中考数学找规律题
- 格式:doc
- 大小:651.50 KB
- 文档页数:7
中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是( ) A 、618 B 、638 C 、658D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)第n个“上”字需用枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。
9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个(1)(2)(3)第4题第7题图(1)(2)(3)(4)“树枝”。
找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。
2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4. 1,9,25,49,(),(),的第n项为(),5:2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 :4,16,36,64,,144,196,…第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
(10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的11. =8 =16 =24 ……用含有N的代数式表示规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18.1,8,27,( ),12519。
3,10,29,( ),12720,0,1,2,9,( )21;( )。
则第n项代数式为:()!22 ,2/3 1/2 2/5 1/3 ( )。
则第n项代数式为()23 ,1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。
26. 2,3,10,15,26,( )。
27. :1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )】31. 1,1,2,3,5,( )。
中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。
11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。
中考数学找规律练习题1.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 282.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 283.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+14.观察下列各式及其展开式(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(2x−1)8的展开式中含x2项的系数是()A. 224B. 180C. 112D. 485.观察下列各式(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……根据规律计算:的值为()A. 22019−1B. −22019−1C. 22019−13D. 22019+136.图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 15B. 25C. 36D. 497.如图,周长为4个单位长度的圆上4等分点为P,Q,M,N,点P落在数轴上的2的位置,将圆在数轴上沿负方向滚动,那么圆上落在数轴上−2020的点是()A. MB. NC. PD. Q8.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√14[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为1,2,√5,则△ABC的面积为______.9.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,它是我国古代数学家杨辉最早发现的。
2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。
【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。
【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。
∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。
∴最大数为24,最小数为8。
∴圈出的9个数为8,9,10,15,16,17,22,23,24。
和为144。
应选D。
2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。
【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。
【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。
应选C。
3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。
【考点】分类归纳〔数字的变化类〕。
【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。
∴这一组数的第k 个数是2k2k+1。
4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。
中考数学——找规律班级___________________座号_____________一、棋牌游戏问题1.4X 扑克牌如图(1)所示放在桌子上,小敏把其中一X 旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A .第一XB .第二XC .第三XD .第四X2.)小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两X ,且各堆牌的X 数相同; 第二步 从左边一堆拿出两X ,放入中间一堆; 第三步 从右边一堆拿出一X ,放入中间一堆;第四步 左边一堆有几X 牌,就从中间一堆拿几X 牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的X 数.你认为中间一堆牌的X 数是.4.(2004年XXXX )图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题1.(2004年XX )把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,……,则第n 层有___个正方体.2.(2004年XX 日照)如图(6),都是由边长为1的正方体叠成的图形。
图3相帅炮例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。
依此规律,则第⑤个图形的表面积个平方单位。
3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的.4..观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图(8)①中:共有1个小立方体,其中1个看得见,0个看不见;如图(8)②中:共有8个小立方体,其中7个看得见,1个看不见;如图(8)③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有个.5.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
中考规律探索1以下为全部整理类型,规律探索共两套试题,供参考学习使用一.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是A .0B .1C .3D .72. 把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现用等式A M =i,j 表示正奇数M 是第i 组第j 个数从左往右数,如A 7=2,3,则A 2013= A .45,77 B .45,39 C .32,46 D .32,233.下表中的数字是按一定规律填写的,表中a 的值应是 .1 2 3 5 8 13 a (2)358132134…4.下列图形都是由同样大小的矩形按一定的规律组成,其中第1个图形的面积为2cm 2,第2个图形的面积为8 cm 2,第3个图形的面积为18 cm 2,……,第10个图形的面积为A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图,动点P 从0,3出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为A 、1,4B 、5,0C 、6,4D 、8,36.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=nm+1C .M=mn+1D .M=mn+17.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足12-=i 即方程12-=x 有一个根为,并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 用含n 的代数式表示.2.如图,在直角坐标系中,已知点A ﹣3,0、B 0,4,对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 .图① 图②图③···第8题图4.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6 .如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8.如图12,一段抛物线:y=-xx-30≤x≤3,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P37,m在第13段抛物线C13上,则m =_________.9.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式n为正整数应表示为____________________________.11.将连续的正整数按以下规律排列,则位于第7行、第7列的数x是__ __.12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第6幅图中含有 个正方形;13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.14.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 . 15、我们知道,经过原点的抛物线的解析式可以是y =ax 2+bxa ≠0 1对于这样的抛物线:当顶点坐标为1,1时,a =__________;当顶点坐标为m ,m ,m ≠0时,a 与m 之间的关系式是__________;2继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kxk ≠0上,请用含k 的代数式表示b ;3现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x 上,横坐标依次为1,2,…,n 为正整数,且n ≤12,分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则顶点3A 的坐标是 ,22A 的坐标是 .xy A 9A 6A 3A 8A 7A 5A 4A 2A 1O第16题图••••••①② ③17.