0.78,tan39.5°≈0.80)40.为庆祝改革开放40周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角∠ECD=32°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,DB=200米.(1)求大厦DE的高度;(2)求平安金融中心AB的高度;(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,√2≈1.41,√3≈1.73)41. 为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上(如图所示).该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB =∠FED),在F 处测得旗杆顶A 的仰角为45°,平面镜E 的俯角为67°,测得FD =2.4米.求旗杆AB 的高度约为多少米?(结果保留整数,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125)42. 如图,某大楼的顶部树有一块广告牌CD ,李明在山坡的坡脚A 处测得广告牌底部D 的仰角为53°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1:√3,AB =12米,AE =24米.求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米,√2≈1.414,√3≈1.732,sin53°≈45,cos53°≈35,tan53°≈43)43.建筑物EF在斜坡BC的顶部平地上,数学兴趣小组为了测量EF的高度.在A处测得建筑物顶端E的仰角为36°,再向右走50米到达点B,已知BC=20米,∠CBD=45°,CF=30米,求建筑物EF的高度.精确到0.1米,参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,√2=1.41,√3≈1.73)44.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,√5=2.236)四、圆综合应用45.如图,AB是 ⊙O的直径,点C是 ⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB 于点F,交 ⊙O于点E.(1)求证:PC与 ⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=4,求线段BE的长.346.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=√3,∠C=30°,求AD⏜的长.47.如图,⊙O的直径AB垂直于弦CD,垂足为点E,过点C作⊙O的切线,交AB的延长线于点P,连结PD.(1)判断直线PD与⊙O的位置关系,并加以证明;(2)连结CO并延长交⊙O于点F,连结PF交CD于点G,如果CF=10,cos∠APC=4,求EG的长.548.如图,已知AB是圆O的直径,DC是圆O的切线,点C是切点,AD⊥DC垂足为D,且与圆O相交于点E.(1)求证:∠DAC=∠BAC,(2)若圆O的直径为5cm,EC=3cm,求AC的长.49.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=2√3,∠ABC=60°,求OC的长.50.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求BE.DE51.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE⋅CE.52.如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sinC=1,BD=8,求EF的长.353.如图,AB为⊙O的直径,C、D为⊙O上的两个点,AC⏜=CD⏜=DB⏜,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.54.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.55.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.56.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为3,sin∠CBF =√3,求BC和BF的长.3第31页,共31页。
湖南省宁乡县三仙坳初级中学九年级数学上册《统计与概率》复习知识结构和考点剖析 新人教版4.1知识结构⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧概率不相等,不公平概率相等,公平戏的公平性较概率的大小来判断游游戏公平吗:通常是比是比较平均数的大小。
哪种方式更合算:通常势。
楚看出各部分的变化趋折线统计图:优点能清目。
楚知道各部分的具体数条形统计图:优点能清分比。
楚各部分所占总体的百扇形统计图:优点能清年的变化:统计与概率504.2考点剖析 基本概念与概率: 1、考事件的基本概念例1、下列事件中,必然事件是( )A .中秋节晚上能看到月亮B .今天考试小明能得满分C .早晨的太阳从东方升起D .明天气温会升高解析:必然事件有两种情形:一种是结果一定发生的,一种是结果一定不会发生。
不会出现摸棱两可的情形。
结合自己的生活经验,我们都知道早晨的太阳一定是从东方升起,所以,这个事件一定是必然事件。
所以选C 。
2、硬币中的概率例2、随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1 B .21 C .31 D .41解析:掷硬币是我们经常用的一种游戏规则。
一个硬币只有两种可能:正面和反面。
所以,同时掷两枚硬币的所有可能性为;( 正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4种,而都是正面的结果只有一种可能,因此,都是正面的概率为:41。
所以选D 。
3、转盘中的概率例3、如图1,转动转盘,转盘停止转动时指针指向阴影部分的概率是( )BA .85 B .21 C .43 D .87解析:仔细观察转盘的特点,我们发现,整个圆的面积共8份。
而阴影部分占了4份,所以,转盘停止转动时指针指向阴影部分的概率是:4÷8=21。
所以,选B 。
点评:转盘上的游戏,关键是同学们根据转盘的结构,明确整个转盘被平均分成了几份,而所要发生的事件在其中又占去了多少份,两个份数的比,就是这个事件的概率。
初中数学总复习统计与概率总复习一、统计与概率的基本概念统计与概率是数学中非常重要的两个分支,也是我们在初中阶段学习的重点内容之一。
统计是通过数据的收集、整理、分析和解释,来研究和描述事件的发生规律和特征的一门学科。
概率则是用来度量事件发生的可能性的一种数学工具。
二、统计的基本知识统计的基本知识包括数据的收集、整理和分析。
以下是一些常用的统计方法:1. 数据的收集数据的收集是统计分析的第一步,通过采取问卷调查、观察实验、抽样调查等方法,我们可以获得一定数量的数据用于分析。
2. 数据的整理数据的整理包括数据的分类、汇总和展示。
常用的整理方法有频数表、频率表、直方图等。
3. 数据的分析数据的分析是统计的核心内容,通过对数据的分析,我们可以了解数据的分布规律、趋势等。
常用的分析方法有平均数、中位数、众数、四分位数等。
三、概率的基本知识概率是用来度量事件发生的可能性的一种数学工具。
在统计与概率中,我们需要了解以下几个基本概念:1. 随机试验随机试验是指在相同的条件下,能够重复进行,且每次结果不确定的试验。
比如掷骰子、抽卡等。
2. 样本空间随机试验的所有可能结果的集合称为样本空间,通常用S表示。
3. 事件与概率事件是样本空间的子集,表示我们感兴趣的结果。
概率是一个事件发生的可能性的度量,通常用P(E)表示。
4. 事件的运算事件的运算包括并、交、差、互斥等运算,通过这些运算,我们可以得到更复杂的事件。
5. 概率的计算方法计算概率有两种基本方法:古典概型和统计概型。
古典概型适用于样本空间中的每个结果发生的可能性相等的情况,而统计概型适用于每个结果可能发生的可能性不等的情况。
四、总复习要点在初中数学的统计与概率中,有一些重要的要点需要温习和掌握:1.对数据进行整理和分析,计算平均数、中位数、众数等指标;2.理解统计图表的含义,能够读懂直方图、条形图等图表信息;3.掌握概率的基本概念和计算方法,能够运用概率进行问题的求解;4.理解事件的运算法则,能够进行事件的并、交、差等运算;5.熟练运用古典概型和统计概型进行概率计算。
中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