如图,已知直线l :y=33x ,过点A 0,1作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .18、如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 10,1,A 21,1,A 31,0,A 42,0,…那么点A 4n +1n 为自然数的坐标为 用n 表示19.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.用n 表示,n 是正整数20. 2013衢州4分如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2,43a ,65a ,87a ,….则第n 个式子是________22.观察下面的单项式:a,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 .23.如图,已知直线l:y=x,过点M2,0作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x 轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为.24.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n图,需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、n+122、8052,03、4、160975、516、2n+17、10140498、 29、16097 10、10n-1+52=100nn-1+25 11、85 12、91 13、46 14、2n15、1-1;a =-1m或am +1=0; 2解:∵a ≠0∴y =ax 2+bx =ax +2b a2-24b a∴顶点坐标为-2ba,-24b a∵顶点在直线y =kx 上∴k -2ba=-24b a∵b ≠0∴b =2k3解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为n ,n ,点D n 所在的抛物线顶点坐标为t ,t由12可得,点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为2n ,n ∴-1t2n 2+2×2n =n∴4n =3t∵t 、n 是正整数,且t ≤12,n ≤12∴n =3,6或9∴满足条件的正方形边长为3,6或916、0,31-,-8,-8. 17、()()201340260,40,2或注:以上两答案任选一个都对18、2n,1 19、n 2+4n 20、20;21、221na n n 为正整数22、-128a 823、884736,0 24、6n+2规律探索21、 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码又叫数字:0,1,2,3,4,5,6,7,8,9;在电子数字计算机中用的是二进制,只要两个数码:0和1;如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 ;2、 从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数即当最后一个奇数是19时,它们的和是 ; 3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是A 、618B 、638C 、658D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:1第四、第五个“上”字分别需用 和 枚棋子;2第n 个“上”字需用 枚棋子;7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题第7题图12 348、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点;9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图2比图1多出2个“树枝”;图3比图2多出5个“树枝”;图4比图3多出10个“树枝”;照此规律,图7比图6多出 个“树枝”;10、观察下面的点阵图和相应的等式,探究其中的规律:1在④和⑤后面的横线上分别写出相应的等式;2通过猜想写出与第n 个点阵相对应的等式_____________________;11、用边长为1cm 的小正方形搭成如下的塔状图形,则第n 次所搭图形的周长是_______________cm 用含n 的代数式表示;12、如图,都是由边长为1的正方体叠成的图形;例如第1个图形的表面积为6个平方单位,第2个图形的表面积为18个平方单位,第3个图形的表面积是36个平方单位;依此规律;则第5个图形的表面积 个平方单位13、图1是一个水平摆放的小正方体木块,图2、3是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第…………①1=12; ②1+3=22;③1+3+5=32;④ ;⑤ ;第1次 第2次 第3次 第4次 ······⑴ ⑵ ⑶14题七个叠放的图形中,小正方体木块总数应是A 25B 66C 91D 12014、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,……按这样的规律叠放下去, 第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:1按照要求填表:2写出当n =10时,s= .16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时即10 n 时,需要的火柴棒总数为 根;17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n 个三角形需要S 支火柴棒,那么用n 的式子表示S 的式子是 _______ n 为正整数.18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n 个图形中需用黑色瓷砖 ____ 块.用含n 的代数式表示n 1 2 3 4 … s136…(1)(2)(3)图1 图2 图3A B C D19题图19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为 块;当白色瓷砖为n 2n 为正整数块时,黑色瓷砖为 块.20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得8个看不见;……,则第6个图中,看不见的小立方体有 个;21、下面的图形是由边长为l 的正方形按照某种规律排列而组成的.1观察图形,填写下表:图形 ① ② ③ 正方形的个数 8 图形的周长182推测第n 个图形中,正方形的个数为________,周长为______________都用含n 的代数式表示.22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形;23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛阴影部分使花坛面积是园地面积的一半,以下图中设计不合要求....的是第22题图 第23题图24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是 A. <1>和<2> B. <2>和<3>C. <2>和<4>D. <1>和<4>ADCB第18题图26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 . n 为正整数27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块;28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.29、将一圆形纸片对折后再对折,得到图2,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是30.如图1,小强拿一张正方形的纸,沿虚线对折一次得图2,再对折一次得图3,然后用剪刀沿图3中的虚线剪去一个角,再打开后的形状是A B C DABCD图3图231、用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠BAC=度.32、如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星正五边形对角线所构成的图形.则∠OCD等于A.108° B.144° C.126° D.129°33、如图,把一个正方形三次对折后沿虚线剪下则得到的图形是A B C D 第35题图34、将一张长方形的纸对折,如图5所示可得到一条折痕图中虚线. 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕 .如果对折n次,可以得到_____________条折痕 ;35、观察图形:图中是边长为1,2,3 …的正方形:当边长n=1时,正方形被分成2个大小相等的小等腰直角三角形;当边长n=2时,正方形被分成8个大小相等的小等腰直角三角形;当边长n=3时,正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n时,正方形被分成大小相等的小等腰直角三角形的个数是 ;36、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的___________________._沿虚线剪开祝D SAC SA图1DE BA图237、如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为A5050m2 B4900m2C5000m2D4998m238、读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.①在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“2,3”来表示,请说明“皇后Q”所在的位置“2,3”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制在图丙中的某四个小方格中标出字母Q即可.3412甲3123行列乙3412丙参考答案1、132、1003、C4、1795、 3n+1-3+nn+1或n+12+2n-16、118、22 24n+27、278、31,n2-n-19、8010、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、9013、C 14、64 5、110 21+2+3+……+n=nn+1/2 16、16517、s=2n+1 18、4n+6 19、16,4n+420、125 21、113、18;28、38; 25n+3,10n+8 22 、9123、B 24、B 25、A 26、8n-6 27、118 ;24n+2 28、29、C 30、C 31、 36 32、A 33、C34、15 ;2n-1 35、 2n2 36、后面、上面、左面 37、C38、1 1,1,3,1,4,2,4,4;2。
中考数学规律题及答案解析1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33…… 分别计作a1,a2,a3,a4,a5……an, an表示第n 组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……an = an-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46,A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32(注意区别an和An)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为( )A. cm2B. cm2C. cm2D. cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S= ,…,依此类推,平行四边形AO4C5B的面积= = =cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:×1×2=1,三条直线的最多交点数为:×2×3=3,四条直线的最多交点数为:×3×4=6,所以,六条直线的最多交点数为:×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征( )A. B. C. D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A. 502B. 503C. 504D. 505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A.0B.1C.3D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013• 德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为( )A. (1,4)B. (5,0)C. (6,4)D. (8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.8、(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.A. 156B. 157C. 158D. 159考点:规律型:图形的变化类.3718684分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n 个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A. 8B. 9C. 16D. 17考点:规律型:图形的变化类.3718684分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171 .考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC 上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200 .考点:规律型:数字的变化类.3718684分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
初中数学中考“找规律”专项练习题1.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是( )A .a nB .–a nC .(–1)n+1a n D .(–1) n a n2.如图,在平面直角坐标系中,函数y=x 和y=﹣x 的图象分别为直线l 1,l 2,过点A 1(1,﹣)作x 轴的垂线交11于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为 .3.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为_________________. 4.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b )n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b )8的展开式中从左起第四项的系数为( ) A .84B .56C .35D .285.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3张黑色菱形纸片,第②个图中有5张黑色菱形纸片,第③个图中有7张黑色菱形纸片,..,按此规律排列下去,第⑥个图中黑色菱形纸片的张数为( )A.11B.13C.15D.17 6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,c=20C .a=15,b=20,c=15D .c=20,b=15,c=67.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的A B C D8.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 .9.已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= .10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .1811.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○.12.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144第13.观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是14. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.15.已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= .16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()17.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .19. 图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).20. 将连续的正整数按下图规律排列,则位于第7行,第7列的数x是 .21.22.观察等式:331=,932=,2733=,8134=,24335=,72936=,218737=……解答下列问题:202143233333+⋯⋯++++的末尾数字是 .23. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.25.如图所示:已知点)(0,0A,),(03B,)(1,0C在ABC∆内依次做等边三角形,使一边在X轴上,另一顶点在BC边上,作出的等边三角形分别是:第1个11BAA∆,第2个221BAB∆,第3个332BAB∆,则第n个等边三角形的边长等于 .。
一、选择题 1.(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………( )A )495B )497C )501D )503 【答案】A 2.(2010江苏盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 【答案】D3.(2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是(A )15 (B )25 (C )55 (D )1225【答案】D 4.(2010山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是0 2 8 4 2 4 6 22 4 6 844 m 6【答案】B 5.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102【答案】C 6.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ).A .29B .30C .31D .32【答案】B7.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+x 21输出输入xx +3x 为偶数x 为奇数(第11题)【答案】B 8.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 【答案】A9.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 10.(2010广东湛江)观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 11.当对应所得分数为132分时,则挪动的珠子数 颗。
1 11 1 1 1 1 11 1 12 3 3 4 4 5 5 10 a 10 AC 1PC2B 2B 1B 3C 3CB找规律问题1. 阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、……逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,……(这就是著名的斐波拉契数列).请你仔细观察这列数的规律后回答:上10级台阶共有 种上法.2.把若干个棱长为a 的立方体摆成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体, 摆三层共有10个立方体,那么摆五层共有 个立方体.3.下面由“*”拼出的一列形如正方形的图案,每条边上(包括两个顶点)有n (n>1)个“*”,每个图形“*”的总数是S :n=2,S=4 n=3,S=8 n=4,S=12 n=5,S=16 通过观察规律可以推断出:当n=8时,S= .4.下面由火柴杆拼出的一列图形中,第n 个图形由n 个正方形组成: ……n=1 n=2 n=3 n=4 …… 通过观察发现:第n 个图形中,火柴杆有 根. 5.已知P 为△ABC 的边BC 上一点,△ABC 的面积为a , B 1、C 1分别为AB 、AC 的中点,则△PB 1C 1的面积为4a, B 2、C 2分别为BB 1、CC 1的中点,则△PB 2C 2的面积为163a,B 3、C 3分别为B 1B 2、C 1C 2的中点,则△PB 3C 3的面积为647a,按此规律……可知:△PB 5C 5的面积为 . 6.如图的三角形数组是我国古代数学家杨辉发现的, 称为杨辉三角形.根据图中的数构成的规律可得: 图中a 所表示的数是 . 7.观察下列等式:13+23=32;13+23+33=62;13+23+33+43=102……;根据前面各式规律可得:13+23+33+43+53+63+73+83= .8.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第 1个图案需 7根火柴,第 2 个图案需 13 根火柴,…,依此规律,第 11 个图案需( )根火柴.A. 156B. 157C. 158D. 159* * * * * * * * * * * * * * ** * * * * * * * * * * * ** * * * * ** * ** * * • • • • • •• • •• • • • • • • • • • • • • • • • • • • • • • • •9.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M =mnB . M =n (m +1)C .M =mn +1D .M =m (n +1)10.