概率初步复习【新课知识讲解及巩固】知识点1 随机事件1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b=b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生5.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.知识点2 概率的意义1.在大量重复进行同一试验时,随机事件A发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A的______.2抛掷结果5次50次300次800次3200次6000次9999次出现正面的频数 1 31 135 408 1580 2980 5006出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______; (3)请你估计一下,抛这枚硬币,正面出现的概率是______. 3.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50% 4.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 5.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个6.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21 B .31C .51 D .1017.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______;(2)摸到红球的概率等于______;(3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______; (5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).知识点3 用列举法求概率(一)1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21 C .31 D .41 4.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ). A .61 B .41 C .31 D .215.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ). A .54 B .53 C .52 D .516.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ). A .4个 B .3个 C .2个 D .1个三、解答题7.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法?(2)其中甲排在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?8.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?9.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?知识点4 用列举法求概率(二)1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118 C .1411 D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .100013.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31 B .41 C .51 D .614.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ). A .51 B .52 C .53 D .54 5.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 31求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?7、红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.8、甲、乙、丙三人之间相互传球,球从一个人手中随机传到另一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.知识点5 利用频率估计概率(一)1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”)2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n(2)该厂生产乒乓球优等品的概率约为多少?8.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.【作业布置】 4 课后巩固练习徐汉杰 2017.11.18(100分) 45 minute 正确率:1.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361 B .181 C .61 D .21 2.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( ) A .8000条 B .4000条 C .2000条 D .1000条3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.4.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:你能否求出封闭图形ABC的面积?试试看.5.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗?。
初三数学专题复习---统计与概率
一、【复习目标】
1、识别必然事件、不可能事件和随机事件
2、了解随机事件发生可能性大小,概率的意义、记法和计算
3、理解和掌握平均数、加权平均数的概念和计算
4、理解和掌握中位数、众数、方差、标准差的概念、计算
5、通过列表或树状图的方法求随机事件的概率及应用
二、【近几年中考考点分布及占15分左右】
概率统计都是一些每年都常考的考点,常出现在以选择、填空和解答题(19-22),考察理解频数分布直方图的能力、利用统计图获取信息的能力利和用列举法求概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题。
三、
1.下列叙述正确的是()
A.“如果a,b是实数,那么a+b=b+a”是不确定事件
B.某种彩票的中奖概率为,是指买7张彩票一定有一张中奖
C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适
D.“某班50位同学中恰有2位同学生日是同一天”是随机事件
3.下列说法正确的是()
A.要了解一批灯泡的使用寿命,应采用普查的方式
B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
C.甲、乙两组数据的样本容量与平均数分别相同,若方差s甲2
=0.1,s乙2=0.2,则甲组数据比乙组数据稳定
D.“掷一枚硬币,正面朝上”是必然事件
4.如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).(2)求摸出的两张纸牌同为红色的概率.
四、历年中考考什么,怎么考
1.小试牛刀:2014年中考
7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()
A.中位数是8 B.众数是9 C.平均数是8 D.极差是7 20.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育
“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b 0.32推铅球5 0.10合计501(1)求a,b的值;
(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.
2.小试牛刀:2015年中考
4. (2015•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们的成绩的(*)
(A)众数(B)中位数(C)方差(D)以上都不对22.((2015•广州12分)
4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出的值大约是多少?
3.小试牛刀:2016年中考
五、考点小结:
一.判断事件类型的流程
二.关于游戏中概率的两个注意点
1.判断游戏公平的标准:
游戏双方获胜的概率(或游戏得分)是否相等,是判断游戏是否公平的唯一标准;若相等,则游戏公平,若不相等,则游戏不公平.
2.变非公平游戏为公平游戏的两个途径:
(1)改变游戏规则,使双方获胜的概率相等.
(2)不改变双方获胜的概率,改变得分情况,使双方得分相等.
三.求随机事件概率的类型及策略
1.有限等可能性事件:
(1)事件只包含一个因素:用列举的方法,根据公式P= 求得结果.
(2)事件包含两个因素:用列表或画树状图的方法,根据公式P= 求
得结果
(3)事件包含三个因素:用画树状图的方法,根据公式P= 求得结果.
2.无限等可能性事件:与面积有关的事件的概率可以通过区域面积与总面积的比值来求解.
六、今天作业:天河区一模测试指定专题
七、教学反思:
主要培养严谨的审题能力。
近几年从学生的答卷中,暴露出了有相当部分的学生没有认真审题,或者是不能从题目中准确获取信息;书写表达的完整性及规范性。
近几年从学生的答卷中,暴露出了有相当部分的学生数学语言表达不规范导致扣分;计算的准确度。
注意多训练学生易错的地方;图画能力。
学生在根据所给条件画出图形的能力较弱,建议教学过程中多训练学生这方面的图画能力,特别是在几何教学中,要让学生多动手画图。