如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = . (用n 表示,n 是正整数)2n -15 12 347 1 1 2 43 3 n图911.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共用小三角形的个数是 .12.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于________.(用n 表示,n 是正整数)13.观察下列图形:(3)(2)(1)C 3B 3A 3A 2C 1B 1A 1C B AC 2B 2B 2C 2A B C A 1B 1C 1A 2C 1B 1A 1C B A … 图4它们是按一定规律排列的,依照此规律,第9个图形中共有 个14. 如图4,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个.15.挪动珠子数(颗)2 3 4 5 6 …… 对应所得分数(分)26122030……则挪动的珠子数为 颗16.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .17.如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.318.(6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:ABD EF GO B C(第16题) lD⑴ 1+8=? 1+8+16=? ⑵⑶ 1+8+16+24=? 第20题图 …… (1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 19. 右图为手的示意图,在各个手指间标记字母A 、B 、C 、D 。
初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A 出发,显然有3条,同理从B出发也3条,每个顶点出发都是3条,但从C顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20 B.12,15C.9,10 D.9,122、寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于()A.0 B.- 1C.- 1008 D.10083、观察下列各式并找规律,再猜想填空:,则______ .4、观察一列数:,,,,,……根据规律,请你写出第10个数是()A.B.C.D.二、填空题5、观察一下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知…,观察上面的计算过程,寻找规律并计算:= .8、观察分析下列数据,寻找规律:0,,,3,2,……那么第10个数据应是_________.9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
① 2张桌子拼在一起可坐______人;(1分)3张桌子拼在一起可坐______人;(1分)n张桌子拼在一起可坐______人。
(3分)②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
(3分)10、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________.11、找规律填上合适的数:-2,4,-8,16,,64,……………12、用火柴棒按以下方式搭“小鱼”.…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为.13、观察分析下列数据,寻找规律:0,,,3,2,,3,……,那么第10个数据应是.14、填空找规律(结果保留四位有效数字).(1)利用计算器分别求:=________,=________,=________,=________;(2)由(1)的结果,我们发现所得的结果与被开方数间的规律是________;(3)运用(2)中的规律,直接写出结果:=________,=________.15、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为.16、找规律填上合适的数:﹣2,4,﹣8,16,,64,…17、观察下列数据:0,,,,,……,寻找规律,第9个数据应是.18、观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.19、观察并分析下列数据,寻找规律: 0,,-,3,-2,,-3,……那么第10个数据是___________ ;第n个数据是_______________ .20、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:______________________.21、寻找规律,根据规律填空:,,,,,,…,第n个数是.22、找规律,并按规律填上第五个数:.23、阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)24、找规律,如图有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中有个。
中考数学找规律练习题(20道,后附答案)一:数式问题1.已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b+=⨯(a 、b 为正整数)则a b +=.2.有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于()A.2010B.2009C.401D.3343.有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为.4.有一列数1234251017--,,,…,那么第7个数是.5.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.6.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列第3列第4列第1行123第2行654第3行789第4行121110……7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=;②第i行第j列的数为(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题8、有一列数1a,2a,3a, ,n a,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题9.如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()10题图四:数形结合问题10、已知,A、B、C、D、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)11、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为.12、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.四:图形问题13.如图所示,已知:点(00)A ,,3B ,,(01)C ,在ABC △内依次作yxO P 1P 2P 3P4P 5A 1A 2A 3A 4A 5(第12题图)2y x=第14题图C 2D 2C 1D 1CD AB等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于()14.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.15.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角O yx(A )A 1C112B A 2A 3B 3B 2B 1第13题图BCAE 1E 2E 3D 4D 1D 2D 3(第15题)(第16题)形,则第n个图案中正三角形的个数为(用含n 的代数式表示).17.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.18.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.19.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题20.在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A ,.一只电子蛙位于坐标原点处,第1次电子蛙由原点第1个图第2个图第3个图第4个图(第18题图)第17题图图案1图案2图案3……跳到以A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对1称中心的对称点P,第3次电子蛙由2P点跳到以3A为对称中心的对称2点P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下3去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P(_______,2009_______).参考答案1、8+63=712、D3、-a11104、-7505、(1)n×=n-;(2)证明见解析.【解析】试题分析:(1)等号左边第一个因数为整数,与第二个因数的分子相同,第二个因数的分母比分子多1;等号右边为等号左边的第一个数式-第二个因数,即n×=n-;(2)把左边进行整式乘法,右边进行通分.试题解析:(1)猜想:n×=n-;(2)证:右边==左边,即n×=n-考点:规律型:数字的变化类.6、670,第三列7、1010(i-1)+j8、D 9、C 10、13π-2611、1012、1/513、14、15、16、2n+217、30218、19、4920、(2,2)。
3 9 3 5 -5 - 5 - 24 20092010 9 B . 5 -4C .2008 4018一、选择题1. (2010安徽,9, 4分)下面两个多位数 1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第 2位上,若积为两位数,则将其个位数字写在第 2位.对第2位数字再进行如上操作得到第 3位数字 ,后面的 每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前 100位的所有数字之和是 ......................... ()A . 495B . 497C . 501D . 503【分析】按上述规律,以 3开头的多位数是:362486248••…,前100位数字中第一个 数字是3,依次为62486248…,共24个6248,最后三位数字是 624,所以前100位数字之 和是 3+ 24 >20 + 12=495【答案】A【涉及知识点】规律探究、自主学习 【点评】规律探究题是近几年中考的热点,本题还带有自主学习的成分,培养学生的自主学习能力应成为今后教学的重点,属于中档题.【推荐指数】★★★【典型错误】选其他答案比较多,如选D精品分类拒绝共享2. 精(2010重庆,8, 4分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩 形绕其对称中心 O 按逆时针方向进行旋转,每次均旋转 45°第1次旋转后得到图①, 第2次旋转后得到图②, ……,则第10次旋转后得到的图形与图①〜④中相同的是()【分析】规律的归纳:通过观察图形可以看到每转动 4次后便可重合,即 4次以循环, 10韶=2…2,所以应和图②相同.【答案】B【涉及知识点】规律的归纳【点评】本题是规律的归纳题,解决本题的关键是读懂题意,理清题归纳出规律,然后 套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★品分类拒绝共享3.精(2010山东威 海市,12, 3分)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1 , 0),点D 的坐标为(0, 2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形 A 2B 2C 2C 1…按这样的规律进行下去, 第2010 个正方形的面积为 ()A . 图①tr图④B4个图案1次循环,由于2010- 4=502D•…2 ,因此可判断A【分析】观察图案容易发现每第2010个图案为B.【答案】B【涉及知识点】规律探索•【点评】此题考查探索规律的能力及有理数的简单运算•解题关键是发现图案中的变化规律•【推荐指数】★★A2009B2009 = 5【答案】D【涉及知识点】【点评】本题是正方形面积的规律探究题,应用了勾股定理及相似三角形知识求出几种特殊正方形的边长,长规律,最后得出正方形的面积规律使问题得以解决.【推荐指数】★★★★品分类拒绝共享4. 精(2010山东烟台,8, 4分)如图3,一串有趣的图案按一定规律排列,请仔细观察, 按此规律第2010个图案是()【分析】由题意知, OA = 1 , OD = 2,DA = 5 ,A AB = AD = . 5 ,利用互余关系证得△ DOA s\ ABA1,…DOABOA,••• BA1= 1AB = 15,二A1B1 = A1C = 3AB =工2 2 2 2BA13同理.A2B2 =2A iB i =235,一般地An B n =n 1I 5,第2010个正方形的面积为4018勾股定理相似三角形正方形实质就是正方形边长的规律探究. 本题可先然后归纳出一般正方形的边C则顶点A 55的坐标为()品分类拒绝共享5. ( 2010年江苏盐城,8, 3分)填在下面各正方形中的四个数之间都有相同的规律,根据 此规律,m 的值是2X 4-0=8 ; 4X5-2=22 ; 60-4=44; 8X 10-6=74.【答案】D【涉及知识点】有理数运算找规律【点评】本题属于探究类试题,解答此类试题时,要充分分析试题的特点,各个量之间的 关系,然后得到一般的结论.【推荐指数】★★★★ 精品分类拒绝共享6. ( 2010江苏淮安,8, 3分)观察下列各式:1 1 21 2 3 0 1 23123 -2341233 13 4 3 4 5 2 3 43计算:3X (1 X 2+2X 3+3X 4+…+99X 100)=A . 97 X 98 >99B . 98 X 99 X 00C . 99 X 00 X 01D . 100 X 01 X 02【分析】从材料可以得出 1X2, 2X 3, 3X 4,……可以用式子表示,即原式 =.111 3 - 123 0 1 2- 2 3 4 1 2 3 - 99 100 101 98 99 10033 3= 1 23012234123 99 100 101 98 99 100=99 X100 X 01,所以选择 C.【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种 问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键.【推荐指数】★★★★ 精品分类拒绝共享7. ( 2010武汉市中考,9,3)如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2, 4, 6, 8,…,顶点依次用A 1, A 2, A J , A 4…表示为,【分析】根据图形所填数字可以看出:A、(13, 13)B、(- 13,—13)C、(14, 14)D、(- 14,—14)【分析】用图中可得,A,A2,A3,A的坐标分别是(1 , 1 ), (- 1 , 1), (- 1 , - 1 ),门,一1);A5 , A6 , A7, A的坐标分别为:(2 , 2), (-2 , 2), (- 2 , - 2), (2, - 2);A , A10 , A11 , A12 的坐标分别是:(3 , 3) (—3 , 3) , (—3, —3), (3, —3);通过这些数可得出规律:每4个数一循环,余数是几就与第几个数的坐标符号是一样的,55十4=13……3所以符号应该与第3个一样,即横、纵坐标都为负数,坐标是13是最后一个数应该为52 ,坐标是14的最后一个数应该为56 ,所以A55的横、纵坐标都应该是14。
中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。
【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。
有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
中考数学复习:找规律一、填空题(共99小题)1. 按一定的规律排列的一列数依次为:12,13,110,115,126,135,⋯,按此规律排列下去,这列数中的第 7 个数是 .2. 在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第 10 个图案中共有 个小正方形.3. 为庆祝"六•一"儿童节,某幼儿园举行用火柴棒摆"金鱼"比赛.如图所示:按照上面的规律,摆第 (n ) 图,需用火柴棒的根数为 .4. 下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第 n 个图案中白色的正方形个数为 .5. 如图所示,在数轴上,点 A 表示 1,现将点 A 沿轴做如下移动,第一次点 A 向左移动 3 个单位长度到达点 A 1,第二次将点 A 1 向右移动 6 个单位长度到达点 A 2,第三次将点 A 2 向左移动 9 个单位长度到达点 A 3,按照这种移动规律移动下去,第 n 次移动到点 A n ,如果点 A n 与原点的距离不小于 20,那么 n 的最小值是 .6. 一组按规律排列的式子:a 2,a 43,a 65,a 87,⋯,则第 n (n 为正整数)个式子是 .7. 如图,△ABC 面积为 1,第一次操作:分别延长 AB ,BC ,CA 至点 A 1,B 1,C 1,使 A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连接 A 1,B 1,C 1,得到 △A 1B 1C 1,第二次操作:分别延长 A 1B 1,B 1C 1,C 1A 1 至点 A 2,B 2,C 2,使 A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接 A 2,B 2,C 2,得到 △A 2B 2C 2,⋯,按此规律,要使得到的三角形的面积超过 2016,至少经过 次操作.8. 观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+⋯+ 2013的值是.9. 观察下列等式,归纳其中的规律填空:(1)11×2=12;(2)11×2+12×3=23;(3)11×2+12×3+13×4=34……第5个等式为:;第n个等式为:.10. 一组按规律排列的数:2,0,4,0,6,0,⋯,其中第7个数是,第n个数是.(用含字母n的代数式表示,n为正整数).11. 如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点,其顺序排列规律如下:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),⋯,根据这个规律探究可得,第100个点的坐标为;第2013个点的坐标为.12. 一组按规律排列的式子:2a ,−5a2,10a3,−17a4,26a5,⋯,其中第7个式子是,第n个式子是(用含n的式子表示,n为正整数).13. 用量角器分别量出图中已知角的度数并把从中发现的规律写出来.①∠A+∠B+∠C=;②∠A+∠B+∠C+∠D=;③∠A+∠B+∠C+∠D+∠E=;⋯你得到的规律是n边形的内角和等于.14. 如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是;(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测:A n的坐标是;B n的坐标是.15. 阅读材料,寻找共同存在的规律:有一个运算程序a⊕b=n,可以使:(a+c)⊕b=n+c,a⊕(b+c)=n−2c,如果1⊕1=2,那么2010⊕2010=.16. 将正偶数按下表排列:根据上面的规律,则2006所在行、列分别是.17. 将连续正整数按如下规律排列(如图):若正整数565位于第a行,第b列,则a+b=.18. 如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形 OA 3B 3 变换成三角形 OA 4B 4,则点 A 4 的坐标是 ,点 B 4 的坐标是 ;(2)若按(1)题中找出的规律,将三角形 OAB 进行 n (n 为正整数)次变换,得到三角形 OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点 A n 的坐标是 ,点 B n 的坐标是 .19. 下面是一个按某种规律排列的数阵:1√2第 1 行√32√5√6第 2 行√72√23√10√112√3第 3 行√13√14√154√173√2√192√5第 4 行⋯⋯根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n ≥3 且 n 是整数)行从左向右数第 n −2 个数是 (用含 n 的代数式表示).20. 观察下列各式:√1+13=2√13;√2+14=3√14;√3+15=4√15⋯⋯,请你将猜想的规律用含有自然数 n (n ≥1) 的等式表示出来: .21. 用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第 n 个图案中共有小三角形的个数是 .22. 观察下列各等式:11×2=11−12,12×3=12−13,13×4=13−14,⋯根据你发现的规律,计算:21×2+22×3+23×4+⋯+2n×(n+1)= .(n 为正整数)23. 用计算器探索:按一定规律排列的一组数:1,√2,−√3,2,√5,−√6,√7,⋯,如果从 1 开始依次连续选取若干个数,使它们的和大于 5,那么至少要选 个数.24. 考查下列式子,归纳规律并填空: 1=(−1)2×1; 1−3=(−1)3×2; 1−3+5=(−1)4×3; ⋯⋯⋯;1−3+5−7+⋯+(−1)n+1(2n −1) = (n ≥1 且为整数).25. 用同样大小的黑色棋子按图 6 所示的方式摆图形,按照这样的规律摆下去,则第 n 个图形需棋子 枚(用含 n 的代数式表示).26. 下面是一个按某种规律排列的数表:那么第 5 行中的第 2 个数是 ,第 n ( n >1,且 n 是整数)行的第 2 个数是 ( 用含 n 的代数式表示 )27. 观察下列等式: 53+235+3=5+25+3,73+5373+23=7+57+2,93+5393+43=9+59+4,⋯请你用两个字母表示这个规律: .28. 如图所示,它是按一定规律排列的数据组,那么第 10 行的第 1 个数是 .1−23−45−67−89−1011−1213−1415⋯29. 在边长是 1 的正方形方格纸上如图建立平面直角坐标系,A 1(2,0),A 2(1,−1),A 3(0,0),则依图中所示规律,A 2013 的坐标为 .30. 将连续正整数按如下规律排列:第一列第二列第三列第四列第五列第一行1234第二行8765第三行9101112第四行16151413第五行17181920⋯⋯若正整数 565 位于第 a 行,第 b 列,则 a +b = .31. 已知:C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,⋯.观察上面的计算过程,寻找规律并计算 C 106= .32. 将边长分别为 1,2,3,4,⋯,19,20 的正方形置于直角坐标系的第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .33. 观察下列算式并填空:32−12=8×1,52−32=8×2. ① 72−52=8× ;② 92− 2=8×4;③2−92=8×5;④132−2=8×6,…通过观察归纳,写出反映这种规律的一般结论: (用文字语言表述).34. 请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实: .35. 如图,对面积为 1 的 △ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A 1,B 1,C 1,使得 A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接 A 1,B 1,C 1,得到 △A 1B 1C 1,记其面积为 S 1;第二次操作,分别延长 A 1B 1,B 1C 1,C 1A 1 至点 A 2,B 2,C 2,使得 A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接 A 2,B 2,C 2,得到 △A 2B 2C 2,记其面积为 S 2;⋯;按此规律继续下去,可得到 △A 6B 6C 6,则其面积 S 2= .36. 如图是由从 1 开始的连续自然数排列组成,观察规律并回答: 12345678910111213141516⋯⋯(1)第 10 行的第一个数是 ;(2)第 91 行的第一个数是 ;(3)第 n 行的第一个数是37. 用黑白两种颜色正方形的纸片按黑色纸片数逐渐加 1 的规律拼成一列图案:(1)第 4 个图案中有白色纸片 张(2)第 n 个图案中有白色纸片 张38. 如图,在平面直角坐标系中有一边长为 1 的正方形 OABC ,边 OA ,OC 分别在 x 轴、 y 轴上,如果以对角线 OB 为边作第二个正方形 OBB 1C 1,再以对角线 OB 1 为边作第三个正方形 OB 1B 2C 2,照此规律作下去,则点 B 2014 的坐标为 .39. 观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点,⋯ 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 个;第20个图中共有点的个数为 个.40. 有一组算式按如下规律排列,则第 6 个算式的结果为 ;第 n 个算式的结果为 (用含 n 的代数式表示,其中 n 是正整数).1=1(−2)+(−3)+(−4)=−93+4+5+6+7=25(−4)+(−5)+(−6)+(−7)+(−8)+(−9)+(−10)=−495+6+7+8+9+10+11+12+13=81……41. 小明设计了一个电子游戏:一电子跳蚤从横坐标为 t (t >0)的 P 1 点开始,按点的横坐标依次增加 1 的规律,在抛物线 y =ax 2(a >0)上向右跳动,得到点 P 2 、 P 3,这时 △P 1P 2P 3 的面积为 .42. 如图,在平面直角坐标系中,每个最小方格的边长均为 1 个单位长,P 1,P 2,P 3,⋯,均在格点上,其顺序按图中“→”方向排列.如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,−1),P 5(−1,−1),P 6(−1,2) ⋯ 根据这个规律,点 P 2016 的坐标为 .43. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“ →”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),⋯根据这个规律,第60个点的横坐标为.44. 如图,△ABC中,∠C=90∘,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2016=.45. 下面是一个按某种规律排列的数表:第1行1第2行√2 √3 2第3行√5 √6 √7 2√2 3第4行√10 √11 2√3 √13 √14 √15 4⋯⋯那么第5行中的第2个数是,第n(n>1,且n是整数)行的第2个数是.(用含n的代数式表示)46. 如图所示,下列几何体是由棱长为1的小正方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面涂色的小正方体共有个.47. 如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,⋯,按此规律继续下去,则矩形AB n C n C n−1的面积为.48. 古希腊数学家把数1,3,6,10,15,21,⋯⋯叫做三角数,它有一定的规律性.若把一个三角形数记为a1,第二个三角形数记为a2,⋯⋯,第n个三角形数记为a n,计算a2−a1,a3−a2,a4−a3,⋯⋯,由此推算,a100−a99=,a100=.49. 如图,∠AOB=45∘,过OA上到点O的距离分别为1,3,5,7,9,11,⋯的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,⋯.观察图中的规律,求出第10个黑色梯形的面积S10=.50. 如图,在平面直角坐标系中,点A(0,√3)、B(−1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3⋯按此规律继续作下去,直至得到点A2015为止,则点A2015坐标为.51. 如图,在平面直角坐标系中,有一边长为1的正方形OABC,边OA,OC分别在x轴,y轴上.以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2⋯⋯照此规律作下去,则点B2015的坐标为.52. 如图,射线OM在第一象限,且与x轴正半轴的夹角为60∘,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB 的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3⋯按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.53. 如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度达到点A1,第2次从点A1向右移动6个单位长度达到点A2,第3次从点A2向左移动9个单位长度达到点A3,⋯,按照这种移动规律进行下去,第n次移动达到点A n,如果点A n与原点的距离不小于50,那么n的最小值是.54. 下列是一个有规律排列的数表:第1列第2列第3列第4列…第n例…第1行:11121314…1n…第2行:21222324…2n…第3行:31323334…3n…上面数表中第9行,第7列的数是.55. 如图1、2、3所示,第1个图形中共有6个平行四边形,第2个图形中共有个平行四边形,第3个图形中共有个平行四边形,按图1、2、3 所表示的规律依次下去,第n 个图中平行四边形的个数是.56. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,⋯,都是斜边在x轴上、斜边长分别为2,4,6,⋯的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,−1),A3(0,0),则依图中所示规律,A2015的坐标.57. 如图,正方形AOBO2的顶点A的坐标为A(0,2),Q1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边,在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:⋯;按照此规律继续下去,则点O2018的坐标为.58. 如图,边长为1的菱形ABCD中,∠DAB=60∘,则菱形ABCD的面积是,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60∘;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60∘;⋯⋯,按此规律所作的第n个菱形的面积为.59. 如图,∠AOB=45∘,过OA上到点O的距离分别为1,4,7,10,13,16,⋯的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,⋯,观察图中的规律,第4个黑色梯形的面积S4=,第n(n为正整数)个黑色梯形的面积S n=.60. 如图,对面积为S的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A= 2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1= 2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;⋯;按此规律继续下去,可得到△A n B n C n,则其面积S n=.61. 小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:挪动珠子数(颗)23456⋯所得分数(分)511192941⋯按表中规律,当所得分数为71分时,则挪动的珠子数为颗;当挪动n颗珠子时(n为大于1的整数),所得分数为(用含n的代数式表示).62. 现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿45∘角画线,将正方形纸片分成5部分,则中间阴影部分的面积是cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律:.63. 点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为秒.64. 如图1-4所示,每个图中的" 7 "字形是由若干个边长相等的正方形拼接而成,"7"字形的一个顶点P落在反比例函数y=1的图象上,另"7"字形有两个顶点落在x轴上,一个顶点落在y轴上.x(1)图1中的每一个小正方形的面积是;(2)按照图1→图2→图3→图4→ ⋯这样的规律拼接下去,第n个图形中每一个小正方形的面积是.(用含n的代数式表示)65. 如图,在平面直角坐标系中,A(−2,0),B(0,1),有一组抛物线l n,它们的顶点C n(x n,y n)在直线AB上,并且经过点(x n+1,0),当n=1,2,3,4,5,⋯时,x n=2,3,5,8,13,⋯,根据上述规律,写出抛物线l1的表达式为,抛物线l6的顶点坐标为,抛物线l6与x轴的交点坐标为.66. 如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30∘.过点A2作A2A3⊥A1A2,垂足为A2,交x轴与点A3;过点A3作A3A4⊥A2A3,垂足为A3,交x轴与点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴与点A5;过点A5作A5A6⊥A4A5,垂足为A5,交x 轴与点A6;⋯⋯按此规律进行下去,则点A2016的纵坐标为.67. 如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA,OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,⋯⋯,照此规律作下去,则点B2的坐标为;点B2014的坐标为.68. 已知:如图,互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有个平行四边形,⋯,第n个图形中一共有平行四边形的个数为个.69. 若自然数n使得3个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,⋯,99这100个自然数中任取1个,那么取到“连加进位数”的概率是.70. 如图,正方形ABCD的边长为a,在AB,BC,CD,DA边上分别取点A1,B1,C1,D1,使AA1=BB1=CC1=DD1=1a,在边A1B1,B1C1,C1D1,D1A1上分别取点A2,B2,C2,D2,3A1B1,⋯,依此规律继续下去,则正方形A n B n C n D n的面积使A1A2=B1B2=C1C2=D1D2=13为.71. 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).则正方形ABCD的面积为,延长CB交x轴于点A1,作正方形A1B1C1C,则正方形A1B1C1C的面积为;延长C1B1交x轴于点A2,作正方形A2B2C2C1,⋯按这样的规律进行下去,正方形A2015B2015C2015C2014的面积为.72. 如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.73. 如图,在菱形ABCD中,边长为10,∠A=60∘.顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连接四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连接四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去⋯则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.74. 如图,已知∠AOB=α,在射线OA,OB上分别取点A1,B1,连接A1B1,使∠OA1B1=∠OB1A1,在B1A1,B1B上分别取点A2,B2,连接A2B2使∠B1A2B2=∠A2B2B1,⋯,按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,⋯,∠A n+1B n B n+1=θn,则(1)θ1=,(2)θn=.75. 如图 1,△AB1C1是边长为1的等边三角形;如图 2,取AB1的中点C2,画等边三角形AB2C2;如图 3,取AB2的中点C3,画等边三角形AB3C3,连接B2B3;如图 4,取AB3的中点C4,画等边三角形AB4C4,连接B3B4,则B3B4的长为.若按照这种规律已知画下去,则B n B n+1的长为.(用含n的式子表示)76. 如图,在平面直角坐标系xOy中,点A1,A2,A3,⋯都在y轴上,对应的纵坐标分别为1,2,3,⋯.直线l1,l2,l3,⋯分别经过点A1,A2,A3,⋯,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,⋯,依此规律得到一系列点B n(n为正整数),则点B1的坐标为,点B n的坐标为.77. 如图,正方形OA1B1C1的边长为2,以O为圆心、OA1为半径作弧A1C1交OB1于点B2,设弧A1C1与边A1B1,B1C1围成的阴影部分面积为S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心、OA2为半径作弧A2C2交OB2于点B3,设弧A2C2与边A2B2,B2C2围成的阴影部分面积为S2;⋯,按此规律继续作下去,设弧A n C n与边A n B n,B n C n围成的阴影部分面积为S n.则:(1)S1=;(2)S n=.78. 如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(−1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;⋯照此规律重复下去,则点P2013的坐标为.79. 如图,在数轴上,从原点A开始,以AB=1为边长画等边三角形,记为第一个等边三角形;以BC=2为边长画等边三角形,记为第二个等边三角形;以CD=4为边长画等边三角形,记为第三个等边三角形;以DE=8为边长画等边三角形,记为第四个等边三角形;⋯;按此规律,继续画等边三角形,那么第五个等边三角形的面积是,第n个等边三角形的面积是.80. 如图,已知△ABC的面积为1 .第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接点A1,B1,C1,得到△A1B1C1 .第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接点A2,B2,C2,得到△A2B2C2⋯⋯按此规律,要使得到的三角形的面积超过2015,则最少经过次操作.81. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,⋯,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长构造一组正方形(如下图):再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④.若按此规律继续作长方形,则序号为⑦的长方形周长是.82. 如图,已知△ABC的面积S△ABC=1.在图(1)中,若AA1AB =BB1BC=CC1CA=12,则S△A1B1C1=14;在图(2)中,若AA2AB =BB2BC=CC2CA=13,则S△A2B2C2=13;在图(3)中,若 AA 3AB =BB 3BC =CC 3CA =14,则 S △A 3B 3C 3=716;按此规律,若 AA 4AB =BB 4BC =CC 4CA =15,则 S △A 4B 4C 4= . 若 AA 8AB =BB 8BC =CC 8CA =19,则 S △A 8B 8C 8= .83. 已知菱形 A 1B 1C 1D 1 的边长为 2,∠A 1B 1C 1=60∘,对角线 A 1C 1,B 1D 1 相交于点 O .以点 O 为坐标原点,分别以 OA 1,OB 1 所在直线为 x 轴、 y 轴,建立如图所示的直角坐标系.以 B 1D 1 为对角线作菱形 B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以 A 2C 2 为对角线作菱形 A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以 B 2B 2 为对角线作菱形 B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,⋯,按此规律继续作下去,在 x 轴的正半轴上得到点 A 1,A 2,A 3,⋯,A n ,则点 A n 的坐标为 .84. 如图,在 △OA 1B 1 中,∠OA 1B 1=90∘,OA 1=A 1B 1=1.以 O 为圆心,OA 1 为半径作扇形OA 1B 2,A 1B 2⏜ 与 OB 1 相交于点 B 2,设 △OA 1B 1 与扇形 OA 1B 2 之间的阴影部分的面积为 S 1;然后过点 B 2 作 B 2A 2⊥OA 1 于点 A 2,又以 O 为圆心,OA 2 为半径作扇形 OA 2B 3,A 2B 3⏜ 与 OB 1 相交于点 B 3,设 △OA 2B 2 与扇形 OA 2B 3 之间的阴影部分面积为 S 2;按此规律继续操作,设 △OA n B n 与扇形 OA n B n+1 之间的阴影部分面积为 S n ,则 S 1= ;S n = .85. 如图,在平面直角坐标系 xOy 中,A 1 是以 O 为圆心,2 为半径的圆与过点 (0,1) 且平行于 x 轴的直线 l 1 的一个交点;A 2 是以 O 为圆心,3 为半径的圆与过点 (0,−2) 且平行于 x 轴的直线 l 2 的一个交点;A 3 是以 O 为圆心,4 为半径的圆与过点 (0,3) 且平行于 x 轴的直线 l 3 的一个交点;A4是以O为圆心,5为半径的圆与过点(0,−4)且平行于x轴的直线l4的一个交点;⋯,且点A1,A2,A3,A4,⋯都在y轴右侧,按照这样的规律进行下去,点A6的坐标为,点A n的坐标为(用含n的式子表示,n是正整数).86. 如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB、B1C=2BC、C1A=2CA,顺次连接A1,B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;⋯;按此规律继续下去,可得到△A5B5C5,则其面积S5=.87. 在平面直角坐标系xOy中,动点P从原点O出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是(0,1),(2,0),第2次平移后可能到达的点是(0,2),(2,1),(4,0),第3次平移后可能到达的点是(0,3),(2,2),(4,1),(6,0),依此类推,…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l1,l1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l2,l2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l3,l3=18;按照这样的规律,l4=;l n=(用含n的式子表示,n是正整数).88. 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2.⋯按此规律,要使得到的三角形的面积超过2006,最少经过次操作.89. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,⋯按如图所示的方式放置.点A1,A2,A3,⋯和点C1,C2,C3,⋯分别在直线y=x+1和x轴上,则点B n的坐标是.(n为正整数)90. 如图,在平面直角坐标系中,直线l的函数表达式为y=x.点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2;以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3;以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;⋯按此做法进行下去,其中P2017O2018⏜ 的长为.91. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为.输入⋯12345⋯输出⋯1225310417526⋯92. 如图,已知∠AOB=45∘,A1,A2,A3,⋯在射线OA上,B1,B2,B3,⋯在射线OB上,且A1B1⊥OA,A2B2⊥OA,⋯,A n B n⊥OA;A2B1⊥OB,A3B2⊥OB,⋯,A n+1B n⊥OB,(n=1,2,3,4,5,6,⋯).如果OA1=1,那么A6B6的长是 .93. 如图所示,在平面直角坐标系中,横坐标、纵坐标都为整数的点为整点,观察图形中的每一个正方形(实线)四条边上的整点的个数,请你猜想由里向外第100个正方形(实线)四条边上的整点共有个.94. 在平面直角坐标系中,直线l:y=x−1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,⋯⋯,正方形A n B n C n C n−1,使得点A1,A2,A3,⋯在直线l上,点C1,C2,C3,⋯在y轴正半轴上,则点B n的坐标是.x2的图象如图,点A0位于坐标原点,点A1,A2,A3,⋯,A n在y轴95. 二次函数y=23的正半轴上,点B1,B2,B3,⋯,B n在二次函数位于第一象限的图象上,点C1,C2,C3,⋯,C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形A n−1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3⋯=∠A n−1B n A n=60∘,菱形A n−1B n A n C n的周长为.96. 已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳n次后必须回到第1个点;③这n次跳跃将每个点全部到达.设跳过的所有路程之和为S n,则S25=.97. 已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推⋯,若A1C1=2,且点A,D2,D3,⋯,D10都在同一直线上,则正方形A9C9C10D10的边长是.98. 如图,在平面直角坐标系xOy中,已知直线l:y=−x−1,双曲线y=1x.在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2.请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2=,a2013=;若要将上述操作无限次地进行下去,则a1不能取的值是.99. 如图,已知等边△ABC,D是边BC的中点,过D作DE∥AB于E,连接BE交AD于D1;过D1作D1E1∥AB于E1,连接BE1交AD于D2;过D2作D2E2∥AB于E2,…,如此继续,若记S△BDE为S1,记S△D1E1B 为S2,记S△D2E2B为S3,…,若S△ABC面积为S cm2,则S n=cm2(用含n与S的代数式表示).答案第一部分1. 150【解析】通过 12,13,110,115,126,135 可以发现:2=12+1,3=22−1,10=32+1,15=42−1,26=52+1,35=62−1,以此类推:第 7 个数是 172+1=150.2. 100【解析】第 1 个图案有 1 个小正方形,第 2 个图案有 1+3=4 个小正方形,第 3 个图案有 1+3+5=8 个小正方形,以此类推,第 10 个图案有 1+3+5+⋯+19=(1+19)×102=100 个小正方形.3. 6n +2【解析】观察图案,第 (1) 图,需要 8=6+2 根火柴;第 (2) 图,需要 14=6×2+2 根火柴;第 (3) 图,需要 20=6×3+2 根火柴;以此类推,第 (n ) 图,需要 6n +2 根火柴;4. 5n +3【解析】第 1 个图案中白色的正方形个数为 8,第 2 个图案中白色的正方形个数为 8+5=13,第 3 个图案中白色的正方形个数为 8+5×2=18,以此类推,第 n 个图案中白色的正方形个数为 8+5×(n −1)=5n +3.5. 13【解析】当 n 为奇数时,点 A n 在点 A 的左边,所表示的数依次减少 3;当 n 为偶数时,点 A n 在点 A 的右边,所表示的数依次增加 3.设点 A n 表示的数为 a n ,则由此规律,得 a 1=−2,a 3=−5,a 5=−8,a 7=−11,a 9=−14,a 11=−17,a 13=−20,a 15=−23;a 2=4,a 4=7,a 6=10,a 8=13,a 10=16,a 12=19,a 14=22.故当点 A n 与原点的距离不小于 20 时,n 的最小值为 13.6. a 2n 2n−1【解析】认真观察,比较前后项之间的关系,注意分情况讨论,分子部分为 a 的偶数次幂;分母为连续奇数,所以第 n 个式子是 a 2n 2n−1.7. 4【解析】△ABC 与 △A 1BB 1 底相等(AB =A 1B ),高为 1:2(BB 1=2BC ),故面积为 1:2, ∵△ABC 面积为 1,∴S △A 1B 1B =2.同理可得,S △A 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证 S △A 2B 2C 2=7S △A 1B 1C 1=49,第三次操作后的面积是 7×49=343,第四次操作后的面积为 7×343=2401.故按此规律,要使得到的三角形的面积超过 2016,最少经过 4 次操作.8. 10072【解析】由已知可得当加数为奇数个时和等于中间数的平方,当加数为偶数个时和等于中间两个数的平均数的平方,因为 1+3+5+⋯+2013 是 1007 个数之和,所以和等于 10072.9. 11×2+12×3+13×4+14×5+15×6=56,11×2+12×3+⋯…+1n (n+1)=n n+110. 8,1+(−1)n+12(n +1)【解析】观察数字发现奇数位的数值是 n +1,偶数位数字是 0,第七位是奇数位,所以数字为 7+1=8.因为 1+(−1)n+12 当 n 为奇数时值为 1,n 为偶数时值为 0,第 n 位因无法判断奇偶,故可用 n +1 乘以1+(−1)n+12, 即 1+(−1)n+12(n +1).11. (14,8),(63,3)【解析】我们从左至右依次把 (1,0);(2,0),(2,1)...看成第一列,第二列,第三列,⋯,观察发现奇数列纵坐标沿箭头方向依次减小,偶数列纵坐标沿箭头方向依次增大,且每一列坐标点的个数和这一列的横坐标相等,第 100 个点在第 14 列中第 8 个,所以,其坐标为 (14,8),第 2013 个点在第 63 列中第 60 个数,其坐标为 (63,3).12. 50a 7,(−1)n+1⋅n 2+1a n【解析】第 1 个式子:2a =12+1a ; 第 2 个式子:−5a 2=−22+1a 2; 第 3 个式子:10a 3=32+1a 3; 第 4 个式子:−17a 4=−42+1a 4;。
中考数学探索题训练—找规律
1、如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
A 、618
B 、638
C 、658
D 、67
8
4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.
5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字:
第一个“上”字
第二个“上”字
第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.
(1)
(2)
(3)
第4题
(1) (2) (3)
(4)
8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。
9、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
10、观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n个点阵相对应的等式_____________________。
11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是
_______________cm(用含n 的代数式表示)。
12、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单
位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积个平方单位。
13、图(1)是一个水平摆放的小正方体木块,图(2)、(3
)是由这样的小正方体木块叠放
……
……
①1=12;②1+3=22;③1+3+5=32④;⑤;
第1次第2次第3次第4次···
···
第7题图
⑴ ⑵ ⑶
14题
而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 120
14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去,
第8个图中小立方体个数是 .
15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:
(1)按照要求填表:
(2)写出当
n =10
时,
s= .
16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10 n )时,需要的火柴棒总数为 根;
17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5
(1)
(2)
(3)
图1 图2 图3
支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是 _______ (n为正整数).
18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个
图形中需用黑色瓷砖 ____ 块.(用含n的代数式表示)
19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:
当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.
17题图
20
、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:
共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个
图
中,看不见的小立方体有个。
21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
(2)推测第n 个图形中,正方形的个数为________
,周长为______________(都用含n 的代数式表示)
.
22、观察下图,我们可以发现:图⑴中有1
个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
23、某正方形园地是由边长为1
的四个小正方形组成的,现要在园地上建一个花坛(阴影部
分)使花坛面积是园地面积的一半,以下图中设计不合要求....
的是( )
( )
<1>、<2>、<3>、<4>,其中面积相等的图形是( )
A. <1>和<2>
B. <2>和<3>
C. <2>和<4>
D. <1>和<4>
A
D
C
B
26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 . (n 为正整数)
27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块。
28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分
.
参考答案:
1、13
2、100
3、C
4、179
5、 3(n+1)-3+n (n+1)或(n+1)2+2n-1
6、(1)18、22 (2)4n+2
7、27
8、31,n 2
-n-1 9、80 10、1+3+5+7=42
;1+3+5+7+9=52
;
1+3+5+……+2n-1=n 2 11、 4n 12、90 13、C 14、64 15、(1)10 (2)1+2+3+……+n=n(n+1)/2 16、165 17、s=2n+1 18、4n+6 19、16,4n+4
20、125 21、(1)13、18;28、38;(2)5n+3,10n+8 22 、91 23、B 24、B 25、A 26、8n-6 27、(1)18 ;(2)4n+2 29、C 30、C 31、 36 32、A 33、C 35、15 ;2n -1 36、 2n 2 37、后面、上面、左面 38、C 39、(1) (1,1),(3,1),(4,2),(4,4);(2)
28、 40、
34、
另外的两个略
一个外星人
老人的脸
路灯
两朵鲜花
等式
同性相斥异性相吸。